UNMATCHED SPL() CALL IN VM SYSTEM
[unix-history] / usr / src / sys.386bsd / vm / vm_object.c
CommitLineData
b688fc87
WJ
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_object.c 7.4 (Berkeley) 5/7/91
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 */
64
65/*
66 * Virtual memory object module.
67 */
68
69#include "param.h"
70#include "malloc.h"
71
72#include "vm.h"
73#include "vm_page.h"
74
75/*
76 * Virtual memory objects maintain the actual data
77 * associated with allocated virtual memory. A given
78 * page of memory exists within exactly one object.
79 *
80 * An object is only deallocated when all "references"
81 * are given up. Only one "reference" to a given
82 * region of an object should be writeable.
83 *
84 * Associated with each object is a list of all resident
85 * memory pages belonging to that object; this list is
86 * maintained by the "vm_page" module, and locked by the object's
87 * lock.
88 *
89 * Each object also records a "pager" routine which is
90 * used to retrieve (and store) pages to the proper backing
91 * storage. In addition, objects may be backed by other
92 * objects from which they were virtual-copied.
93 *
94 * The only items within the object structure which are
95 * modified after time of creation are:
96 * reference count locked by object's lock
97 * pager routine locked by object's lock
98 *
99 */
100
101struct vm_object kernel_object_store;
102struct vm_object kmem_object_store;
103
104#define VM_OBJECT_HASH_COUNT 157
105
106int vm_cache_max = 100; /* can patch if necessary */
107queue_head_t vm_object_hashtable[VM_OBJECT_HASH_COUNT];
108
109long object_collapses = 0;
110long object_bypasses = 0;
111
112/*
113 * vm_object_init:
114 *
115 * Initialize the VM objects module.
116 */
117void vm_object_init()
118{
119 register int i;
120
121 queue_init(&vm_object_cached_list);
122 queue_init(&vm_object_list);
123 vm_object_count = 0;
124 simple_lock_init(&vm_cache_lock);
125 simple_lock_init(&vm_object_list_lock);
126
127 for (i = 0; i < VM_OBJECT_HASH_COUNT; i++)
128 queue_init(&vm_object_hashtable[i]);
129
130 kernel_object = &kernel_object_store;
131 _vm_object_allocate(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
132 kernel_object);
133
134 kmem_object = &kmem_object_store;
135 _vm_object_allocate(VM_KMEM_SIZE + VM_MBUF_SIZE, kmem_object);
136}
137
138/*
139 * vm_object_allocate:
140 *
141 * Returns a new object with the given size.
142 */
143
144vm_object_t vm_object_allocate(size)
145 vm_size_t size;
146{
147 register vm_object_t result;
148
149 result = (vm_object_t)
150 malloc((u_long)sizeof *result, M_VMOBJ, M_WAITOK);
151
152 _vm_object_allocate(size, result);
153
154 return(result);
155}
156
157_vm_object_allocate(size, object)
158 vm_size_t size;
159 register vm_object_t object;
160{
161 queue_init(&object->memq);
162 vm_object_lock_init(object);
163 object->ref_count = 1;
164 object->resident_page_count = 0;
165 object->size = size;
166 object->can_persist = FALSE;
167 object->paging_in_progress = 0;
168 object->copy = NULL;
169
170 /*
171 * Object starts out read-write, with no pager.
172 */
173
174 object->pager = NULL;
175 object->pager_ready = FALSE;
176 object->internal = TRUE; /* vm_allocate_with_pager will reset */
177 object->paging_offset = 0;
178 object->shadow = NULL;
179 object->shadow_offset = (vm_offset_t) 0;
180
181 simple_lock(&vm_object_list_lock);
182 queue_enter(&vm_object_list, object, vm_object_t, object_list);
183 vm_object_count++;
184 simple_unlock(&vm_object_list_lock);
185}
186
187/*
188 * vm_object_reference:
189 *
190 * Gets another reference to the given object.
191 */
192void vm_object_reference(object)
193 register vm_object_t object;
194{
195 if (object == NULL)
196 return;
197
198 vm_object_lock(object);
199 object->ref_count++;
200 vm_object_unlock(object);
201}
202
203/*
204 * vm_object_deallocate:
205 *
206 * Release a reference to the specified object,
207 * gained either through a vm_object_allocate
208 * or a vm_object_reference call. When all references
209 * are gone, storage associated with this object
210 * may be relinquished.
211 *
212 * No object may be locked.
213 */
214void vm_object_deallocate(object)
215 register vm_object_t object;
216{
217 vm_object_t temp;
218
219 while (object != NULL) {
220
221 /*
222 * The cache holds a reference (uncounted) to
223 * the object; we must lock it before removing
224 * the object.
225 */
226
227 vm_object_cache_lock();
228
229 /*
230 * Lose the reference
231 */
232 vm_object_lock(object);
233 if (--(object->ref_count) != 0) {
234
235 /*
236 * If there are still references, then
237 * we are done.
