UNMATCHED SPL() CALL IN VM SYSTEM
[unix-history] / usr / src / sys.386bsd / vm / vm_glue.c
CommitLineData
06c5935e
WJ
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_glue.c 7.8 (Berkeley) 5/15/91
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62static char rcsid[] = "$Header: /usr/bill/working/sys/vm/RCS/vm_glue.c,v 1.2 92/01/21 21:58:21 william Exp $";
63
64#include "param.h"
65#include "systm.h"
66#include "proc.h"
67#include "resourcevar.h"
68#include "buf.h"
69#include "user.h"
70
71#include "vm.h"
72#include "vm_page.h"
73#include "vm_kern.h"
74
75int avefree = 0; /* XXX */
76unsigned maxdmap = MAXDSIZ; /* XXX */
77int readbuffers = 0; /* XXX allow kgdb to read kernel buffer pool */
78
79kernacc(addr, len, rw)
80 caddr_t addr;
81 int len, rw;
82{
83 boolean_t rv;
84 vm_offset_t saddr, eaddr;
85 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
86
87 saddr = trunc_page(addr);
88 eaddr = round_page(addr+len-1);
89 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
90 /*
91 * XXX there are still some things (e.g. the buffer cache) that
92 * are managed behind the VM system's back so even though an
93 * address is accessible in the mind of the VM system, there may
94 * not be physical pages where the VM thinks there is. This can
95 * lead to bogus allocation of pages in the kernel address space
96 * or worse, inconsistencies at the pmap level. We only worry
97 * about the buffer cache for now.
98 */
99 if (!readbuffers && rv && (eaddr > (vm_offset_t)buffers &&
100 saddr < (vm_offset_t)buffers + MAXBSIZE * nbuf))
101 rv = FALSE;
102 return(rv == TRUE);
103}
104
105useracc(addr, len, rw)
106 caddr_t addr;
107 int len, rw;
108{
109 boolean_t rv;
110 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
111
112 rv = vm_map_check_protection(&curproc->p_vmspace->vm_map,
113 trunc_page(addr), round_page(addr+len-1), prot);
114 return(rv == TRUE);
115}
116
117#ifdef KGDB
118/*
119 * Change protections on kernel pages from addr to addr+len
120 * (presumably so debugger can plant a breakpoint).
121 * All addresses are assumed to reside in the Sysmap,
122 */
123chgkprot(addr, len, rw)
124 register caddr_t addr;
125 int len, rw;
126{
127 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
128
129 vm_map_protect(kernel_map, trunc_page(addr),
130 round_page(addr+len-1), prot, FALSE);
131}
132#endif
133
134vslock(addr, len)
135 caddr_t addr;
136 u_int len;
137{
138 vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
139 round_page(addr+len-1), FALSE);
140}
141
142vsunlock(addr, len, dirtied)
143 caddr_t addr;
144 u_int len;
145 int dirtied;
146{
147#ifdef lint
148 dirtied++;
149#endif lint
150 vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
151 round_page(addr+len-1), TRUE);
152}
153
154/*
155 * Implement fork's actions on an address space.
156 * Here we arrange for the address space to be copied or referenced,
157 * allocate a user struct (pcb and kernel stack), then call the
158 * machine-dependent layer to fill those in and make the new process
159 * ready to run.
160 * NOTE: the kernel stack may be at a different location in the child
161 * process, and thus addresses of automatic variables may be invalid
162 * after cpu_fork returns in the child process. We do nothing here
163 * after cpu_fork returns.
164 */
165vm_fork(p1, p2, isvfork)
166 register struct proc *p1, *p2;
167 int isvfork;
168{
169 register struct user *up;
170 vm_offset_t addr;
171
172#ifdef i386
173 /*
174 * avoid copying any of the parent's pagetables or other per-process
175 * objects that reside in the map by marking all of them non-inheritable
176 */
177 (void)vm_map_inherit(&p1->p_vmspace->vm_map,
178 UPT_MIN_ADDRESS-UPAGES*NBPG, VM_MAX_ADDRESS, VM_INHERIT_NONE);
179#endif
180 p2->p_vmspace = vmspace_fork(p1->p_vmspace);
181
182#ifdef SYSVSHM
183 if (p1->p_vmspace->vm_shm)
184 shmfork(p1, p2, isvfork);
185#endif
186
187 /*
188 * Allocate a wired-down (for now) pcb and kernel stack for the process
189 */
190#ifdef notyet
191 addr = kmem_alloc_pageable(kernel_map, ctob(UPAGES));
192 vm_map_pageable(kernel_map, addr, addr + ctob(UPAGES), FALSE);
193#else
194 addr = kmem_alloc(kernel_map, ctob(UPAGES));
195#endif
196 up = (struct user *)addr;
197 p2->p_addr = up;
198
199 /*
200 * p_stats and p_sigacts currently point at fields
201 * in the user struct but not at &u, instead at p_addr.
202 * Copy p_sigacts and parts of p_stats; zero the rest
203 * of p_stats (statistics).
