label_t now structure
[unix-history] / usr / src / sys / kern / uipc_socket2.c
CommitLineData
626d8eb5 1/* uipc_socket2.c 4.25 82/08/22 */
681ebb17
BJ
2
3#include "../h/param.h"
4#include "../h/systm.h"
5#include "../h/dir.h"
6#include "../h/user.h"
7#include "../h/proc.h"
8#include "../h/file.h"
9#include "../h/inode.h"
10#include "../h/buf.h"
11#include "../h/mbuf.h"
681ebb17
BJ
12#include "../h/protosw.h"
13#include "../h/socket.h"
14#include "../h/socketvar.h"
c5ff2e32
BJ
15#include "../net/in.h"
16#include "../net/in_systm.h"
681ebb17
BJ
17
18/*
19 * Primitive routines for operating on sockets and socket buffers
20 */
21
22/*
23 * Procedures to manipulate state flags of socket
2deddea9
BJ
24 * and do appropriate wakeups. Normal sequence from the
25 * active (originating) side is that soisconnecting() is
26 * called during processing of connect() call,
4c078bb2
BJ
27 * resulting in an eventual call to soisconnected() if/when the
28 * connection is established. When the connection is torn down
29 * soisdisconnecting() is called during processing of disconnect() call,
30 * and soisdisconnected() is called when the connection to the peer
31 * is totally severed. The semantics of these routines are such that
32 * connectionless protocols can call soisconnected() and soisdisconnected()
33 * only, bypassing the in-progress calls when setting up a ``connection''
34 * takes no time.
35 *
2deddea9
BJ
36 * From the passive side, a socket is created with SO_ACCEPTCONN
37 * creating two queues of sockets: so_q0 for connections in progress
38 * and so_q for connections already made and awaiting user acceptance.
39 * As a protocol is preparing incoming connections, it creates a socket
40 * structure queued on so_q0 by calling sonewconn(). When the connection
41 * is established, soisconnected() is called, and transfers the
42 * socket structure to so_q, making it available to accept().
43 *
44 * If a SO_ACCEPTCONN socket is closed with sockets on either
45 * so_q0 or so_q, these sockets are dropped.
46 *
47 * If and when higher level protocols are implemented in
4c078bb2
BJ
48 * the kernel, the wakeups done here will sometimes
49 * be implemented as software-interrupt process scheduling.
681ebb17 50 */
4c078bb2 51
681ebb17
BJ
52soisconnecting(so)
53 struct socket *so;
54{
55
56 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
57 so->so_state |= SS_ISCONNECTING;
58 wakeup((caddr_t)&so->so_timeo);
59}
60
61soisconnected(so)
62 struct socket *so;
63{
2deddea9 64 register struct socket *head = so->so_head;
681ebb17 65
2deddea9
BJ
66 if (head) {
67 if (soqremque(so, 0) == 0)
68 panic("soisconnected");
69 soqinsque(head, so, 1);
70 wakeup((caddr_t)&head->so_timeo);
71 }
681ebb17
BJ
72 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
73 so->so_state |= SS_ISCONNECTED;
74 wakeup((caddr_t)&so->so_timeo);
f957a49a
BJ
75 sorwakeup(so);
76 sowwakeup(so);
681ebb17
BJ
77}
78
79soisdisconnecting(so)
80 struct socket *so;
81{
82
72857acf 83 so->so_state &= ~SS_ISCONNECTING;
681ebb17
BJ
84 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
85 wakeup((caddr_t)&so->so_timeo);
4c078bb2 86 sowwakeup(so);
b454c3ea 87 sorwakeup(so);
681ebb17
BJ
88}
89
90soisdisconnected(so)
91 struct socket *so;
92{
93
94 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
95 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
96 wakeup((caddr_t)&so->so_timeo);
97 sowwakeup(so);
98 sorwakeup(so);
99}
100
2deddea9
BJ
101/*
102 * When an attempt at a new connection is noted on a socket
103 * which accepts connections, sonewconn is called. If the
104 * connection is possible (subject to space constraints, etc.)
