spl5 not splimp
[unix-history] / usr / src / sys / kern / kern_clock.c
CommitLineData
20bbf2f5 1/* kern_clock.c 4.30 81/12/19 */
83be5fac
BJ
2
3#include "../h/param.h"
4#include "../h/systm.h"
d9b8447e 5#include "../h/dk.h"
0a34b6fd 6#include "../h/callout.h"
83be5fac
BJ
7#include "../h/seg.h"
8#include "../h/dir.h"
9#include "../h/user.h"
10#include "../h/proc.h"
11#include "../h/reg.h"
12#include "../h/psl.h"
13#include "../h/vm.h"
14#include "../h/buf.h"
15#include "../h/text.h"
95ce0d37
BJ
16#include "../h/vlimit.h"
17#include "../h/mtpr.h"
18#include "../h/clock.h"
e5a79c70 19#include "../h/cpu.h"
72857acf 20#include "../h/protosw.h"
83be5fac 21
738a68d6 22#include "bk.h"
ec213dfb
BJ
23#include "dh.h"
24#include "dz.h"
6602c75b 25
83be5fac 26/*
f403d99f 27 * Hardclock is called straight from
83be5fac 28 * the real time clock interrupt.
f403d99f
BJ
29 * We limit the work we do at real clock interrupt time to:
30 * reloading clock
31 * decrementing time to callouts
32 * recording cpu time usage
4512b9a4 33 * modifying priority of current process
f403d99f
BJ
34 * arrange for soft clock interrupt
35 * kernel pc profiling
83be5fac 36 *
964bcfb1 37 * At software (softclock) interrupt time we:
83be5fac 38 * implement callouts
83be5fac 39 * maintain date
83be5fac
BJ
40 * lightning bolt wakeup (every second)
41 * alarm clock signals
42 * jab the scheduler
f403d99f
BJ
43 *
44 * On the vax softclock interrupts are implemented by
45 * software interrupts. Note that we may have multiple softclock
46 * interrupts compressed into one (due to excessive interrupt load),
47 * but that hardclock interrupts should never be lost.
83be5fac 48 */
2752c877 49#ifdef KPROF
296d05b2 50int kcounts[20000];
2752c877 51#endif
83be5fac 52
72857acf
BJ
53/*
54 * Protoslow is like lbolt, but for slow protocol timeouts, counting
55 * up to (hz/PR_SLOWHZ), then causing a pfslowtimo().
56 * Protofast is like lbolt, but for fast protocol timeouts, counting
57 * up to (hz/PR_FASTHZ), then causing a pffasttimo().
58 */
59int protoslow;
60int protofast;
61
260ea681 62/*ARGSUSED*/
f403d99f 63hardclock(pc, ps)
4512b9a4 64 caddr_t pc;
83be5fac 65{
0a34b6fd 66 register struct callout *p1;
83be5fac 67 register struct proc *pp;
f403d99f 68 register int s, cpstate;
83be5fac
BJ
69
70 /*
71 * reprime clock
72 */
73 clkreld();
74
75 /*
f403d99f 76 * update callout times
83be5fac 77 */
c4710996
BJ
78 for (p1 = calltodo.c_next; p1 && p1->c_time <= 0; p1 = p1->c_next)
79 ;
80 if (p1)
81 p1->c_time--;
5da67d35
BJ
82
83 /*
f403d99f 84 * Maintain iostat and per-process cpu statistics
5da67d35 85 */
83be5fac
BJ
86 if (!noproc) {
87 s = u.u_procp->p_rssize;
88 u.u_vm.vm_idsrss += s;
89 if (u.u_procp->p_textp) {
90 register int xrss = u.u_procp->p_textp->x_rssize;
91
92 s += xrss;
93 u.u_vm.vm_ixrss += xrss;
94 }
95 if (s > u.u_vm.vm_maxrss)
96 u.u_vm.vm_maxrss = s;
0a34b6fd 97 if ((u.u_vm.vm_utime+u.u_vm.vm_stime+1)/hz > u.u_limit[LIM_CPU]) {
39f2f769
BJ
98 psignal(u.u_procp, SIGXCPU);
99 if (u.u_limit[LIM_CPU] < INFINITY - 5)
100 u.u_limit[LIM_CPU] += 5;
101 }
83be5fac 102 }
964bcfb1
BJ
103 /*
104 * Update iostat information.
