changed allocation stuff to use bzero rather than have static
[unix-history] / usr / src / old / dbx / process.c
CommitLineData
9a3bab7a
ML
1/* Copyright (c) 1982 Regents of the University of California */
2
b0edae1c 3static char sccsid[] = "@(#)process.c 1.3 %G%";
9a3bab7a
ML
4
5/*
6 * Process management.
7 *
8 * This module contains the routines to manage the execution and
9 * tracing of the debuggee process.
10 */
11
12#include "defs.h"
13#include "process.h"
14#include "machine.h"
15#include "events.h"
16#include "tree.h"
17#include "operators.h"
18#include "source.h"
19#include "object.h"
20#include "mappings.h"
21#include "main.h"
22#include "coredump.h"
23#include <signal.h>
24#include <errno.h>
25#include <sys/param.h>
b0edae1c 26#include <machine/reg.h>
9a3bab7a
ML
27#include <sys/stat.h>
28
29#ifndef public
30
31typedef struct Process *Process;
32
33Process process;
34
35#include "machine.h"
36
37#endif
38
39#define NOTSTARTED 1
40#define STOPPED 0177
41#define FINISHED 0
42
43/*
44 * Cache-ing of instruction segment is done to reduce the number
45 * of system calls.
46 */
47
48#define CSIZE 1003 /* size of instruction cache */
49
50typedef struct {
51 Word addr;
52 Word val;
53} CacheWord;
54
55/*
56 * This structure holds the information we need from the user structure.
57 */
58
59struct Process {
60 int pid; /* process being traced */
61 int mask; /* ps */
62 Word reg[NREG]; /* process's registers */
63 Word oreg[NREG]; /* registers when process last stopped */
64 short status; /* either STOPPED or FINISHED */
65 short signo; /* signal that stopped process */
66 int exitval; /* return value from exit() */
67 long sigset; /* bit array of traced signals */
68 CacheWord word[CSIZE]; /* text segment cache */
69};
70
71/*
72 * These definitions are for the arguments to "pio".
73 */
74
75typedef enum { PREAD, PWRITE } PioOp;
76typedef enum { TEXTSEG, DATASEG } PioSeg;
77
78private struct Process pbuf;
79
80#define MAXNCMDARGS 10 /* maximum number of arguments to RUN */
81
82private Boolean just_started;
83private int argc;
84private String argv[MAXNCMDARGS];
85private String infile, outfile;
86
87/*
88 * Initialize process information.
89 */
90
91public process_init()
92{
93 register Integer i;
94 Char buf[10];
95
96 process = &pbuf;
97 process->status = (coredump) ? STOPPED : NOTSTARTED;
98 setsigtrace();
99 for (i = 0; i < NREG; i++) {
100 sprintf(buf, "$r%d", i);
101 defregname(identname(buf, false), i);
102 }
103 defregname(identname("$ap", true), ARGP);
104 defregname(identname("$fp", true), FRP);
105 defregname(identname("$sp", true), STKP);
106 defregname(identname("$pc", true), PROGCTR);
107 if (coredump) {
108 coredump_readin(process->mask, process->reg, process->signo);
109 }
110}
111
112/*
113 * Routines to get at process information from outside this module.
114 */
115
116public Word reg(n)
117Integer n;
118{
119 register Word w;
120
121 if (n == NREG) {
122 w = process->mask;
123 } else {
124 w = process->reg[n];
125 }
126 return w;
127}
128
129public setreg(n, w)
130Integer n;
131Word w;
132{
133 process->reg[n] = w;
134}
135
136/*
137 * Begin execution.
138 *
139 * We set a breakpoint at the end of the code so that the
140 * process data doesn't disappear after the program terminates.
141 */
142
143private Boolean remade();
144
145public start(argv, infile, outfile)
146String argv[];
147String infile, outfile;
148{
149 String pargv[4];
150 Node cond;
151
152 if (coredump) {
153 coredump = false;
154 fclose(corefile);
155 coredump_close();
156 }
157 if (argv == nil) {
158 argv = pargv;
159 pargv[0] = objname;
160 pargv[1] = nil;
161 } else {
162 argv[argc] = nil;
163 }
164 if (remade(objname)) {
165 reinit(argv, infile, outfile);
166 }
167 pstart(process, argv, infile, outfile);
168 if (process->status == STOPPED) {
169 pc = 0;
170 curfunc = program;
171 if (objsize != 0) {
172 cond = build(O_EQ, build(O_SYM, pcsym), build(O_LCON, lastaddr()));
173 event_once(cond, buildcmdlist(build(O_ENDX)));
174 }
175 }
176}
177
178/*
179 * Check to see if the object file has changed since the symbolic
180 * information last was read.
