date and time created 82/06/27 14:56:56 by sam
[unix-history] / usr / src / sys / kern / kern_clock.c
CommitLineData
1fa9ff62 1/* kern_clock.c 4.31 82/06/26 */
83be5fac
BJ
2
3#include "../h/param.h"
4#include "../h/systm.h"
d9b8447e 5#include "../h/dk.h"
0a34b6fd 6#include "../h/callout.h"
83be5fac
BJ
7#include "../h/seg.h"
8#include "../h/dir.h"
9#include "../h/user.h"
10#include "../h/proc.h"
11#include "../h/reg.h"
12#include "../h/psl.h"
13#include "../h/vm.h"
14#include "../h/buf.h"
15#include "../h/text.h"
95ce0d37
BJ
16#include "../h/vlimit.h"
17#include "../h/mtpr.h"
18#include "../h/clock.h"
e5a79c70 19#include "../h/cpu.h"
72857acf 20#include "../h/protosw.h"
83be5fac 21
738a68d6 22#include "bk.h"
ec213dfb
BJ
23#include "dh.h"
24#include "dz.h"
1fa9ff62 25#include "ps.h"
6602c75b 26
83be5fac 27/*
f403d99f 28 * Hardclock is called straight from
83be5fac 29 * the real time clock interrupt.
f403d99f
BJ
30 * We limit the work we do at real clock interrupt time to:
31 * reloading clock
32 * decrementing time to callouts
33 * recording cpu time usage
4512b9a4 34 * modifying priority of current process
f403d99f
BJ
35 * arrange for soft clock interrupt
36 * kernel pc profiling
83be5fac 37 *
964bcfb1 38 * At software (softclock) interrupt time we:
83be5fac 39 * implement callouts
83be5fac 40 * maintain date
83be5fac
BJ
41 * lightning bolt wakeup (every second)
42 * alarm clock signals
43 * jab the scheduler
f403d99f
BJ
44 *
45 * On the vax softclock interrupts are implemented by
46 * software interrupts. Note that we may have multiple softclock
47 * interrupts compressed into one (due to excessive interrupt load),
48 * but that hardclock interrupts should never be lost.
83be5fac 49 */
2752c877 50#ifdef KPROF
296d05b2 51int kcounts[20000];
2752c877 52#endif
83be5fac 53
72857acf
BJ
54/*
55 * Protoslow is like lbolt, but for slow protocol timeouts, counting
56 * up to (hz/PR_SLOWHZ), then causing a pfslowtimo().
57 * Protofast is like lbolt, but for fast protocol timeouts, counting
58 * up to (hz/PR_FASTHZ), then causing a pffasttimo().
59 */
60int protoslow;
61int protofast;
62
260ea681 63/*ARGSUSED*/
f403d99f 64hardclock(pc, ps)
4512b9a4 65 caddr_t pc;
83be5fac 66{
0a34b6fd 67 register struct callout *p1;
83be5fac 68 register struct proc *pp;
f403d99f 69 register int s, cpstate;
83be5fac
BJ
70
71 /*
72 * reprime clock
73 */
74 clkreld();
75
1fa9ff62
SL
76#if NPS > 0
77 /*
78 * sync referesh of picture system
79 */
80 psextsync(pc, ps);
81#endif
82
83be5fac 83 /*
f403d99f 84 * update callout times
83be5fac 85 */
c4710996
BJ
86 for (p1 = calltodo.c_next; p1 && p1->c_time <= 0; p1 = p1->c_next)
87 ;
88 if (p1)
89 p1->c_time--;
5da67d35
BJ
90
91 /*
f403d99f 92 * Maintain iostat and per-process cpu statistics
5da67d35 93 */
83be5fac
BJ
94 if (!noproc) {
95 s = u.u_procp->p_rssize;
96 u.u_vm.vm_idsrss += s;
97 if (u.u_procp->p_textp) {
98 register int xrss = u.u_procp->p_textp->x_rssize;
99
100 s += xrss;
101 u.u_vm.vm_ixrss += xrss;
102 }
103 if (s > u.u_vm.vm_maxrss)
104 u.u_vm.vm_maxrss = s;
0a34b6fd 105 if ((u.u_vm.vm_utime+u.u_vm.vm_stime+1)/hz > u.u_limit[LIM_CPU]) {
39f2f769
BJ
106 psignal(u.u_procp, SIGXCPU);
107 if (u.u_limit[LIM_CPU] < INFINITY - 5)
108 u.u_limit[LIM_CPU] += 5;
109 }
83be5fac 110 }
964bcfb1
BJ
111 /*
112 * Update iostat information.