105 */
83be5fac
BJ
106 if (USERMODE(ps)) {
107 u.u_vm.vm_utime++;
108 if(u.u_procp->p_nice > NZERO)
41888f16
BJ
109 cpstate = CP_NICE;
110 else
111 cpstate = CP_USER;
83be5fac 112 } else {
2752c877
BJ
113#ifdef KPROF
114 int k = ((int)pc & 0x7fffffff) / 8;
115 if (k < 20000)
116 kcounts[k]++;
117#endif
41888f16 118 cpstate = CP_SYS;
83be5fac 119 if (noproc)
41888f16 120 cpstate = CP_IDLE;
83be5fac
BJ
121 else
122 u.u_vm.vm_stime++;
123 }
2d7d59e9 124 cp_time[cpstate]++;
f403d99f
BJ
125 for (s = 0; s < DK_NDRIVE; s++)
126 if (dk_busy&(1<<s))
127 dk_time[s]++;
964bcfb1
BJ
128 /*
129 * Adjust priority of current process.
130 */
83be5fac
BJ
131 if (!noproc) {
132 pp = u.u_procp;
dd808ba3 133 pp->p_cpticks++;
83be5fac
BJ
134 if(++pp->p_cpu == 0)
135 pp->p_cpu--;
16a64baa 136 if(pp->p_cpu % 4 == 0) {
81263dba 137 (void) setpri(pp);
83be5fac
BJ
138 if (pp->p_pri >= PUSER)
139 pp->p_pri = pp->p_usrpri;
140 }
141 }
964bcfb1
BJ
142 /*
143 * Time moves on.
144 */
83be5fac 145 ++lbolt;
72857acf
BJ
146
147 /*
148 * Time moves on for protocols.
149 */
20bbf2f5 150 --protoslow; --protofast;
72857acf 151
e5a79c70 152#if VAX780
964bcfb1
BJ
153 /*
154 * On 780's, impelement a fast UBA watcher,
155 * to make sure uba's don't get stuck.
156 */
287d9996 157 if (cpu == VAX_780 && panicstr == 0 && !BASEPRI(ps))
f403d99f
BJ
158 unhang();
159#endif
964bcfb1
BJ
160 /*
161 * Schedule a software interrupt for the rest
162 * of clock activities.
163 */
f403d99f
BJ
164 setsoftclock();
165}
166
167/*
16a64baa
BJ
168 * The digital decay cpu usage priority assignment is scaled to run in
169 * time as expanded by the 1 minute load average. Each second we
170 * multiply the the previous cpu usage estimate by
171 * nrscale*avenrun[0]
172 * The following relates the load average to the period over which
173 * cpu usage is 90% forgotten:
174 * loadav 1 5 seconds
175 * loadav 5 24 seconds
176 * loadav 10 47 seconds
177 * loadav 20 93 seconds
178 * This is a great improvement on the previous algorithm which
179 * decayed the priorities by a constant, and decayed away all knowledge
180 * of previous activity in about 20 seconds. Under heavy load,
181 * the previous algorithm degenerated to round-robin with poor response
182 * time when there was a high load average.
964bcfb1 183 */
b620b354 184#undef ave
16a64baa
BJ
185#define ave(a,b) ((int)(((int)(a*b))/(b+1)))
186int nrscale = 2;
187double avenrun[];
964bcfb1
BJ
188
189/*
190 * Constant for decay filter for cpu usage field
191 * in process table (used by ps au).
f403d99f
BJ
192 */
193double ccpu = 0.95122942450071400909; /* exp(-1/20) */
194
195/*
196 * Software clock interrupt.
964bcfb1 197 * This routine runs at lower priority than device interrupts.
f403d99f 198 */
260ea681 199/*ARGSUSED*/
f403d99f 200softclock(pc, ps)
4512b9a4 201 caddr_t pc;
f403d99f 202{
dee48a1b 203 register struct callout *p1;
f403d99f
BJ
204 register struct proc *pp;
205 register int a, s;
c4710996
BJ
206 caddr_t arg;
207 int (*func)();
f403d99f
BJ
208
209 /*
287d9996 210 * Perform callouts (but not after panic's!)
f403d99f 211 */
c4710996
BJ
212 if (panicstr == 0) {
213 for (;;) {
214 s = spl7();
849fc3ee
BJ
215 if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
216 splx(s);
c4710996 217 break;
849fc3ee 218 }
c4710996
BJ
219 calltodo.c_next = p1->c_next;
220 arg = p1->c_arg;
221 func = p1->c_func;
222 p1->c_next = callfree;
223 callfree = p1;
224 (void) splx(s);
225 (*func)(arg);
f403d99f
BJ
226 }
227 }
228
229 /*
230 * Drain silos.
231 */
3b90686d 232#if NDH > 0
f403d99f
BJ
233 s = spl5(); dhtimer(); splx(s);
234#endif
3b90686d 235#if NDZ > 0
f403d99f
BJ
236 s = spl5(); dztimer(); splx(s);
237#endif
238
4512b9a4
BJ
239 /*
240 * If idling and processes are waiting to swap in,
241 * check on them.