181 */
182
183private time_t modtime;
184
185private Boolean remade(filename)
186String filename;
187{
188 struct stat s;
189 Boolean b;
190
191 stat(filename, &s);
192 b = (Boolean) (modtime != 0 and modtime < s.st_mtime);
193 modtime = s.st_mtime;
194 return b;
195}
196
197/*
198 * Set up what signals we want to trace.
199 */
200
201private setsigtrace()
202{
203 register Integer i;
204 register Process p;
205
206 p = process;
207 for (i = 1; i <= NSIG; i++) {
208 psigtrace(p, i, true);
209 }
210 psigtrace(p, SIGHUP, false);
211 psigtrace(p, SIGKILL, false);
212 psigtrace(p, SIGALRM, false);
213 psigtrace(p, SIGTSTP, false);
214 psigtrace(p, SIGCONT, false);
215 psigtrace(p, SIGCHLD, false);
216}
217
218/*
219 * Initialize the argument list.
220 */
221
222public arginit()
223{
224 infile = nil;
225 outfile = nil;
226 argv[0] = objname;
227 argc = 1;
228}
229
230/*
231 * Add an argument to the list for the debuggee.
232 */
233
234public newarg(arg)
235String arg;
236{
237 if (argc >= MAXNCMDARGS) {
238 error("too many arguments");
239 }
240 argv[argc++] = arg;
241}
242
243/*
244 * Set the standard input for the debuggee.
245 */
246
247public inarg(filename)
248String filename;
249{
250 if (infile != nil) {
251 error("multiple input redirects");
252 }
253 infile = filename;
254}
255
256/*
257 * Set the standard output for the debuggee.
258 * Probably should check to avoid overwriting an existing file.
259 */
260
261public outarg(filename)
262String filename;
263{
264 if (outfile != nil) {
265 error("multiple output redirect");
266 }
267 outfile = filename;
268}
269
270/*
271 * Start debuggee executing.
272 */
273
274public run()
275{
276 process->status = STOPPED;
277 fixbps();
278 curline = 0;
279 start(argv, infile, outfile);
280 just_started = true;
281 isstopped = false;
282 cont();
283}
284
285/*
286 * Continue execution wherever we left off.
287 *
288 * Note that this routine never returns. Eventually bpact() will fail
289 * and we'll call printstatus or step will call it.
290 */
291
292typedef int Intfunc();
293
294private Intfunc *dbintr;
295private intr();
296
297#define succeeds == true
298#define fails == false
299
300public cont()
301{
302 dbintr = signal(SIGINT, intr);
303 if (just_started) {
304 just_started = false;
305 } else {
306 if (not isstopped) {
307 error("can't continue execution");
308 }
309 isstopped = false;
310 step();
311 }
312 for (;;) {
313 if (single_stepping) {
314 printnews();
315 } else {
316 setallbps();
317 resume();
318 unsetallbps();
319 if (bpact() fails) {
320 printstatus();
321 }
322 }
323 step();
324 }
325 /* NOTREACHED */
326}
327
328/*
329 * This routine is called if we get an interrupt while "running" px
330 * but actually in the debugger. Could happen, for example, while
331 * processing breakpoints.
332 *
333 * We basically just want to keep going; the assumption is
334 * that when the process resumes it will get the interrupt
335 * which will then be handled.
336 */
337
338private intr()
339{
340 signal(SIGINT, intr);
341}
342
343public fixintr()
344{
345 signal(SIGINT, dbintr);
346}
347
348/*
349 * Resume execution.
350 */
351
352public resume()
353{
354 register Process p;
355
356 p = process;
357 if (traceexec) {
358 printf("execution resumes at pc 0x%x\n", process->reg[PROGCTR]);
359 fflush(stdout);
360 }
361 pcont(p);
362 pc = process->reg[PROGCTR];
363 if (traceexec) {
364 printf("execution stops at pc 0x%x on sig %d\n",
365 process->reg[PROGCTR], p->signo);
366 fflush(stdout);
367 }
368}
369
370/*
371 * Continue execution up to the next source line.