238 */
239 vm_object_unlock(object);
240 vm_object_cache_unlock();
241 return;
242 }
243
244 /*
245 * See if this object can persist. If so, enter
246 * it in the cache, then deactivate all of its
247 * pages.
248 */
249
250 if (object->can_persist) {
251
252 queue_enter(&vm_object_cached_list, object,
253 vm_object_t, cached_list);
254 vm_object_cached++;
255 vm_object_cache_unlock();
256
257 vm_object_deactivate_pages(object);
258 vm_object_unlock(object);
259
260 vm_object_cache_trim();
261 return;
262 }
263
264 /*
265 * Make sure no one can look us up now.
266 */
267 vm_object_remove(object->pager);
268 vm_object_cache_unlock();
269
270 temp = object->shadow;
271 vm_object_terminate(object);
272 /* unlocks and deallocates object */
273 object = temp;
274 }
275}
276
277
278/*
279 * vm_object_terminate actually destroys the specified object, freeing
280 * up all previously used resources.
281 *
282 * The object must be locked.
283 */
284void vm_object_terminate(object)
285 register vm_object_t object;
286{
287 register vm_page_t p;
288 vm_object_t shadow_object;
289
290 /*
291 * Detach the object from its shadow if we are the shadow's
292 * copy.
293 */
294 if ((shadow_object = object->shadow) != NULL) {
295 vm_object_lock(shadow_object);
296 if (shadow_object->copy == object)
297 shadow_object->copy = NULL;
298#if 0
299 else if (shadow_object->copy != NULL)
300 panic("vm_object_terminate: copy/shadow inconsistency");
301#endif
302 vm_object_unlock(shadow_object);
303 }
304
305 /*
306 * Wait until the pageout daemon is through
307 * with the object.
308 */
309
310 while (object->paging_in_progress != 0) {
311 vm_object_sleep(object, object, FALSE);
312 vm_object_lock(object);
313 }
314
315
316 /*
317 * While the paging system is locked,
318 * pull the object's pages off the active
319 * and inactive queues. This keeps the
320 * pageout daemon from playing with them
321 * during vm_pager_deallocate.
322 *
323 * We can't free the pages yet, because the
324 * object's pager may have to write them out
325 * before deallocating the paging space.
326 */
327
328 p = (vm_page_t) queue_first(&object->memq);
329 while (!queue_end(&object->memq, (queue_entry_t) p)) {
330 VM_PAGE_CHECK(p);
331
332 vm_page_lock_queues();
333 if (p->active) {
334 queue_remove(&vm_page_queue_active, p, vm_page_t,
335 pageq);
336 p->active = FALSE;
337 vm_page_active_count--;
338 }
339
340 if (p->inactive) {
341 queue_remove(&vm_page_queue_inactive, p, vm_page_t,
342 pageq);
343 p->inactive = FALSE;
344 vm_page_inactive_count--;
345 }
346 vm_page_unlock_queues();
347 p = (vm_page_t) queue_next(&p->listq);
348 }
349
350 vm_object_unlock(object);
351
352 if (object->paging_in_progress != 0)
353 panic("vm_object_deallocate: pageout in progress");
354
355 /*
356 * Clean and free the pages, as appropriate.
357 * All references to the object are gone,
358 * so we don't need to lock it.
359 */
360
361 if (!object->internal) {
362 vm_object_lock(object);
363 vm_object_page_clean(object, 0, 0);
364 vm_object_unlock(object);
365 }
366 while (!queue_empty(&object->memq)) {
367 p = (vm_page_t) queue_first(&object->memq);
368
369 VM_PAGE_CHECK(p);
370
371 vm_page_lock_queues();
372 vm_page_free(p);
373 vm_page_unlock_queues();
374 }
375
376 /*
377 * Let the pager know object is dead.
378 */
379
380 if (object->pager != NULL)
381 vm_pager_deallocate(object->pager);
382
383
384 simple_lock(&vm_object_list_lock);
385 queue_remove(&vm_object_list, object, vm_object_t, object_list);
386 vm_object_count--;
387 simple_unlock(&vm_object_list_lock);
388
389 /*
390 * Free the space for the object.
391 */
392
393 free((caddr_t)object, M_VMOBJ);
394}
395
396/*
397 * vm_object_page_clean
398 *
399 * Clean all dirty pages in the specified range of object.
400 * Leaves page on whatever queue it is currently on.
401 *
402 * Odd semantics: if start == end, we clean everything.
403 *
404 * The object must be locked.