105 * then we allocate a new structure, propoerly linked into the
106 * data structure of the original socket, and return this.
107 */
108struct socket *
109sonewconn(head)
110 register struct socket *head;
111{
112 register struct socket *so;
113 struct mbuf *m;
114
115 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
116 goto bad;
117 m = m_getclr(M_DONTWAIT);
118 if (m == 0)
119 goto bad;
120 so = mtod(m, struct socket *);
121 so->so_type = head->so_type;
122 so->so_options = head->so_options &~ SO_ACCEPTCONN;
123 so->so_linger = head->so_linger;
124 so->so_state = head->so_state;
125 so->so_proto = head->so_proto;
126 so->so_timeo = head->so_timeo;
127 so->so_pgrp = head->so_pgrp;
128 soqinsque(head, so, 0);
129 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH, 0, 0)) {
130 (void) soqremque(so, 0);
131 m_free(m);
132 goto bad;
133 }
134 return (so);
135bad:
136 return ((struct socket *)0);
137}
138
139soqinsque(head, so, q)
140 register struct socket *head, *so;
141 int q;
142{
143
144 so->so_head = head;
145 if (q == 0) {
146 head->so_q0len++;
147 so->so_q0 = head->so_q0;
148 head->so_q0 = so;
149 } else {
150 head->so_qlen++;
151 so->so_q = head->so_q;
152 head->so_q = so;
153 }
154}
155
156soqremque(so, q)
157 register struct socket *so;
158 int q;
159{
160 register struct socket *head, *prev, *next;
161
162 head = so->so_head;
163 prev = head;
164 for (;;) {
165 next = q ? prev->so_q : prev->so_q0;
166 if (next == so)
167 break;
168 if (next == head)
169 return (0);
170 prev = next;
171 }
172 if (q == 0) {
173 prev->so_q0 = next->so_q0;
174 head->so_q0len--;
175 } else {
176 prev->so_q = next->so_q;
177 head->so_qlen--;
178 }
179 next->so_q0 = next->so_q = 0;
180 next->so_head = 0;
181 return (1);
182}
183
4c078bb2
BJ
184/*
185 * Socantsendmore indicates that no more data will be sent on the
186 * socket; it would normally be applied to a socket when the user
187 * informs the system that no more data is to be sent, by the protocol
188 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
189 * will be received, and will normally be applied to the socket by a
190 * protocol when it detects that the peer will send no more data.
191 * Data queued for reading in the socket may yet be read.
192 */
193
ae921915
BJ
194socantsendmore(so)
195 struct socket *so;
196{
197
198 so->so_state |= SS_CANTSENDMORE;
199 sowwakeup(so);
200}
201
202socantrcvmore(so)
203 struct socket *so;
204{
205
206 so->so_state |= SS_CANTRCVMORE;
207 sorwakeup(so);
208}
209
681ebb17 210/*
4c078bb2
BJ
211 * Socket select/wakeup routines.
212 */
213
214/*
215 * Interface routine to select() system
216 * call for sockets.
681ebb17 217 */
477b2112 218soselect(so, rw)
681ebb17 219 register struct socket *so;
477b2112 220 int rw;
681ebb17 221{
f957a49a 222 int s = splnet();
681ebb17 223
477b2112
BJ
224 switch (rw) {
225
226 case FREAD:
f957a49a
BJ
227 if (soreadable(so)) {
228 splx(s);
681ebb17 229 return (1);
f957a49a 230 }
681ebb17 231 sbselqueue(&so->so_rcv);
477b2112
BJ
232 break;
233
234 case FWRITE:
f957a49a
BJ
235 if (sowriteable(so)) {
236 splx(s);
681ebb17 237 return (1);
f957a49a 238 }
681ebb17 239 sbselqueue(&so->so_snd);
477b2112 240 break;
681ebb17 241 }
f957a49a 242 splx(s);
681ebb17
BJ
243 return (0);
244}
245
246/*
247 * Queue a process for a select on a socket buffer.