113 */
83be5fac
BJ
114 if (USERMODE(ps)) {
115 u.u_vm.vm_utime++;
116 if(u.u_procp->p_nice > NZERO)
41888f16
BJ
117 cpstate = CP_NICE;
118 else
119 cpstate = CP_USER;
83be5fac 120 } else {
2752c877
BJ
121#ifdef KPROF
122 int k = ((int)pc & 0x7fffffff) / 8;
123 if (k < 20000)
124 kcounts[k]++;
125#endif
41888f16 126 cpstate = CP_SYS;
83be5fac 127 if (noproc)
41888f16 128 cpstate = CP_IDLE;
83be5fac
BJ
129 else
130 u.u_vm.vm_stime++;
131 }
2d7d59e9 132 cp_time[cpstate]++;
f403d99f
BJ
133 for (s = 0; s < DK_NDRIVE; s++)
134 if (dk_busy&(1<<s))
135 dk_time[s]++;
964bcfb1
BJ
136 /*
137 * Adjust priority of current process.
138 */
83be5fac
BJ
139 if (!noproc) {
140 pp = u.u_procp;
dd808ba3 141 pp->p_cpticks++;
83be5fac
BJ
142 if(++pp->p_cpu == 0)
143 pp->p_cpu--;
16a64baa 144 if(pp->p_cpu % 4 == 0) {
81263dba 145 (void) setpri(pp);
83be5fac
BJ
146 if (pp->p_pri >= PUSER)
147 pp->p_pri = pp->p_usrpri;
148 }
149 }
964bcfb1
BJ
150 /*
151 * Time moves on.
152 */
83be5fac 153 ++lbolt;
72857acf
BJ
154
155 /*
156 * Time moves on for protocols.
157 */
20bbf2f5 158 --protoslow; --protofast;
72857acf 159
e5a79c70 160#if VAX780
964bcfb1
BJ
161 /*
162 * On 780's, impelement a fast UBA watcher,
163 * to make sure uba's don't get stuck.
164 */
287d9996 165 if (cpu == VAX_780 && panicstr == 0 && !BASEPRI(ps))
f403d99f
BJ
166 unhang();
167#endif
964bcfb1
BJ
168 /*
169 * Schedule a software interrupt for the rest
170 * of clock activities.
171 */
f403d99f
BJ
172 setsoftclock();
173}
174
175/*
16a64baa
BJ
176 * The digital decay cpu usage priority assignment is scaled to run in
177 * time as expanded by the 1 minute load average. Each second we
178 * multiply the the previous cpu usage estimate by
179 * nrscale*avenrun[0]
180 * The following relates the load average to the period over which
181 * cpu usage is 90% forgotten:
182 * loadav 1 5 seconds
183 * loadav 5 24 seconds
184 * loadav 10 47 seconds
185 * loadav 20 93 seconds
186 * This is a great improvement on the previous algorithm which
187 * decayed the priorities by a constant, and decayed away all knowledge
188 * of previous activity in about 20 seconds. Under heavy load,
189 * the previous algorithm degenerated to round-robin with poor response
190 * time when there was a high load average.
964bcfb1 191 */
b620b354 192#undef ave
16a64baa
BJ
193#define ave(a,b) ((int)(((int)(a*b))/(b+1)))
194int nrscale = 2;
195double avenrun[];
964bcfb1
BJ
196
197/*
198 * Constant for decay filter for cpu usage field
199 * in process table (used by ps au).
f403d99f
BJ
200 */
201double ccpu = 0.95122942450071400909; /* exp(-1/20) */
202
203/*
204 * Software clock interrupt.