372 *
373 * There are two ways to define the next source line depending on what
374 * is desired when a procedure or function call is encountered. Step
375 * stops at the beginning of the procedure or call; next skips over it.
376 */
377
378/*
379 * Stepc is what is called when the step command is given.
380 * It has to play with the "isstopped" information.
381 */
382
383public stepc()
384{
385 if (not isstopped) {
386 error("can't continue execution");
387 }
388 isstopped = false;
389 dostep(false);
390 isstopped = true;
391}
392
393public next()
394{
395 if (not isstopped) {
396 error("can't continue execution");
397 }
398 isstopped = false;
399 dostep(true);
400 isstopped = true;
401}
402
403public step()
404{
405 dostep(false);
406}
407
408/*
409 * Resume execution up to the given address. It is assumed that
410 * no breakpoints exist between the current address and the one
411 * we're stepping to. This saves us from setting all the breakpoints.
412 */
413
414public stepto(addr)
415Address addr;
416{
417 setbp(addr);
418 resume();
419 unsetbp(addr);
420 if (not isbperr()) {
421 printstatus();
422 }
423}
424
425/*
426 * Print the status of the process.
427 * This routine does not return.
428 */
429
430public printstatus()
431{
b0edae1c
ML
432 if (process->status == FINISHED) {
433 exit(0);
9a3bab7a 434 } else {
b0edae1c
ML
435 curfunc = whatblock(pc);
436 getsrcpos();
437 if (process->signo == SIGINT) {
438 isstopped = true;
439 printerror();
440 } else if (isbperr() and isstopped) {
441 printf("stopped ");
442 if (curline > 0) {
443 printsrcpos();
444 putchar('\n');
445 printlines(curline, curline);
446 } else {
447 printf("in ");
448 printwhich(stdout, curfunc);
449 printf(" at 0x%x\n", pc);
450 printinst(pc, pc);
451 }
452 erecover();
9a3bab7a 453 } else {
b0edae1c
ML
454 fixbps();
455 fixintr();
9a3bab7a
ML
456 isstopped = true;
457 printerror();
458 }
459 }
460}
461
462/*
463 * Some functions for testing the state of the process.
464 */
465
466public Boolean notstarted(p)
467Process p;
468{
469 return (Boolean) (p->status == NOTSTARTED);
470}
471
472public Boolean isfinished(p)
473Process p;
474{
475 return (Boolean) (p->status == FINISHED);
476}
477
478/*
479 * Return the signal number which stopped the process.
480 */
481
482public Integer errnum(p)
483Process p;
484{
485 return p->signo;
486}
487
488/*
489 * Return the termination code of the process.
490 */
491
492public Integer exitcode(p)
493Process p;
494{
495 return p->exitval;
496}
497
498/*
499 * These routines are used to access the debuggee process from
500 * outside this module.
501 *
502 * They invoke "pio" which eventually leads to a call to "ptrace".
503 * The system generates an I/O error when a ptrace fails, we catch
504 * that here and assume its due to a misguided address.
505 */
506
507extern Intfunc *onsyserr();
508
509private badaddr;
510private rwerr();
511
512/*
513 * Read from the process' instruction area.
514 */
515
516public iread(buff, addr, nbytes)
517char *buff;
518Address addr;
519int nbytes;
520{
521 Intfunc *f;
522
523 f = onsyserr(EIO, rwerr);
524 badaddr = addr;
525 if (coredump) {
526 coredump_readtext(buff, addr, nbytes);
527 } else {
528 pio(process, PREAD, TEXTSEG, buff, addr, nbytes);
529 }
530 onsyserr(EIO, f);
531}
532
533/*
534 * Write to the process' instruction area, usually in order to set
535 * or unset a breakpoint.
536 */
537
538public iwrite(buff, addr, nbytes)
539char *buff;
540Address addr;
541int nbytes;
542{
543 Intfunc *f;
544
545 if (coredump) {
546 error("no process to write to");
547 }
548 f = onsyserr(EIO, rwerr);
549 badaddr = addr;
550 pio(process, PWRITE, TEXTSEG, buff, addr, nbytes);
551 onsyserr(EIO, f);
552}
553
554/*
555 * Read for the process' data area.