405 */
406vm_object_page_clean(object, start, end)
407 register vm_object_t object;
408 register vm_offset_t start;
409 register vm_offset_t end;
410{
411 register vm_page_t p;
412
413 if (object->pager == NULL)
414 return;
415
416again:
417 p = (vm_page_t) queue_first(&object->memq);
418 while (!queue_end(&object->memq, (queue_entry_t) p)) {
419 if (start == end ||
420 p->offset >= start && p->offset < end) {
421 if (p->clean && pmap_is_modified(VM_PAGE_TO_PHYS(p)))
422 p->clean = FALSE;
423 pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
424 if (!p->clean) {
425 p->busy = TRUE;
426 object->paging_in_progress++;
427 vm_object_unlock(object);
428 (void) vm_pager_put(object->pager, p, TRUE);
429 vm_object_lock(object);
430 object->paging_in_progress--;
431 p->busy = FALSE;
432 PAGE_WAKEUP(p);
433 goto again;
434 }
435 }
436 p = (vm_page_t) queue_next(&p->listq);
437 }
438}
439
440/*
441 * vm_object_deactivate_pages
442 *
443 * Deactivate all pages in the specified object. (Keep its pages
444 * in memory even though it is no longer referenced.)
445 *
446 * The object must be locked.
447 */
448vm_object_deactivate_pages(object)
449 register vm_object_t object;
450{
451 register vm_page_t p, next;
452
453 p = (vm_page_t) queue_first(&object->memq);
454 while (!queue_end(&object->memq, (queue_entry_t) p)) {
455 next = (vm_page_t) queue_next(&p->listq);
456 vm_page_lock_queues();
457 vm_page_deactivate(p);
458 vm_page_unlock_queues();
459 p = next;
460 }
461}
462
463/*
464 * Trim the object cache to size.
465 */
466vm_object_cache_trim()
467{
468 register vm_object_t object;
469
470 vm_object_cache_lock();
471 while (vm_object_cached > vm_cache_max) {
472 object = (vm_object_t) queue_first(&vm_object_cached_list);
473 vm_object_cache_unlock();
474
475 if (object != vm_object_lookup(object->pager))
476 panic("vm_object_deactivate: I'm sooo confused.");
477
478 pager_cache(object, FALSE);
479
480 vm_object_cache_lock();
481 }
482 vm_object_cache_unlock();
483}
484
485
486/*
487 * vm_object_shutdown()
488 *
489 * Shut down the object system. Unfortunately, while we
490 * may be trying to do this, init is happily waiting for
491 * processes to exit, and therefore will be causing some objects
492 * to be deallocated. To handle this, we gain a fake reference
493 * to all objects we release paging areas for. This will prevent
494 * a duplicate deallocation. This routine is probably full of
495 * race conditions!
496 */
497
498void vm_object_shutdown()
499{
500 register vm_object_t object;
501
502 /*
503 * Clean up the object cache *before* we screw up the reference
504 * counts on all of the objects.
505 */
506
507 vm_object_cache_clear();
508
509 printf("free paging spaces: ");
510
511 /*
512 * First we gain a reference to each object so that
513 * no one else will deallocate them.
514 */
515
516 simple_lock(&vm_object_list_lock);
517 object = (vm_object_t) queue_first(&vm_object_list);
518 while (!queue_end(&vm_object_list, (queue_entry_t) object)) {
519 vm_object_reference(object);
520 object = (vm_object_t) queue_next(&object->object_list);
521 }
522 simple_unlock(&vm_object_list_lock);
523
524 /*
525 * Now we deallocate all the paging areas. We don't need
526 * to lock anything because we've reduced to a single
527 * processor while shutting down. This also assumes that
528 * no new objects are being created.
529 */
530
531 object = (vm_object_t) queue_first(&vm_object_list);
532 while (!queue_end(&vm_object_list, (queue_entry_t) object)) {
533 if (object->pager != NULL)
534 vm_pager_deallocate(object->pager);
535 object = (vm_object_t) queue_next(&object->object_list);
536 printf(".");
537 }
538 printf("done.\n");
539}
540
541/*
542 * vm_object_pmap_copy:
543 *
544 * Makes all physical pages in the specified
545 * object range copy-on-write. No writeable
546 * references to these pages should remain.
547 *
548 * The object must *not* be locked.
549 */
550void vm_object_pmap_copy(object, start, end)
551 register vm_object_t object;
552 register vm_offset_t start;
553 register vm_offset_t end;
554{
555 register vm_page_t p;
556
557 if (object == NULL)
558 return;
559
560 vm_object_lock(object);
561 p = (vm_page_t) queue_first(&object->memq);
562 while (!queue_end(&object->memq, (queue_entry_t) p)) {
563 if ((start <= p->offset) && (p->offset < end)) {
564 pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_READ);
565 p->copy_on_write = TRUE;
566 }
567 p = (vm_page_t) queue_next(&p->listq);
568 }
569 vm_object_unlock(object);
570}
571
572/*
573 * vm_object_pmap_remove:
574 *
575 * Removes all physical pages in the specified
576 * object range from all physical maps.
577 *
578 * The object must *not* be locked.
579 */
580void vm_object_pmap_remove(object, start, end)
581 register vm_object_t object;
582 register vm_offset_t start;
583 register vm_offset_t end;
584{
585 register vm_page_t p;
586
587 if (object == NULL)
588 return;
589
590 vm_object_lock(object);
591 p = (vm_page_t) queue_first(&object->memq);
592 while (!queue_end(&object->memq, (queue_entry_t) p)) {
593 if ((start <= p->offset) && (p->offset < end))
594 pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
595 p = (vm_page_t) queue_next(&p->listq);
596 }
597 vm_object_unlock(object);
598}
599
600/*
601 * vm_object_copy:
602 *
603 * Create a new object which is a copy of an existing
604 * object, and mark all of the pages in the existing
605 * object 'copy-on-write'. The new object has one reference.