204 */
205 p2->p_stats = &up->u_stats;
206 p2->p_sigacts = &up->u_sigacts;
207 up->u_sigacts = *p1->p_sigacts;
208 bzero(&up->u_stats.pstat_startzero,
209 (unsigned) ((caddr_t)&up->u_stats.pstat_endzero -
210 (caddr_t)&up->u_stats.pstat_startzero));
211 bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
212 ((caddr_t)&up->u_stats.pstat_endcopy -
213 (caddr_t)&up->u_stats.pstat_startcopy));
214
215#ifdef i386
216 { u_int addr = UPT_MIN_ADDRESS - UPAGES*NBPG; struct vm_map *vp;
217
218 vp = &p2->p_vmspace->vm_map;
219
220 /* ream out old pagetables and kernel stack */
221 (void)vm_deallocate(vp, addr, UPT_MAX_ADDRESS - addr);
222 (void)vm_allocate(vp, &addr, UPT_MAX_ADDRESS - addr, FALSE);
223 }
224#endif
225 /*
226 * cpu_fork will copy and update the kernel stack and pcb,
227 * and make the child ready to run. It marks the child
228 * so that it can return differently than the parent.
229 * It returns twice, once in the parent process and
230 * once in the child.
231 */
232 return (cpu_fork(p1, p2));
233}
234
235/*
236 * Set default limits for VM system.
237 * Called for proc 0, and then inherited by all others.
238 */
239vm_init_limits(p)
240 register struct proc *p;
241{
242
243 /*
244 * Set up the initial limits on process VM.
245 * Set the maximum resident set size to be all
246 * of (reasonably) available memory. This causes
247 * any single, large process to start random page
248 * replacement once it fills memory.
249 */
250 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
251 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
252 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
253 p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
254 p->p_rlimit[RLIMIT_RSS].rlim_cur = p->p_rlimit[RLIMIT_RSS].rlim_max =
255 ptoa(vm_page_free_count);
256}
257
258#include "../vm/vm_pageout.h"
259
260#ifdef DEBUG
261int enableswap = 1;
262int swapdebug = 0;
263#define SDB_FOLLOW 1
264#define SDB_SWAPIN 2
265#define SDB_SWAPOUT 4
266#endif
267
268/*
269 * Brutally simple:
270 * 1. Attempt to swapin every swaped-out, runnable process in
271 * order of priority.
272 * 2. If not enough memory, wake the pageout daemon and let it
273 * clear some space.
274 */
275sched()
276{
277 register struct proc *p;
278 register int pri;
279 struct proc *pp;
280 int ppri;
281 vm_offset_t addr;
282 vm_size_t size;
283
284loop:
285#ifdef DEBUG
286 if (!enableswap) {
287 pp = NULL;
288 goto noswap;
289 }
290#endif
291 pp = NULL;
292 ppri = INT_MIN;
293 for (p = allproc; p != NULL; p = p->p_nxt)
294 if (p->p_stat == SRUN && (p->p_flag & SLOAD) == 0) {
295 pri = p->p_time + p->p_slptime - p->p_nice * 8;
296 if (pri > ppri) {
297 pp = p;
298 ppri = pri;
299 }
300 }
301#ifdef DEBUG
302 if (swapdebug & SDB_FOLLOW)
303 printf("sched: running, procp %x pri %d\n", pp, ppri);
304noswap:
305#endif
306 /*
307 * Nothing to do, back to sleep
308 */
309 if ((p = pp) == NULL) {
310 sleep((caddr_t)&proc0, PVM);
311 goto loop;
312 }
313
314 /*
315 * We would like to bring someone in.
316 * This part is really bogus cuz we could deadlock on memory
317 * despite our feeble check.
318 */
319 size = round_page(ctob(UPAGES));
320 addr = (vm_offset_t) p->p_addr;
321 if (vm_page_free_count > atop(size)) {
322#ifdef DEBUG
323 if (swapdebug & SDB_SWAPIN)
324 printf("swapin: pid %d(%s)@%x, pri %d free %d\n",
325 p->p_pid, p->p_comm, p->p_addr,
326 ppri, vm_page_free_count);
327#endif
328 vm_map_pageable(kernel_map, addr, addr+size, FALSE);
329 (void) splclock();
330 if (p->p_stat == SRUN)
331 setrq(p);
332 p->p_flag |= SLOAD;
333 (void) spl0();
334 p->p_time = 0;
335 goto loop;
336 }
337 /*
338 * Not enough memory, jab the pageout daemon and wait til the
339 * coast is clear.
340 */
341#ifdef DEBUG
342 if (swapdebug & SDB_FOLLOW)
343 printf("sched: no room for pid %d(%s), free %d\n",
344 p->p_pid, p->p_comm, vm_page_free_count);
345#endif
346 (void) splhigh();
347 VM_WAIT;
348 (void) spl0();
349#ifdef DEBUG
350 if (swapdebug & SDB_FOLLOW)
351 printf("sched: room again, free %d\n", vm_page_free_count);
352#endif
353 goto loop;
354}
355
356#define swappable(p) \
357 (((p)->p_flag & (SSYS|SLOAD|SKEEP|SWEXIT|SPHYSIO)) == SLOAD)
358
359/*
360 * Swapout is driven by the pageout daemon. Very simple, we find eligible
361 * procs and unwire their u-areas. We try to always "swap" at least one
362 * process in case we need the room for a swapin.