556 */
557
558public dread(buff, addr, nbytes)
559char *buff;
560Address addr;
561int nbytes;
562{
563 Intfunc *f;
564
565 f = onsyserr(EIO, rwerr);
566 badaddr = addr;
567 if (coredump) {
568 coredump_readdata(buff, addr, nbytes);
569 } else {
570 pio(process, PREAD, DATASEG, buff, addr, nbytes);
571 }
572 onsyserr(EIO, f);
573}
574
575/*
576 * Write to the process' data area.
577 */
578
579public dwrite(buff, addr, nbytes)
580char *buff;
581Address addr;
582int nbytes;
583{
584 Intfunc *f;
585
586 if (coredump) {
587 error("no process to write to");
588 }
589 f = onsyserr(EIO, rwerr);
590 badaddr = addr;
591 pio(process, PWRITE, DATASEG, buff, addr, nbytes);
592 onsyserr(EIO, f);
593}
594
595/*
596 * Error handler.
597 */
598
599private rwerr()
600{
601 error("bad read/write process address 0x%x", badaddr);
602}
603
604/*
605 * Ptrace interface.
606 */
607
608/*
609 * This magic macro enables us to look at the process' registers
610 * in its user structure. Very gross.
611 */
612
613#define regloc(reg) (ctob(UPAGES) + ( sizeof(int) * (reg) ))
614
615#define WMASK (~(sizeof(Word) - 1))
616#define cachehash(addr) ((unsigned) ((addr >> 2) % CSIZE))
617
618#define FIRSTSIG SIGINT
619#define LASTSIG SIGQUIT
620#define ischild(pid) ((pid) == 0)
621#define traceme() ptrace(0, 0, 0, 0)
622#define setrep(n) (1 << ((n)-1))
623#define istraced(p) (p->sigset&setrep(p->signo))
624
625/*
626 * Ptrace options (specified in first argument).
627 */
628
629#define UREAD 3 /* read from process's user structure */
630#define UWRITE 6 /* write to process's user structure */
631#define IREAD 1 /* read from process's instruction space */
632#define IWRITE 4 /* write to process's instruction space */
633#define DREAD 2 /* read from process's data space */
634#define DWRITE 5 /* write to process's data space */
635#define CONT 7 /* continue stopped process */
636#define SSTEP 9 /* continue for approximately one instruction */
637#define PKILL 8 /* terminate the process */
638
639/*
640 * Start up a new process by forking and exec-ing the
641 * given argument list, returning when the process is loaded
642 * and ready to execute. The PROCESS information (pointed to
643 * by the first argument) is appropriately filled.
644 *
645 * If the given PROCESS structure is associated with an already running
646 * process, we terminate it.
647 */
648
649/* VARARGS2 */
650private pstart(p, argv, infile, outfile)
651Process p;
652String argv[];
653String infile;
654String outfile;
655{
656 int status;
657 File in, out;
658
659 if (p->pid != 0) { /* child already running? */
660 ptrace(PKILL, p->pid, 0, 0); /* ... kill it! */
661 }
662 psigtrace(p, SIGTRAP, true);
663 if ((p->pid = fork()) == -1) {
664 panic("can't fork");
665 }
666 if (ischild(p->pid)) {
667 traceme();
668 if (infile != nil) {
669 in = fopen(infile, "r");
670 if (in == nil) {
671 printf("can't read %s\n", infile);
672 exit(1);
673 }
674 fswap(0, fileno(in));
675 }
676 if (outfile != nil) {
677 out = fopen(outfile, "w");
678 if (out == nil) {
679 printf("can't write %s\n", outfile);
680 exit(1);
681 }
682 fswap(1, fileno(out));
683 }
684 execvp(argv[0], argv);
685 panic("can't exec %s", argv[0]);
686 }
687 pwait(p->pid, &status);
688 getinfo(p, status);
689 if (p->status != STOPPED) {
690 error("program could not begin execution");
691 }
692}
693
694/*
695 * Continue a stopped process. The argument points to a PROCESS structure.