606 * Returns the new object.
607 *
608 * May defer the copy until later if the object is not backed
609 * up by a non-default pager.
610 */
611void vm_object_copy(src_object, src_offset, size,
612 dst_object, dst_offset, src_needs_copy)
613 register vm_object_t src_object;
614 vm_offset_t src_offset;
615 vm_size_t size;
616 vm_object_t *dst_object; /* OUT */
617 vm_offset_t *dst_offset; /* OUT */
618 boolean_t *src_needs_copy; /* OUT */
619{
620 register vm_object_t new_copy;
621 register vm_object_t old_copy;
622 vm_offset_t new_start, new_end;
623
624 register vm_page_t p;
625
626 if (src_object == NULL) {
627 /*
628 * Nothing to copy
629 */
630 *dst_object = NULL;
631 *dst_offset = 0;
632 *src_needs_copy = FALSE;
633 return;
634 }
635
636 /*
637 * If the object's pager is null_pager or the
638 * default pager, we don't have to make a copy
639 * of it. Instead, we set the needs copy flag and
640 * make a shadow later.
641 */
642
643 vm_object_lock(src_object);
644 if (src_object->pager == NULL ||
645 src_object->internal) {
646
647 /*
648 * Make another reference to the object
649 */
650 src_object->ref_count++;
651
652 /*
653 * Mark all of the pages copy-on-write.
654 */
655 for (p = (vm_page_t) queue_first(&src_object->memq);
656 !queue_end(&src_object->memq, (queue_entry_t)p);
657 p = (vm_page_t) queue_next(&p->listq)) {
658 if (src_offset <= p->offset &&
659 p->offset < src_offset + size)
660 p->copy_on_write = TRUE;
661 }
662 vm_object_unlock(src_object);
663
664 *dst_object = src_object;
665 *dst_offset = src_offset;
666
667 /*
668 * Must make a shadow when write is desired
669 */
670 *src_needs_copy = TRUE;
671 return;
672 }
673
674 /*
675 * Try to collapse the object before copying it.
676 */
677 vm_object_collapse(src_object);
678
679 /*
680 * If the object has a pager, the pager wants to
681 * see all of the changes. We need a copy-object
682 * for the changed pages.
683 *
684 * If there is a copy-object, and it is empty,
685 * no changes have been made to the object since the
686 * copy-object was made. We can use the same copy-
687 * object.
688 */
689
690 Retry1:
691 old_copy = src_object->copy;
692 if (old_copy != NULL) {
693 /*
694 * Try to get the locks (out of order)
695 */
696 if (!vm_object_lock_try(old_copy)) {
697 vm_object_unlock(src_object);
698
699 /* should spin a bit here... */
700 vm_object_lock(src_object);
701 goto Retry1;
702 }
703
704 if (old_copy->resident_page_count == 0 &&
705 old_copy->pager == NULL) {
706 /*
707 * Return another reference to
708 * the existing copy-object.
709 */
710 old_copy->ref_count++;
711 vm_object_unlock(old_copy);
712 vm_object_unlock(src_object);
713 *dst_object = old_copy;
714 *dst_offset = src_offset;
715 *src_needs_copy = FALSE;
716 return;
717 }
718 vm_object_unlock(old_copy);
719 }
720 vm_object_unlock(src_object);
721
722 /*
723 * If the object has a pager, the pager wants
724 * to see all of the changes. We must make
725 * a copy-object and put the changed pages there.
726 *
727 * The copy-object is always made large enough to
728 * completely shadow the original object, since
729 * it may have several users who want to shadow
730 * the original object at different points.
731 */
732
733 new_copy = vm_object_allocate(src_object->size);
734
735 Retry2:
736 vm_object_lock(src_object);
737 /*
738 * Copy object may have changed while we were unlocked
739 */
740 old_copy = src_object->copy;
741 if (old_copy != NULL) {
742 /*
743 * Try to get the locks (out of order)
744 */
745 if (!vm_object_lock_try(old_copy)) {
746 vm_object_unlock(src_object);
747 goto Retry2;
748 }
749
750 /*
751 * Consistency check
752 */
753 if (old_copy->shadow != src_object ||
754 old_copy->shadow_offset != (vm_offset_t) 0)
755 panic("vm_object_copy: copy/shadow inconsistency");
756
757 /*
758 * Make the old copy-object shadow the new one.
759 * It will receive no more pages from the original
760 * object.
761 */
762
763 src_object->ref_count--; /* remove ref. from old_copy */
764 old_copy->shadow = new_copy;
765 new_copy->ref_count++; /* locking not needed - we
766 have the only pointer */
767 vm_object_unlock(old_copy); /* done with old_copy */
768 }
769
770 new_start = (vm_offset_t) 0; /* always shadow original at 0 */
771 new_end = (vm_offset_t) new_copy->size; /* for the whole object */
772
773 /*
774 * Point the new copy at the existing object.