248 */
249sbselqueue(sb)
250 struct sockbuf *sb;
251{
252 register struct proc *p;
253
ae921915 254 if ((p = sb->sb_sel) && p->p_wchan == (caddr_t)&selwait)
681ebb17
BJ
255 sb->sb_flags |= SB_COLL;
256 else
257 sb->sb_sel = u.u_procp;
258}
259
ae921915
BJ
260/*
261 * Wait for data to arrive at/drain from a socket buffer.
262 */
263sbwait(sb)
264 struct sockbuf *sb;
265{
266
267 sb->sb_flags |= SB_WAIT;
268 sleep((caddr_t)&sb->sb_cc, PZERO+1);
269}
270
681ebb17
BJ
271/*
272 * Wakeup processes waiting on a socket buffer.
273 */
274sbwakeup(sb)
275 struct sockbuf *sb;
276{
277
278 if (sb->sb_sel) {
279 selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL);
280 sb->sb_sel = 0;
281 sb->sb_flags &= ~SB_COLL;
282 }
283 if (sb->sb_flags & SB_WAIT) {
284 sb->sb_flags &= ~SB_WAIT;
388ca8bd 285 wakeup((caddr_t)&sb->sb_cc);
681ebb17
BJ
286 }
287}
288
4c078bb2
BJ
289/*
290 * Socket buffer (struct sockbuf) utility routines.
291 *
292 * Each socket contains two socket buffers: one for sending data and
293 * one for receiving data. Each buffer contains a queue of mbufs,
294 * information about the number of mbufs and amount of data in the
295 * queue, and other fields allowing select() statements and notification
296 * on data availability to be implemented.
297 *
298 * Before using a new socket structure it is first necessary to reserve
299 * buffer space to the socket, by calling sbreserve. This commits
300 * some of the available buffer space in the system buffer pool for the
301 * socket. The space should be released by calling sbrelease when the
302 * socket is destroyed.
303 *
304 * The routine sbappend() is normally called to append new mbufs
305 * to a socket buffer, after checking that adequate space is available
306 * comparing the function spspace() with the amount of data to be added.
307 * Data is normally removed from a socket buffer in a protocol by
308 * first calling m_copy on the socket buffer mbuf chain and sending this
309 * to a peer, and then removing the data from the socket buffer with
310 * sbdrop when the data is acknowledged by the peer (or immediately
b454c3ea 311 * in the case of unreliable protocols.)
4c078bb2
BJ
312 *
313 * Protocols which do not require connections place both source address
314 * and data information in socket buffer queues. The source addresses
315 * are stored in single mbufs after each data item, and are easily found
316 * as the data items are all marked with end of record markers. The
317 * sbappendaddr() routine stores a datum and associated address in
318 * a socket buffer. Note that, unlike sbappend(), this routine checks
319 * for the caller that there will be enough space to store the data.
320 * It fails if there is not enough space, or if it cannot find
321 * a mbuf to store the address in.
322 *
323 * The higher-level routines sosend and soreceive (in socket.c)
b454c3ea 324 * also add data to, and remove data from socket buffers repectively.
4c078bb2
BJ
325 */
326
681ebb17
BJ
327/*
328 * Allot mbufs to a sockbuf.
329 */
330sbreserve(sb, cc)
331 struct sockbuf *sb;
332{
333
de48daf3 334 /* someday maybe this routine will fail... */
d028a086 335 sb->sb_hiwat = cc;
76a6e254 336 sb->sb_mbmax = cc*2;
ae921915 337 return (1);
681ebb17
BJ
338}
339
340/*
341 * Free mbufs held by a socket, and reserved mbuf space.
342 */
343sbrelease(sb)
344 struct sockbuf *sb;
345{
346
347 sbflush(sb);
d028a086 348 sb->sb_hiwat = sb->sb_mbmax = 0;
681ebb17
BJ
349}
350
351/*
352 * Routines to add (at the end) and remove (from the beginning)
353 * data from a mbuf queue.
354 */
355
356/*
357 * Append mbuf queue m to sockbuf sb.