363 * If any procs have been sleeping/stopped for at least maxslp seconds,
364 * they are swapped. Else, we swap the longest-sleeping or stopped process,
365 * if any, otherwise the longest-resident process.
366 */
367swapout_threads()
368{
369 register struct proc *p;
370 struct proc *outp, *outp2;
371 int outpri, outpri2;
372 int didswap = 0;
373 extern int maxslp;
374
375#ifdef DEBUG
376 if (!enableswap)
377 return;
378#endif
379 outp = outp2 = NULL;
380 outpri = outpri2 = 0;
381 for (p = allproc; p != NULL; p = p->p_nxt) {
382 if (!swappable(p))
383 continue;
384 switch (p->p_stat) {
385 case SRUN:
386 if (p->p_time > outpri2) {
387 outp2 = p;
388 outpri2 = p->p_time;
389 }
390 continue;
391
392 case SSLEEP:
393 case SSTOP:
394 if (p->p_slptime > maxslp) {
395 swapout(p);
396 didswap++;
397 } else if (p->p_slptime > outpri) {
398 outp = p;
399 outpri = p->p_slptime;
400 }
401 continue;
402 }
403 }
404 /*
405 * If we didn't get rid of any real duds, toss out the next most
406 * likely sleeping/stopped or running candidate. We only do this
407 * if we are real low on memory since we don't gain much by doing
408 * it (UPAGES pages).
409 */
410 if (didswap == 0 &&
411 vm_page_free_count <= atop(round_page(ctob(UPAGES)))) {
412 if ((p = outp) == 0)
413 p = outp2;
414#ifdef DEBUG
415 if (swapdebug & SDB_SWAPOUT)
416 printf("swapout_threads: no duds, try procp %x\n", p);
417#endif
418 if (p)
419 swapout(p);
420 }
421}
422
423swapout(p)
424 register struct proc *p;
425{
426 vm_offset_t addr;
427 vm_size_t size;
428
429#ifdef DEBUG
430 if (swapdebug & SDB_SWAPOUT)
431 printf("swapout: pid %d(%s)@%x, stat %x pri %d free %d\n",
432 p->p_pid, p->p_comm, p->p_addr, p->p_stat,
433 p->p_slptime, vm_page_free_count);
434#endif
435 size = round_page(ctob(UPAGES));
436 addr = (vm_offset_t) p->p_addr;
437#ifdef notyet
438#ifdef hp300
439 /*
440 * Ugh! u-area is double mapped to a fixed address behind the
441 * back of the VM system and accesses are usually through that
442 * address rather than the per-process address. Hence reference
443 * and modify information are recorded at the fixed address and
444 * lost at context switch time. We assume the u-struct and
445 * kernel stack are always accessed/modified and force it to be so.
446 */
447 {
448 register int i;
449 volatile long tmp;
450
451 for (i = 0; i < UPAGES; i++) {
452 tmp = *(long *)addr; *(long *)addr = tmp;
453 addr += NBPG;
454 }
455 addr = (vm_offset_t) p->p_addr;
456 }
457#endif
458 vm_map_pageable(kernel_map, addr, addr+size, TRUE);
459 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
460#endif
461 (void) splhigh();
462 p->p_flag &= ~SLOAD;
463 if (p->p_stat == SRUN)
464 remrq(p);
465 (void) spl0();
466 p->p_time = 0;
467}
468
469/*
470 * The rest of these routines fake thread handling
471 */
472
473void
474assert_wait(event, ruptible)
475 int event;
476 boolean_t ruptible;
477{
478#ifdef lint
479 ruptible++;
480#endif
481 curproc->p_thread = event;
482}
483
484void
485thread_block()
486{
487 int s = splhigh();
488
489 if (curproc->p_thread)
490 sleep((caddr_t)curproc->p_thread, PVM);
491 splx(s);
492}
493
494thread_sleep(event, lock, ruptible)
495 int event;
496 simple_lock_t lock;
497 boolean_t ruptible;
498{
499#ifdef lint
500 ruptible++;
501#endif
502 int s = splhigh();
503
504 curproc->p_thread = event;
505 simple_unlock(lock);
506 if (curproc->p_thread)
507 sleep((caddr_t)event, PVM);
508 splx(s);
509}
510
511thread_wakeup(event)
512 int event;
513{
514 int s = splhigh();
515
516 wakeup((caddr_t)event);
517 splx(s);
518}
519
520/*
521 * DEBUG stuff
522 */
523
524int indent = 0;
525
526/*ARGSUSED2*/
527iprintf(a, b, c, d, e, f, g, h)
528 char *a;
529{
530 register int i;
531
532 i = indent;
533 while (i >= 8) {
534 printf("\t");
535 i -= 8;
536 }
537 for (; i > 0; --i)
538 printf(" ");
539 printf(a, b, c, d, e, f, g, h);
540}