775 */
776
777 new_copy->shadow = src_object;
778 new_copy->shadow_offset = new_start;
779 src_object->ref_count++;
780 src_object->copy = new_copy;
781
782 /*
783 * Mark all the affected pages of the existing object
784 * copy-on-write.
785 */
786 p = (vm_page_t) queue_first(&src_object->memq);
787 while (!queue_end(&src_object->memq, (queue_entry_t) p)) {
788 if ((new_start <= p->offset) && (p->offset < new_end))
789 p->copy_on_write = TRUE;
790 p = (vm_page_t) queue_next(&p->listq);
791 }
792
793 vm_object_unlock(src_object);
794
795 *dst_object = new_copy;
796 *dst_offset = src_offset - new_start;
797 *src_needs_copy = FALSE;
798}
799
800/*
801 * vm_object_shadow:
802 *
803 * Create a new object which is backed by the
804 * specified existing object range. The source
805 * object reference is deallocated.
806 *
807 * The new object and offset into that object
808 * are returned in the source parameters.
809 */
810
811void vm_object_shadow(object, offset, length)
812 vm_object_t *object; /* IN/OUT */
813 vm_offset_t *offset; /* IN/OUT */
814 vm_size_t length;
815{
816 register vm_object_t source;
817 register vm_object_t result;
818
819 source = *object;
820
821 /*
822 * Allocate a new object with the given length
823 */
824
825 if ((result = vm_object_allocate(length)) == NULL)
826 panic("vm_object_shadow: no object for shadowing");
827
828 /*
829 * The new object shadows the source object, adding
830 * a reference to it. Our caller changes his reference
831 * to point to the new object, removing a reference to
832 * the source object. Net result: no change of reference
833 * count.
834 */
835 result->shadow = source;
836
837 /*
838 * Store the offset into the source object,
839 * and fix up the offset into the new object.
840 */
841
842 result->shadow_offset = *offset;
843
844 /*
845 * Return the new things
846 */
847
848 *offset = 0;
849 *object = result;
850}
851
852/*
853 * Set the specified object's pager to the specified pager.
854 */
855
856void vm_object_setpager(object, pager, paging_offset,
857 read_only)
858 vm_object_t object;
859 vm_pager_t pager;
860 vm_offset_t paging_offset;
861 boolean_t read_only;
862{
863#ifdef lint
864 read_only++; /* No longer used */
865#endif lint
866
867 vm_object_lock(object); /* XXX ? */
868 object->pager = pager;
869 object->paging_offset = paging_offset;
870 vm_object_unlock(object); /* XXX ? */
871}
872
873/*
874 * vm_object_hash hashes the pager/id pair.
875 */
876
877#define vm_object_hash(pager) \
878 (((unsigned)pager)%VM_OBJECT_HASH_COUNT)
879
880/*
881 * vm_object_lookup looks in the object cache for an object with the
882 * specified pager and paging id.
883 */
884
885vm_object_t vm_object_lookup(pager)
886 vm_pager_t pager;
887{
888 register queue_t bucket;
889 register vm_object_hash_entry_t entry;
890 vm_object_t object;
891
892 bucket = &vm_object_hashtable[vm_object_hash(pager)];
893
894 vm_object_cache_lock();
895
896 entry = (vm_object_hash_entry_t) queue_first(bucket);
897 while (!queue_end(bucket, (queue_entry_t) entry)) {
898 object = entry->object;
899 if (object->pager == pager) {
900 vm_object_lock(object);
901 if (object->ref_count == 0) {
902 queue_remove(&vm_object_cached_list, object,
903 vm_object_t, cached_list);
904 vm_object_cached--;
905 }
906 object->ref_count++;
907 vm_object_unlock(object);
908 vm_object_cache_unlock();
909 return(object);
910 }
911 entry = (vm_object_hash_entry_t) queue_next(&entry->hash_links);
912 }
913
914 vm_object_cache_unlock();
915 return(NULL);
916}
917
918/*
919 * vm_object_enter enters the specified object/pager/id into
920 * the hash table.
921 */
922
923void vm_object_enter(object, pager)
924 vm_object_t object;
925 vm_pager_t pager;
926{
927 register queue_t bucket;
928 register vm_object_hash_entry_t entry;
929
930 /*
931 * We don't cache null objects, and we can't cache
932 * objects with the null pager.
933 */
934
935 if (object == NULL)
936 return;
937 if (pager == NULL)
938 return;
939
940 bucket = &vm_object_hashtable[vm_object_hash(pager)];
941 entry = (vm_object_hash_entry_t)
942 malloc((u_long)sizeof *entry, M_VMOBJHASH, M_WAITOK);
943 entry->object = object;
944 object->can_persist = TRUE;
945
946 vm_object_cache_lock();
947 queue_enter(bucket, entry, vm_object_hash_entry_t, hash_links);
948 vm_object_cache_unlock();
949}
950
951/*
952 * vm_object_remove:
953 *
954 * Remove the pager from the hash table.