358 */
359sbappend(sb, m)
360 register struct mbuf *m;
361 register struct sockbuf *sb;
362{
e495e1cc 363 register struct mbuf *n;
681ebb17 364
e495e1cc
BJ
365 n = sb->sb_mb;
366 if (n)
367 while (n->m_next)
368 n = n->m_next;
681ebb17 369 while (m) {
a73ab5ae 370 if (m->m_len == 0 && (int)m->m_act == 0) {
c64d826c 371 m = m_free(m);
a73ab5ae
BJ
372 continue;
373 }
681ebb17
BJ
374 if (n && n->m_off <= MMAXOFF && m->m_off <= MMAXOFF &&
375 (int)n->m_act == 0 && (int)m->m_act == 0 &&
76a6e254
BJ
376 (n->m_off + n->m_len + m->m_len) <= MMAXOFF) {
377 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
ae921915 378 (unsigned)m->m_len);
681ebb17
BJ
379 n->m_len += m->m_len;
380 sb->sb_cc += m->m_len;
381 m = m_free(m);
382 continue;
383 }
384 sballoc(sb, m);
e495e1cc
BJ
385 if (n == 0)
386 sb->sb_mb = m;
387 else
388 n->m_next = m;
681ebb17 389 n = m;
681ebb17 390 m = m->m_next;
e495e1cc 391 n->m_next = 0;
681ebb17
BJ
392 }
393}
394
4c078bb2
BJ
395/*
396 * Append data and address.
397 * Return 0 if no space in sockbuf or if
398 * can't get mbuf to stuff address in.
399 */
2b4b57cd
BJ
400sbappendaddr(sb, asa, m0)
401 struct sockbuf *sb;
402 struct sockaddr *asa;
403 struct mbuf *m0;
404{
405 struct sockaddr *msa;
406 register struct mbuf *m;
407 register int len = sizeof (struct sockaddr);
408
76a6e254
BJ
409 m = m0;
410 if (m == 0)
411 panic("sbappendaddr");
412 for (;;) {
2b4b57cd 413 len += m->m_len;
76a6e254
BJ
414 if (m->m_next == 0) {
415 m->m_act = (struct mbuf *)1;
416 break;
417 }
418 m = m->m_next;
419 }
509e40dd 420 if (len > sbspace(sb))
2b4b57cd 421 return (0);
99308d84 422 m = m_get(M_DONTWAIT);
509e40dd 423 if (m == 0)
2b4b57cd
BJ
424 return (0);
425 m->m_off = MMINOFF;
426 m->m_len = sizeof (struct sockaddr);
427 msa = mtod(m, struct sockaddr *);
428 *msa = *asa;
429 m->m_act = (struct mbuf *)1;
430 sbappend(sb, m);
2b4b57cd
BJ
431 sbappend(sb, m0);
432 return (1);
433}
434
681ebb17
BJ
435/*
436 * Free all mbufs on a sockbuf mbuf chain.
437 * Check that resource allocations return to 0.
438 */
439sbflush(sb)
440 struct sockbuf *sb;
441{
442
443 if (sb->sb_flags & SB_LOCK)
444 panic("sbflush");
a73ab5ae
BJ
445 if (sb->sb_cc)
446 sbdrop(sb, sb->sb_cc);
681ebb17
BJ
447 if (sb->sb_cc || sb->sb_mbcnt || sb->sb_mb)
448 panic("sbflush 2");
449}
450
451/*
452 * Drop data from (the front of) a sockbuf chain.
453 */
454sbdrop(sb, len)
455 register struct sockbuf *sb;
456 register int len;
457{
458 register struct mbuf *m = sb->sb_mb, *mn;
459
460 while (len > 0) {
461 if (m == 0)
462 panic("sbdrop");
b9f0d37f 463 if (m->m_len > len) {
681ebb17
BJ
464 m->m_len -= len;
465 m->m_off += len;
466 sb->sb_cc -= len;
467 break;
468 }
b9f0d37f
BJ
469 len -= m->m_len;
470 sbfree(sb, m);
471 MFREE(m, mn);
472 m = mn;
681ebb17
BJ
473 }
474 sb->sb_mb = m;
475}