964bcfb1 205 * This routine runs at lower priority than device interrupts.
f403d99f 206 */
260ea681 207/*ARGSUSED*/
f403d99f 208softclock(pc, ps)
4512b9a4 209 caddr_t pc;
f403d99f 210{
dee48a1b 211 register struct callout *p1;
f403d99f
BJ
212 register struct proc *pp;
213 register int a, s;
c4710996
BJ
214 caddr_t arg;
215 int (*func)();
f403d99f
BJ
216
217 /*
287d9996 218 * Perform callouts (but not after panic's!)
f403d99f 219 */
c4710996
BJ
220 if (panicstr == 0) {
221 for (;;) {
222 s = spl7();
849fc3ee
BJ
223 if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
224 splx(s);
c4710996 225 break;
849fc3ee 226 }
c4710996
BJ
227 calltodo.c_next = p1->c_next;
228 arg = p1->c_arg;
229 func = p1->c_func;
230 p1->c_next = callfree;
231 callfree = p1;
232 (void) splx(s);
233 (*func)(arg);
f403d99f
BJ
234 }
235 }
236
237 /*
238 * Drain silos.
239 */
3b90686d 240#if NDH > 0
f403d99f
BJ
241 s = spl5(); dhtimer(); splx(s);
242#endif
3b90686d 243#if NDZ > 0
f403d99f
BJ
244 s = spl5(); dztimer(); splx(s);
245#endif
246
4512b9a4
BJ
247 /*
248 * If idling and processes are waiting to swap in,
249 * check on them.
250 */
251 if (noproc && runin) {
252 runin = 0;
253 wakeup((caddr_t)&runin);
254 }
255
f403d99f 256 /*
16a64baa 257 * Run paging daemon every 1/4 sec.
f403d99f 258 */
0a34b6fd 259 if (lbolt % (hz/4) == 0) {
83be5fac 260 vmpago();
16a64baa
BJ
261 }
262
263 /*
264 * Reschedule every 1/10 sec.
265 */
266 if (lbolt % (hz/10) == 0) {
83be5fac 267 runrun++;
f403d99f 268 aston();
83be5fac 269 }
f403d99f 270
72857acf
BJ
271 /*
272 * Run network slow and fast timeouts.
273 */
20bbf2f5
BJ
274 if (protofast <= 0) {
275 protofast = hz / PR_FASTHZ;
72857acf 276 pffasttimo();
20bbf2f5
BJ
277 }
278 if (protoslow <= 0) {
279 protoslow = hz / PR_SLOWHZ;
72857acf 280 pfslowtimo();
20bbf2f5 281 }
72857acf 282
f403d99f
BJ
283 /*
284 * Lightning bolt every second:
285 * sleep timeouts
286 * process priority recomputation
287 * process %cpu averaging
288 * virtual memory metering
289 * kick swapper if processes want in
290 */
0a34b6fd 291 if (lbolt >= hz) {
287d9996 292 /*
964bcfb1 293 * This doesn't mean much on VAX since we run at
287d9996
BJ
294 * software interrupt time... if hardclock()
295 * calls softclock() directly, it prevents
296 * this code from running when the priority
297 * was raised when the clock interrupt occurred.
298 */
83be5fac
BJ
299 if (BASEPRI(ps))
300 return;
287d9996
BJ
301
302 /*
303 * If we didn't run a few times because of
304 * long blockage at high ipl, we don't
305 * really want to run this code several times,
306 * so squish out all multiples of hz here.
307 */
308 time += lbolt / hz;
309 lbolt %= hz;
310
311 /*
312 * Wakeup lightning bolt sleepers.
313 * Processes sleep on lbolt to wait
314 * for short amounts of time (e.g. 1 second).