955 * Note: This assumes that the object cache
956 * is locked. XXX this should be fixed
957 * by reorganizing vm_object_deallocate.
958 */
959vm_object_remove(pager)
960 register vm_pager_t pager;
961{
962 register queue_t bucket;
963 register vm_object_hash_entry_t entry;
964 register vm_object_t object;
965
966 bucket = &vm_object_hashtable[vm_object_hash(pager)];
967
968 entry = (vm_object_hash_entry_t) queue_first(bucket);
969 while (!queue_end(bucket, (queue_entry_t) entry)) {
970 object = entry->object;
971 if (object->pager == pager) {
972 queue_remove(bucket, entry, vm_object_hash_entry_t,
973 hash_links);
974 free((caddr_t)entry, M_VMOBJHASH);
975 break;
976 }
977 entry = (vm_object_hash_entry_t) queue_next(&entry->hash_links);
978 }
979}
980
981/*
982 * vm_object_cache_clear removes all objects from the cache.
983 *
984 */
985
986void vm_object_cache_clear()
987{
988 register vm_object_t object;
989
990 /*
991 * Remove each object in the cache by scanning down the
992 * list of cached objects.
993 */
994 vm_object_cache_lock();
995 while (!queue_empty(&vm_object_cached_list)) {
996 object = (vm_object_t) queue_first(&vm_object_cached_list);
997 vm_object_cache_unlock();
998
999 /*
1000 * Note: it is important that we use vm_object_lookup
1001 * to gain a reference, and not vm_object_reference, because
1002 * the logic for removing an object from the cache lies in
1003 * lookup.
1004 */
1005 if (object != vm_object_lookup(object->pager))
1006 panic("vm_object_cache_clear: I'm sooo confused.");
1007 pager_cache(object, FALSE);
1008
1009 vm_object_cache_lock();
1010 }
1011 vm_object_cache_unlock();
1012}
1013
1014boolean_t vm_object_collapse_allowed = TRUE;
1015/*
1016 * vm_object_collapse:
1017 *
1018 * Collapse an object with the object backing it.
1019 * Pages in the backing object are moved into the
1020 * parent, and the backing object is deallocated.
1021 *
1022 * Requires that the object be locked and the page
1023 * queues be unlocked.
1024 *
1025 */
1026void vm_object_collapse(object)
1027 register vm_object_t object;
1028
1029{
1030 register vm_object_t backing_object;
1031 register vm_offset_t backing_offset;
1032 register vm_size_t size;
1033 register vm_offset_t new_offset;
1034 register vm_page_t p, pp;
1035
1036 if (!vm_object_collapse_allowed)
1037 return;
1038
1039 while (TRUE) {
1040 /*
1041 * Verify that the conditions are right for collapse:
1042 *
1043 * The object exists and no pages in it are currently
1044 * being paged out (or have ever been paged out).
1045 */
1046 if (object == NULL ||
1047 object->paging_in_progress != 0 ||
1048 object->pager != NULL)
1049 return;
1050
1051 /*
1052 * There is a backing object, and
1053 */
1054
1055 if ((backing_object = object->shadow) == NULL)
1056 return;
1057
1058 vm_object_lock(backing_object);
1059 /*
1060 * ...
1061 * The backing object is not read_only,
1062 * and no pages in the backing object are
1063 * currently being paged out.
1064 * The backing object is internal.
1065 */
1066
1067 if (!backing_object->internal ||
1068 backing_object->paging_in_progress != 0) {
1069 vm_object_unlock(backing_object);
1070 return;
1071 }
1072
1073 /*
1074 * The backing object can't be a copy-object:
1075 * the shadow_offset for the copy-object must stay
1076 * as 0. Furthermore (for the 'we have all the
1077 * pages' case), if we bypass backing_object and
1078 * just shadow the next object in the chain, old
1079 * pages from that object would then have to be copied
1080 * BOTH into the (former) backing_object and into the
1081 * parent object.
1082 */
1083 if (backing_object->shadow != NULL &&
1084 backing_object->shadow->copy != NULL) {
1085 vm_object_unlock(backing_object);
1086 return;
1087 }
1088
1089 /*
1090 * We know that we can either collapse the backing
1091 * object (if the parent is the only reference to
1092 * it) or (perhaps) remove the parent's reference
1093 * to it.
1094 */
1095
1096 backing_offset = object->shadow_offset;
1097 size = object->size;
1098
1099 /*
1100 * If there is exactly one reference to the backing
1101 * object, we can collapse it into the parent.
1102 */
1103
1104 if (backing_object->ref_count == 1) {
1105
1106 /*
1107 * We can collapse the backing object.
1108 *
1109 * Move all in-memory pages from backing_object
1110 * to the parent. Pages that have been paged out
1111 * will be overwritten by any of the parent's
1112 * pages that shadow them.