696 * Before the process is restarted it's user area is modified according to
697 * the values in the structure. When this routine finishes,
698 * the structure has the new values from the process's user area.
699 *
700 * Pcont terminates when the process stops with a signal pending that
701 * is being traced (via psigtrace), or when the process terminates.
702 */
703
704private pcont(p)
705Process p;
706{
707 int status;
708
709 if (p->pid == 0) {
710 error("program not active");
711 }
712 do {
713 setinfo(p);
714 sigs_off();
715 if (ptrace(CONT, p->pid, p->reg[PROGCTR], p->signo) < 0) {
716 panic("can't continue process");
717 }
718 pwait(p->pid, &status);
719 sigs_on();
720 getinfo(p, status);
721 } while (p->status == STOPPED and not istraced(p));
722}
723
724/*
725 * Single step as best ptrace can.
726 */
727
728public pstep(p)
729Process p;
730{
731 int status;
732
733 setinfo(p);
734 sigs_off();
735 ptrace(SSTEP, p->pid, p->reg[PROGCTR], p->signo);
736 pwait(p->pid, &status);
737 sigs_on();
738 getinfo(p, status);
739}
740
741/*
742 * Return from execution when the given signal is pending.
743 */
744
745public psigtrace(p, sig, sw)
746Process p;
747int sig;
748Boolean sw;
749{
750 if (sw) {
751 p->sigset |= setrep(sig);
752 } else {
753 p->sigset &= ~setrep(sig);
754 }
755}
756
757/*
758 * Don't catch any signals.
759 * Particularly useful when letting a process finish uninhibited.
760 */
761
762public unsetsigtraces(p)
763Process p;
764{
765 p->sigset = 0;
766}
767
768/*
769 * Turn off attention to signals not being caught.
770 */
771
772private Intfunc *sigfunc[NSIG];
773
774private sigs_off()
775{
776 register int i;
777
778 for (i = FIRSTSIG; i < LASTSIG; i++) {
779 if (i != SIGKILL) {
780 sigfunc[i] = signal(i, SIG_IGN);
781 }
782 }
783}
784
785/*
786 * Turn back on attention to signals.
787 */
788
789private sigs_on()
790{
791 register int i;
792
793 for (i = FIRSTSIG; i < LASTSIG; i++) {
794 if (i != SIGKILL) {
795 signal(i, sigfunc[i]);
796 }
797 }
798}
799
800/*
801 * Get process information from user area.
802 */
803
804private int rloc[] ={
805 R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, AP, FP, SP, PC
806};
807
808private getinfo(p, status)
809register Process p;
810register int status;
811{
812 register int i;
813
814 p->signo = (status&0177);
815 p->exitval = ((status >> 8)&0377);
816 if (p->signo != STOPPED) {
817 p->status = FINISHED;
818 } else {
819 p->status = p->signo;
820 p->signo = p->exitval;
821 p->exitval = 0;
822 p->mask = ptrace(UREAD, p->pid, regloc(PS), 0);
823 for (i = 0; i < NREG; i++) {
824 p->reg[i] = ptrace(UREAD, p->pid, regloc(rloc[i]), 0);
825 p->oreg[i] = p->reg[i];
826 }
827 }
828}
829
830/*
831 * Set process's user area information from given process structure.
832 */
833
834private setinfo(p)
835register Process p;
836{
837 register int i;
838 register int r;
839
840 if (istraced(p)) {
841 p->signo = 0;
842 }
843 for (i = 0; i < NREG; i++) {
844 if ((r = p->reg[i]) != p->oreg[i]) {
845 ptrace(UWRITE, p->pid, regloc(rloc[i]), r);
846 }
847 }
848}
849
850/*
851 * Structure for reading and writing by words, but dealing with bytes.
852 */
853
854typedef union {
855 Word pword;
856 Byte pbyte[sizeof(Word)];
857} Pword;
858
859/*
860 * Read (write) from (to) the process' address space.
861 * We must deal with ptrace's inability to look anywhere other
862 * than at a word boundary.