315 */
83be5fac 316 wakeup((caddr_t)&lbolt);
287d9996
BJ
317
318 /*
319 * Recompute process priority and process
320 * sleep() system calls as well as internal
321 * sleeps with timeouts (tsleep() kernel routine).
322 */
323 for (pp = proc; pp < procNPROC; pp++)
8418f526 324 if (pp->p_stat && pp->p_stat!=SZOMB) {
287d9996
BJ
325 /*
326 * Increase resident time, to max of 127 seconds
327 * (it is kept in a character.) For
328 * loaded processes this is time in core; for
329 * swapped processes, this is time on drum.
330 */
331 if (pp->p_time != 127)
83be5fac 332 pp->p_time++;
287d9996
BJ
333 /*
334 * If process has clock counting down, and it
335 * expires, set it running (if this is a tsleep()),
336 * or give it an SIGALRM (if the user process
337 * is using alarm signals.
338 */
339 if (pp->p_clktim && --pp->p_clktim == 0)
340 if (pp->p_flag & STIMO) {
341 s = spl6();
342 switch (pp->p_stat) {
daac5944 343
287d9996
BJ
344 case SSLEEP:
345 setrun(pp);
346 break;
daac5944 347
287d9996
BJ
348 case SSTOP:
349 unsleep(pp);
350 break;
351 }
352 pp->p_flag &= ~STIMO;
353 splx(s);
354 } else
355 psignal(pp, SIGALRM);
356 /*
357 * If process is blocked, increment computed
358 * time blocked. This is used in swap scheduling.
359 */
360 if (pp->p_stat==SSLEEP || pp->p_stat==SSTOP)
83be5fac
BJ
361 if (pp->p_slptime != 127)
362 pp->p_slptime++;
287d9996
BJ
363 /*
364 * Update digital filter estimation of process
365 * cpu utilization for loaded processes.
366 */
dd808ba3
BJ
367 if (pp->p_flag&SLOAD)
368 pp->p_pctcpu = ccpu * pp->p_pctcpu +
0a34b6fd 369 (1.0 - ccpu) * (pp->p_cpticks/(float)hz);
287d9996
BJ
370 /*
371 * Recompute process priority. The number p_cpu
372 * is a weighted estimate of cpu time consumed.
373 * A process which consumes cpu time has this
374 * increase regularly. We here decrease it by
16a64baa
BJ
375 * a fraction based on load average giving a digital
376 * decay filter which damps out in about 5 seconds
377 * when seconds are measured in time expanded by the
378 * load average.
287d9996
BJ
379 *
380 * If a process is niced, then the nice directly
381 * affects the new priority. The final priority
382 * is in the range 0 to 255, to fit in a character.
383 */
dd808ba3 384 pp->p_cpticks = 0;
16a64baa
BJ
385 a = ave((pp->p_cpu & 0377), avenrun[0]*nrscale) +
386 pp->p_nice - NZERO;
287d9996 387 if (a < 0)
83be5fac 388 a = 0;
287d9996 389 if (a > 255)
83be5fac
BJ
390 a = 255;
391 pp->p_cpu = a;
81263dba 392 (void) setpri(pp);
287d9996
BJ
393 /*
394 * Now have computed new process priority
395 * in p->p_usrpri. Carefully change p->p_pri.
396 * A process is on a run queue associated with
397 * this priority, so we must block out process
398 * state changes during the transition.
399 */
83be5fac 400 s = spl6();
287d9996 401 if (pp->p_pri >= PUSER) {
83be5fac
BJ
402 if ((pp != u.u_procp || noproc) &&
403 pp->p_stat == SRUN &&
404 (pp->p_flag & SLOAD) &&
405 pp->p_pri != pp->p_usrpri) {
406 remrq(pp);
407 pp->p_pri = pp->p_usrpri;
408 setrq(pp);
409 } else
410 pp->p_pri = pp->p_usrpri;
411 }
412 splx(s);
413 }
287d9996
BJ
414
415 /*
416 * Perform virtual memory metering.