1113 */
1114
1115 while (!queue_empty(&backing_object->memq)) {
1116
1117 p = (vm_page_t)
1118 queue_first(&backing_object->memq);
1119
1120 new_offset = (p->offset - backing_offset);
1121
1122 /*
1123 * If the parent has a page here, or if
1124 * this page falls outside the parent,
1125 * dispose of it.
1126 *
1127 * Otherwise, move it as planned.
1128 */
1129
1130 if (p->offset < backing_offset ||
1131 new_offset >= size) {
1132 vm_page_lock_queues();
1133 vm_page_free(p);
1134 vm_page_unlock_queues();
1135 } else {
1136 pp = vm_page_lookup(object, new_offset);
1137 if (pp != NULL && !pp->fake) {
1138 vm_page_lock_queues();
1139 vm_page_free(p);
1140 vm_page_unlock_queues();
1141 }
1142 else {
1143 if (pp) {
1144 /* may be someone waiting for it */
1145 PAGE_WAKEUP(pp);
1146 vm_page_lock_queues();
1147 vm_page_free(pp);
1148 vm_page_unlock_queues();
1149 }
1150 vm_page_rename(p, object, new_offset);
1151 }
1152 }
1153 }
1154
1155 /*
1156 * Move the pager from backing_object to object.
1157 *
1158 * XXX We're only using part of the paging space
1159 * for keeps now... we ought to discard the
1160 * unused portion.
1161 */
1162
1163 object->pager = backing_object->pager;
1164 object->paging_offset += backing_offset;
1165
1166 backing_object->pager = NULL;
1167
1168 /*
1169 * Object now shadows whatever backing_object did.
1170 * Note that the reference to backing_object->shadow
1171 * moves from within backing_object to within object.
1172 */
1173
1174 object->shadow = backing_object->shadow;
1175 object->shadow_offset += backing_object->shadow_offset;
1176 if (object->shadow != NULL &&
1177 object->shadow->copy != NULL) {
1178 panic("vm_object_collapse: we collapsed a copy-object!");
1179 }
1180 /*
1181 * Discard backing_object.
1182 *
1183 * Since the backing object has no pages, no
1184 * pager left, and no object references within it,
1185 * all that is necessary is to dispose of it.
1186 */
1187
1188 vm_object_unlock(backing_object);
1189
1190 simple_lock(&vm_object_list_lock);
1191 queue_remove(&vm_object_list, backing_object,
1192 vm_object_t, object_list);
1193 vm_object_count--;
1194 simple_unlock(&vm_object_list_lock);
1195
1196 free((caddr_t)backing_object, M_VMOBJ);
1197
1198 object_collapses++;
1199 }
1200 else {
1201 /*
1202 * If all of the pages in the backing object are
1203 * shadowed by the parent object, the parent
1204 * object no longer has to shadow the backing
1205 * object; it can shadow the next one in the
1206 * chain.
1207 *
1208 * The backing object must not be paged out - we'd
1209 * have to check all of the paged-out pages, as
1210 * well.
1211 */
1212
1213 if (backing_object->pager != NULL) {
1214 vm_object_unlock(backing_object);
1215 return;
1216 }
1217
1218 /*
1219 * Should have a check for a 'small' number
1220 * of pages here.
1221 */
1222
1223 p = (vm_page_t) queue_first(&backing_object->memq);
1224 while (!queue_end(&backing_object->memq,
1225 (queue_entry_t) p)) {
1226
1227 new_offset = (p->offset - backing_offset);
1228
1229 /*
1230 * If the parent has a page here, or if
1231 * this page falls outside the parent,
1232 * keep going.
1233 *
1234 * Otherwise, the backing_object must be
1235 * left in the chain.
1236 */
1237
1238 if (p->offset >= backing_offset &&
1239 new_offset <= size &&
1240 ((pp = vm_page_lookup(object, new_offset))
1241 == NULL ||
1242 pp->fake)) {
1243 /*
1244 * Page still needed.
1245 * Can't go any further.
1246 */
1247 vm_object_unlock(backing_object);
1248 return;
1249 }
1250 p = (vm_page_t) queue_next(&p->listq);
1251 }
1252
1253 /*
1254 * Make the parent shadow the next object
1255 * in the chain. Deallocating backing_object
1256 * will not remove it, since its reference
1257 * count is at least 2.
1258 */
1259
1260 vm_object_reference(object->shadow = backing_object->shadow);
1261 object->shadow_offset += backing_object->shadow_offset;
1262
1263 /* Drop the reference count on backing_object.
1264 * Since its ref_count was at least 2, it
1265 * will not vanish; so we don't need to call
1266 * vm_object_deallocate.
1267 */
1268 backing_object->ref_count--;
1269 vm_object_unlock(backing_object);
1270
1271 object_bypasses ++;
1272
1273 }
1274
1275 /*
1276 * Try again with this object's new backing object.
1277 */
1278 }
1279}
1280
1281/*
1282 * vm_object_page_remove: [internal]
1283 *
1284 * Removes all physical pages in the specified
1285 * object range from the object's list of pages.