863 */
864
865private Word fetch();
866private store();
867
868private pio(p, op, seg, buff, addr, nbytes)
869Process p;
870PioOp op;
871PioSeg seg;
872char *buff;
873Address addr;
874int nbytes;
875{
876 register int i;
877 register Address newaddr;
878 register char *cp;
879 char *bufend;
880 Pword w;
881 Address wordaddr;
882 int byteoff;
883
884 if (p->status != STOPPED) {
885 error("program is not active");
886 }
887 cp = buff;
888 newaddr = addr;
889 wordaddr = (newaddr&WMASK);
890 if (wordaddr != newaddr) {
891 w.pword = fetch(p, seg, wordaddr);
892 for (i = newaddr - wordaddr; i < sizeof(Word) and nbytes > 0; i++) {
893 if (op == PREAD) {
894 *cp++ = w.pbyte[i];
895 } else {
896 w.pbyte[i] = *cp++;
897 }
898 nbytes--;
899 }
900 if (op == PWRITE) {
901 store(p, seg, wordaddr, w.pword);
902 }
903 newaddr = wordaddr + sizeof(Word);
904 }
905 byteoff = (nbytes&(~WMASK));
906 nbytes -= byteoff;
907 bufend = cp + nbytes;
908 while (cp < bufend) {
909 if (op == PREAD) {
910 *((Word *) cp) = fetch(p, seg, newaddr);
911 } else {
912 store(p, seg, newaddr, *((Word *) cp));
913 }
914 cp += sizeof(Word);
915 newaddr += sizeof(Word);
916 }
917 if (byteoff > 0) {
918 w.pword = fetch(p, seg, newaddr);
919 for (i = 0; i < byteoff; i++) {
920 if (op == PREAD) {
921 *cp++ = w.pbyte[i];
922 } else {
923 w.pbyte[i] = *cp++;
924 }
925 }
926 if (op == PWRITE) {
927 store(p, seg, newaddr, w.pword);
928 }
929 }
930}
931
932/*
933 * Get a word from a process at the given address.
934 * The address is assumed to be on a word boundary.
935 *
936 * A simple cache scheme is used to avoid redundant ptrace calls
937 * to the instruction space since it is assumed to be pure.
938 *
939 * It is necessary to use a write-through scheme so that
940 * breakpoints right next to each other don't interfere.
941 */
942
943private Integer nfetchs, nreads, nwrites;
944
945private Word fetch(p, seg, addr)
946Process p;
947PioSeg seg;
948register int addr;
949{
950 register CacheWord *wp;
951 register Word w;
952
953 switch (seg) {
954 case TEXTSEG:
955 ++nfetchs;
956 wp = &p->word[cachehash(addr)];
957 if (addr == 0 or wp->addr != addr) {
958 ++nreads;
959 w = ptrace(IREAD, p->pid, addr, 0);
960 wp->addr = addr;
961 wp->val = w;
962 } else {
963 w = wp->val;
964 }
965 break;
966
967 case DATASEG:
968 w = ptrace(DREAD, p->pid, addr, 0);
969 break;
970
971 default:
972 panic("fetch: bad seg %d", seg);
973 /* NOTREACHED */
974 }
975 return w;
976}
977
978/*
979 * Put a word into the process' address space at the given address.
980 * The address is assumed to be on a word boundary.
981 */
982
983private store(p, seg, addr, data)
984Process p;
985PioSeg seg;
986int addr;
987Word data;
988{
989 register CacheWord *wp;
990
991 switch (seg) {
992 case TEXTSEG:
993 ++nwrites;
994 wp = &p->word[cachehash(addr)];
995 wp->addr = addr;
996 wp->val = data;
997 ptrace(IWRITE, p->pid, addr, data);
998 break;
999
1000 case DATASEG:
1001 ptrace(DWRITE, p->pid, addr, data);
1002 break;
1003
1004 default:
1005 panic("store: bad seg %d", seg);
1006 /* NOTREACHED */
1007 }
1008}
1009
1010public printptraceinfo()
1011{
1012 printf("%d fetchs, %d reads, %d writes\n", nfetchs, nreads, nwrites);
1013}
1014
1015/*
1016 * Swap file numbers so as to redirect standard input and output.
1017 */
1018
1019private fswap(oldfd, newfd)
1020int oldfd;
1021int newfd;
1022{
1023 if (oldfd != newfd) {
1024 close(oldfd);
1025 dup(newfd);
1026 close(newfd);
1027 }
1028}