242 */
243 if (noproc && runin) {
244 runin = 0;
245 wakeup((caddr_t)&runin);
246 }
247
f403d99f 248 /*
16a64baa 249 * Run paging daemon every 1/4 sec.
f403d99f 250 */
0a34b6fd 251 if (lbolt % (hz/4) == 0) {
83be5fac 252 vmpago();
16a64baa
BJ
253 }
254
255 /*
256 * Reschedule every 1/10 sec.
257 */
258 if (lbolt % (hz/10) == 0) {
83be5fac 259 runrun++;
f403d99f 260 aston();
83be5fac 261 }
f403d99f 262
72857acf
BJ
263 /*
264 * Run network slow and fast timeouts.
265 */
20bbf2f5
BJ
266 if (protofast <= 0) {
267 protofast = hz / PR_FASTHZ;
72857acf 268 pffasttimo();
20bbf2f5
BJ
269 }
270 if (protoslow <= 0) {
271 protoslow = hz / PR_SLOWHZ;
72857acf 272 pfslowtimo();
20bbf2f5 273 }
72857acf 274
f403d99f
BJ
275 /*
276 * Lightning bolt every second:
277 * sleep timeouts
278 * process priority recomputation
279 * process %cpu averaging
280 * virtual memory metering
281 * kick swapper if processes want in
282 */
0a34b6fd 283 if (lbolt >= hz) {
287d9996 284 /*
964bcfb1 285 * This doesn't mean much on VAX since we run at
287d9996
BJ
286 * software interrupt time... if hardclock()
287 * calls softclock() directly, it prevents
288 * this code from running when the priority
289 * was raised when the clock interrupt occurred.
290 */
83be5fac
BJ
291 if (BASEPRI(ps))
292 return;
287d9996
BJ
293
294 /*
295 * If we didn't run a few times because of
296 * long blockage at high ipl, we don't
297 * really want to run this code several times,
298 * so squish out all multiples of hz here.
299 */
300 time += lbolt / hz;
301 lbolt %= hz;
302
303 /*
304 * Wakeup lightning bolt sleepers.
305 * Processes sleep on lbolt to wait
306 * for short amounts of time (e.g. 1 second).
307 */
83be5fac 308 wakeup((caddr_t)&lbolt);
287d9996
BJ
309
310 /*
311 * Recompute process priority and process
312 * sleep() system calls as well as internal
313 * sleeps with timeouts (tsleep() kernel routine).
314 */
315 for (pp = proc; pp < procNPROC; pp++)
8418f526 316 if (pp->p_stat && pp->p_stat!=SZOMB) {
287d9996
BJ
317 /*
318 * Increase resident time, to max of 127 seconds
319 * (it is kept in a character.) For
320 * loaded processes this is time in core; for
321 * swapped processes, this is time on drum.
322 */
323 if (pp->p_time != 127)
83be5fac 324 pp->p_time++;
287d9996
BJ
325 /*
326 * If process has clock counting down, and it
327 * expires, set it running (if this is a tsleep()),
328 * or give it an SIGALRM (if the user process
329 * is using alarm signals.
330 */
331 if (pp->p_clktim && --pp->p_clktim == 0)
332 if (pp->p_flag & STIMO) {
333 s = spl6();
334 switch (pp->p_stat) {
daac5944 335
287d9996
BJ
336 case SSLEEP:
337 setrun(pp);
338 break;
daac5944 339
287d9996
BJ
340 case SSTOP:
341 unsleep(pp);
342 break;
343 }
344 pp->p_flag &= ~STIMO;
345 splx(s);
346 } else
347 psignal(pp, SIGALRM);
348 /*
349 * If process is blocked, increment computed
350 * time blocked. This is used in swap scheduling.
351 */
352 if (pp->p_stat==SSLEEP || pp->p_stat==SSTOP)
83be5fac
BJ
353 if (pp->p_slptime != 127)
354 pp->p_slptime++;
287d9996
BJ
355 /*
356 * Update digital filter estimation of process
357 * cpu utilization for loaded processes.
358 */
dd808ba3
BJ
359 if (pp->p_flag&SLOAD)
360 pp->p_pctcpu = ccpu * pp->p_pctcpu +
0a34b6fd 361 (1.0 - ccpu) * (pp->p_cpticks/(float)hz);
287d9996
BJ
362 /*
363 * Recompute process priority. The number p_cpu
364 * is a weighted estimate of cpu time consumed.
365 * A process which consumes cpu time has this
366 * increase regularly. We here decrease it by
16a64baa
BJ
367 * a fraction based on load average giving a digital
368 * decay filter which damps out in about 5 seconds
369 * when seconds are measured in time expanded by the
370 * load average.