1286 *
1287 * The object must be locked.
1288 */
1289void vm_object_page_remove(object, start, end)
1290 register vm_object_t object;
1291 register vm_offset_t start;
1292 register vm_offset_t end;
1293{
1294 register vm_page_t p, next;
1295
1296 if (object == NULL)
1297 return;
1298
1299 p = (vm_page_t) queue_first(&object->memq);
1300 while (!queue_end(&object->memq, (queue_entry_t) p)) {
1301 next = (vm_page_t) queue_next(&p->listq);
1302 if ((start <= p->offset) && (p->offset < end)) {
1303 pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
1304 vm_page_lock_queues();
1305 vm_page_free(p);
1306 vm_page_unlock_queues();
1307 }
1308 p = next;
1309 }
1310}
1311
1312/*
1313 * Routine: vm_object_coalesce
1314 * Function: Coalesces two objects backing up adjoining
1315 * regions of memory into a single object.
1316 *
1317 * returns TRUE if objects were combined.
1318 *
1319 * NOTE: Only works at the moment if the second object is NULL -
1320 * if it's not, which object do we lock first?
1321 *
1322 * Parameters:
1323 * prev_object First object to coalesce
1324 * prev_offset Offset into prev_object
1325 * next_object Second object into coalesce
1326 * next_offset Offset into next_object
1327 *
1328 * prev_size Size of reference to prev_object
1329 * next_size Size of reference to next_object
1330 *
1331 * Conditions:
1332 * The object must *not* be locked.
1333 */
1334boolean_t vm_object_coalesce(prev_object, next_object,
1335 prev_offset, next_offset,
1336 prev_size, next_size)
1337
1338 register vm_object_t prev_object;
1339 vm_object_t next_object;
1340 vm_offset_t prev_offset, next_offset;
1341 vm_size_t prev_size, next_size;
1342{
1343 vm_size_t newsize;
1344
1345#ifdef lint
1346 next_offset++;
1347#endif lint
1348
1349 if (next_object != NULL) {
1350 return(FALSE);
1351 }
1352
1353 if (prev_object == NULL) {
1354 return(TRUE);
1355 }
1356
1357 vm_object_lock(prev_object);
1358
1359 /*
1360 * Try to collapse the object first
1361 */
1362 vm_object_collapse(prev_object);
1363
1364 /*
1365 * Can't coalesce if:
1366 * . more than one reference
1367 * . paged out
1368 * . shadows another object
1369 * . has a copy elsewhere
1370 * (any of which mean that the pages not mapped to
1371 * prev_entry may be in use anyway)
1372 */
1373
1374 if (prev_object->ref_count > 1 ||
1375 prev_object->pager != NULL ||
1376 prev_object->shadow != NULL ||
1377 prev_object->copy != NULL) {
1378 vm_object_unlock(prev_object);
1379 return(FALSE);
1380 }
1381
1382 /*
1383 * Remove any pages that may still be in the object from
1384 * a previous deallocation.
1385 */
1386
1387 vm_object_page_remove(prev_object,
1388 prev_offset + prev_size,
1389 prev_offset + prev_size + next_size);
1390
1391 /*
1392 * Extend the object if necessary.
1393 */
1394 newsize = prev_offset + prev_size + next_size;
1395 if (newsize > prev_object->size)
1396 prev_object->size = newsize;
1397
1398 vm_object_unlock(prev_object);
1399 return(TRUE);
1400}
1401
1402/*
1403 * vm_object_print: [ debug ]
1404 */
1405void vm_object_print(object, full)
1406 vm_object_t object;
1407 boolean_t full;
1408{
1409 register vm_page_t p;
1410 extern indent;
1411
1412 register int count;
1413
1414 if (object == NULL)
1415 return;
1416
1417 iprintf("Object 0x%x: size=0x%x, res=%d, ref=%d, ",
1418 (int) object, (int) object->size,
1419 object->resident_page_count, object->ref_count);
1420 printf("pager=0x%x+0x%x, shadow=(0x%x)+0x%x\n",
1421 (int) object->pager, (int) object->paging_offset,
1422 (int) object->shadow, (int) object->shadow_offset);
1423 printf("cache: next=0x%x, prev=0x%x\n",
1424 object->cached_list.next, object->cached_list.prev);
1425
1426 if (!full)
1427 return;
1428
1429 indent += 2;
1430 count = 0;
1431 p = (vm_page_t) queue_first(&object->memq);
1432 while (!queue_end(&object->memq, (queue_entry_t) p)) {
1433 if (count == 0)
1434 iprintf("memory:=");
1435 else if (count == 6) {
1436 printf("\n");
1437 iprintf(" ...");
1438 count = 0;
1439 } else
1440 printf(",");
1441 count++;
1442
1443 printf("(off=0x%x,page=0x%x)", p->offset, VM_PAGE_TO_PHYS(p));
1444 p = (vm_page_t) queue_next(&p->listq);
1445 }
1446 if (count != 0)
1447 printf("\n");
1448 indent -= 2;
1449}