417 */
83be5fac 418 vmmeter();
287d9996
BJ
419
420 /*
421 * If the swap process is trying to bring
422 * a process in, have it look again to see
423 * if it is possible now.
424 */
425 if (runin!=0) {
83be5fac
BJ
426 runin = 0;
427 wakeup((caddr_t)&runin);
428 }
287d9996 429
83be5fac
BJ
430 /*
431 * If there are pages that have been cleaned,
432 * jolt the pageout daemon to process them.
433 * We do this here so that these pages will be
434 * freed if there is an abundance of memory and the
435 * daemon would not be awakened otherwise.
436 */
437 if (bclnlist != NULL)
438 wakeup((caddr_t)&proc[2]);
287d9996
BJ
439
440 /*
441 * If the trap occurred from usermode,
442 * then check to see if it has now been
443 * running more than 10 minutes of user time
444 * and should thus run with reduced priority
445 * to give other processes a chance.
446 */
83be5fac
BJ
447 if (USERMODE(ps)) {
448 pp = u.u_procp;
287d9996
BJ
449 if (pp->p_uid && pp->p_nice == NZERO &&
450 u.u_vm.vm_utime > 600 * hz)
451 pp->p_nice = NZERO+4;
81263dba 452 (void) setpri(pp);
83be5fac 453 pp->p_pri = pp->p_usrpri;
054016e1 454 }
83be5fac 455 }
287d9996
BJ
456 /*
457 * If trapped user-mode, give it a profiling tick.
458 */
f403d99f
BJ
459 if (USERMODE(ps) && u.u_prof.pr_scale) {
460 u.u_procp->p_flag |= SOWEUPC;
461 aston();
83be5fac 462 }
83be5fac
BJ
463}
464
465/*
964bcfb1 466 * Timeout is called to arrange that
0a34b6fd 467 * fun(arg) is called in tim/hz seconds.
c4710996 468 * An entry is linked into the callout
964bcfb1 469 * structure. The time in each structure
0a34b6fd 470 * entry is the number of hz's more
83be5fac
BJ
471 * than the previous entry.
472 * In this way, decrementing the
473 * first entry has the effect of
474 * updating all entries.
475 *
476 * The panic is there because there is nothing
477 * intelligent to be done if an entry won't fit.
478 */
479timeout(fun, arg, tim)
4512b9a4
BJ
480 int (*fun)();
481 caddr_t arg;
83be5fac 482{
c4710996 483 register struct callout *p1, *p2, *pnew;
83be5fac
BJ
484 register int t;
485 int s;
486
47477f34
BJ
487/* DEBUGGING CODE */
488 int ttrstrt();
489
490 if (fun == ttrstrt && arg == 0)
491 panic("timeout ttrstr arg");
492/* END DEBUGGING CODE */
83be5fac 493 t = tim;
83be5fac 494 s = spl7();
c4710996
BJ
495 pnew = callfree;
496 if (pnew == NULL)
497 panic("timeout table overflow");
498 callfree = pnew->c_next;
499 pnew->c_arg = arg;
500 pnew->c_func = fun;
501 for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
502 t -= p2->c_time;
503 p1->c_next = pnew;
504 pnew->c_next = p2;
505 pnew->c_time = t;
506 if (p2)
507 p2->c_time -= t;
83be5fac
BJ
508 splx(s);
509}
1fa9ff62
SL
510
511/*
512 * untimeout is called to remove a function timeout call
513 * from the callout structure.
514 */
515untimeout (fun, arg)
516 int (*fun)();
517 caddr_t arg;
518{
519
520 register struct callout *p1, *p2;
521 register int s;
522
523 s = spl7();
524 for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) {
525 if (p2->c_func == fun && p2->c_arg == arg) {
526 if (p2->c_next)
527 p2->c_next->c_time += p2->c_time;
528 p1->c_next = p2->c_next;
529 p2->c_next = callfree;
530 callfree = p2;
531 break;
532 }
533 }
534 splx(s);
535}