287d9996
BJ
371 *
372 * If a process is niced, then the nice directly
373 * affects the new priority. The final priority
374 * is in the range 0 to 255, to fit in a character.
375 */
dd808ba3 376 pp->p_cpticks = 0;
16a64baa
BJ
377 a = ave((pp->p_cpu & 0377), avenrun[0]*nrscale) +
378 pp->p_nice - NZERO;
287d9996 379 if (a < 0)
83be5fac 380 a = 0;
287d9996 381 if (a > 255)
83be5fac
BJ
382 a = 255;
383 pp->p_cpu = a;
81263dba 384 (void) setpri(pp);
287d9996
BJ
385 /*
386 * Now have computed new process priority
387 * in p->p_usrpri. Carefully change p->p_pri.
388 * A process is on a run queue associated with
389 * this priority, so we must block out process
390 * state changes during the transition.
391 */
83be5fac 392 s = spl6();
287d9996 393 if (pp->p_pri >= PUSER) {
83be5fac
BJ
394 if ((pp != u.u_procp || noproc) &&
395 pp->p_stat == SRUN &&
396 (pp->p_flag & SLOAD) &&
397 pp->p_pri != pp->p_usrpri) {
398 remrq(pp);
399 pp->p_pri = pp->p_usrpri;
400 setrq(pp);
401 } else
402 pp->p_pri = pp->p_usrpri;
403 }
404 splx(s);
405 }
287d9996
BJ
406
407 /*
408 * Perform virtual memory metering.
409 */
83be5fac 410 vmmeter();
287d9996
BJ
411
412 /*
413 * If the swap process is trying to bring
414 * a process in, have it look again to see
415 * if it is possible now.
416 */
417 if (runin!=0) {
83be5fac
BJ
418 runin = 0;
419 wakeup((caddr_t)&runin);
420 }
287d9996 421
83be5fac
BJ
422 /*
423 * If there are pages that have been cleaned,
424 * jolt the pageout daemon to process them.
425 * We do this here so that these pages will be
426 * freed if there is an abundance of memory and the
427 * daemon would not be awakened otherwise.
428 */
429 if (bclnlist != NULL)
430 wakeup((caddr_t)&proc[2]);
287d9996
BJ
431
432 /*
433 * If the trap occurred from usermode,
434 * then check to see if it has now been
435 * running more than 10 minutes of user time
436 * and should thus run with reduced priority
437 * to give other processes a chance.
438 */
83be5fac
BJ
439 if (USERMODE(ps)) {
440 pp = u.u_procp;
287d9996
BJ
441 if (pp->p_uid && pp->p_nice == NZERO &&
442 u.u_vm.vm_utime > 600 * hz)
443 pp->p_nice = NZERO+4;
81263dba 444 (void) setpri(pp);
83be5fac 445 pp->p_pri = pp->p_usrpri;
054016e1 446 }
83be5fac 447 }
287d9996
BJ
448 /*
449 * If trapped user-mode, give it a profiling tick.
450 */
f403d99f
BJ
451 if (USERMODE(ps) && u.u_prof.pr_scale) {
452 u.u_procp->p_flag |= SOWEUPC;
453 aston();
83be5fac 454 }
83be5fac
BJ
455}
456
457/*
964bcfb1 458 * Timeout is called to arrange that
0a34b6fd 459 * fun(arg) is called in tim/hz seconds.
c4710996 460 * An entry is linked into the callout
964bcfb1 461 * structure. The time in each structure
0a34b6fd 462 * entry is the number of hz's more
83be5fac
BJ
463 * than the previous entry.
464 * In this way, decrementing the
465 * first entry has the effect of
466 * updating all entries.
467 *
468 * The panic is there because there is nothing
469 * intelligent to be done if an entry won't fit.
470 */
471timeout(fun, arg, tim)
4512b9a4
BJ
472 int (*fun)();
473 caddr_t arg;
83be5fac 474{
c4710996 475 register struct callout *p1, *p2, *pnew;
83be5fac
BJ
476 register int t;
477 int s;
478
47477f34
BJ
479/* DEBUGGING CODE */
480 int ttrstrt();
481
482 if (fun == ttrstrt && arg == 0)
483 panic("timeout ttrstr arg");
484/* END DEBUGGING CODE */
83be5fac 485 t = tim;
83be5fac 486 s = spl7();
c4710996
BJ
487 pnew = callfree;
488 if (pnew == NULL)
489 panic("timeout table overflow");
490 callfree = pnew->c_next;
491 pnew->c_arg = arg;
492 pnew->c_func = fun;
493 for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
494 t -= p2->c_time;
495 p1->c_next = pnew;
496 pnew->c_next = p2;
497 pnew->c_time = t;
498 if (p2)
499 p2->c_time -= t;
83be5fac
BJ
500 splx(s);
501}