This commit was manufactured by cvs2svn to create tag 'FreeBSD-release/1.0'.
[unix-history] / sys / netinet / tcp_input.c
CommitLineData
15637ed4
RG
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
78ed81a3 33 * from: @(#)tcp_input.c 7.25 (Berkeley) 6/30/90
34 * $Id$
15637ed4
RG
35 */
36
37#include "param.h"
38#include "systm.h"
39#include "malloc.h"
40#include "mbuf.h"
41#include "protosw.h"
42#include "socket.h"
43#include "socketvar.h"
44#include "errno.h"
45
46#include "../net/if.h"
47#include "../net/route.h"
48
49#include "in.h"
50#include "in_systm.h"
51#include "ip.h"
52#include "in_pcb.h"
53#include "ip_var.h"
54#include "tcp.h"
55#include "tcp_fsm.h"
56#include "tcp_seq.h"
57#include "tcp_timer.h"
58#include "tcp_var.h"
59#include "tcpip.h"
60#include "tcp_debug.h"
61
62int tcprexmtthresh = 3;
63int tcppredack; /* XXX debugging: times hdr predict ok for acks */
64int tcppreddat; /* XXX # times header prediction ok for data packets */
65int tcppcbcachemiss;
66struct tcpiphdr tcp_saveti;
67struct inpcb *tcp_last_inpcb = &tcb;
68
69struct tcpcb *tcp_newtcpcb();
70
71/*
72 * Insert segment ti into reassembly queue of tcp with
73 * control block tp. Return TH_FIN if reassembly now includes
74 * a segment with FIN. The macro form does the common case inline
75 * (segment is the next to be received on an established connection,
76 * and the queue is empty), avoiding linkage into and removal
77 * from the queue and repetition of various conversions.
78 * Set DELACK for segments received in order, but ack immediately
79 * when segments are out of order (so fast retransmit can work).
80 */
81#define TCP_REASS(tp, ti, m, so, flags) { \
82 if ((ti)->ti_seq == (tp)->rcv_nxt && \
83 (tp)->seg_next == (struct tcpiphdr *)(tp) && \
84 (tp)->t_state == TCPS_ESTABLISHED) { \
85 tp->t_flags |= TF_DELACK; \
86 (tp)->rcv_nxt += (ti)->ti_len; \
87 flags = (ti)->ti_flags & TH_FIN; \
88 tcpstat.tcps_rcvpack++;\
89 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
90 sbappend(&(so)->so_rcv, (m)); \
91 sorwakeup(so); \
92 } else { \
93 (flags) = tcp_reass((tp), (ti), (m)); \
94 tp->t_flags |= TF_ACKNOW; \
95 } \
96}
97
98tcp_reass(tp, ti, m)
99 register struct tcpcb *tp;
100 register struct tcpiphdr *ti;
101 struct mbuf *m;
102{
103 register struct tcpiphdr *q;
104 struct socket *so = tp->t_inpcb->inp_socket;
105 int flags;
106
107 /*
108 * Call with ti==0 after become established to
109 * force pre-ESTABLISHED data up to user socket.
110 */
111 if (ti == 0)
112 goto present;
113
114 /*
115 * Find a segment which begins after this one does.
116 */
117 for (q = tp->seg_next; q != (struct tcpiphdr *)tp;
118 q = (struct tcpiphdr *)q->ti_next)
119 if (SEQ_GT(q->ti_seq, ti->ti_seq))
120 break;
121
122 /*
123 * If there is a preceding segment, it may provide some of
124 * our data already. If so, drop the data from the incoming
125 * segment. If it provides all of our data, drop us.
126 */
127 if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
128 register int i;
129 q = (struct tcpiphdr *)q->ti_prev;
130 /* conversion to int (in i) handles seq wraparound */
131 i = q->ti_seq + q->ti_len - ti->ti_seq;
132 if (i > 0) {
133 if (i >= ti->ti_len) {
134 tcpstat.tcps_rcvduppack++;
135 tcpstat.tcps_rcvdupbyte += ti->ti_len;
136 m_freem(m);
137 return (0);
138 }
139 m_adj(m, i);
140 ti->ti_len -= i;
141 ti->ti_seq += i;
142 }
143 q = (struct tcpiphdr *)(q->ti_next);
144 }
145 tcpstat.tcps_rcvoopack++;
146 tcpstat.tcps_rcvoobyte += ti->ti_len;
147 REASS_MBUF(ti) = m; /* XXX */
148
149 /*
150 * While we overlap succeeding segments trim them or,
151 * if they are completely covered, dequeue them.
152 */
153 while (q != (struct tcpiphdr *)tp) {
154 register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
155 if (i <= 0)
156 break;
157 if (i < q->ti_len) {
158 q->ti_seq += i;
159 q->ti_len -= i;
160 m_adj(REASS_MBUF(q), i);
161 break;
162 }
163 q = (struct tcpiphdr *)q->ti_next;
164 m = REASS_MBUF((struct tcpiphdr *)q->ti_prev);
165 remque(q->ti_prev);
166 m_freem(m);
167 }
168
169 /*
170 * Stick new segment in its place.
171 */
172 insque(ti, q->ti_prev);
173
174present:
175 /*
176 * Present data to user, advancing rcv_nxt through
177 * completed sequence space.
178 */
179 if (TCPS_HAVERCVDSYN(tp->t_state) == 0)
180 return (0);
181 ti = tp->seg_next;
182 if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
183 return (0);
184 if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
185 return (0);
186 do {
187 tp->rcv_nxt += ti->ti_len;
188 flags = ti->ti_flags & TH_FIN;
189 remque(ti);
190 m = REASS_MBUF(ti);
191 ti = (struct tcpiphdr *)ti->ti_next;
192 if (so->so_state & SS_CANTRCVMORE)
193 m_freem(m);
194 else
195 sbappend(&so->so_rcv, m);
196 } while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
197 sorwakeup(so);
198 return (flags);
199}
200
201/*
202 * TCP input routine, follows pages 65-76 of the
203 * protocol specification dated September, 1981 very closely.
204 */
205tcp_input(m, iphlen)
206 register struct mbuf *m;
207 int iphlen;
208{
209 register struct tcpiphdr *ti;
210 register struct inpcb *inp;
211 struct mbuf *om = 0;
212 int len, tlen, off;
213 register struct tcpcb *tp = 0;
214 register int tiflags;
215 struct socket *so;
216 int todrop, acked, ourfinisacked, needoutput = 0;
217 short ostate;
218 struct in_addr laddr;
219 int dropsocket = 0;
220 int iss = 0;
221
222 tcpstat.tcps_rcvtotal++;
223 /*
224 * Get IP and TCP header together in first mbuf.
225 * Note: IP leaves IP header in first mbuf.
226 */
227 ti = mtod(m, struct tcpiphdr *);
228 if (iphlen > sizeof (struct ip))
229 ip_stripoptions(m, (struct mbuf *)0);
230 if (m->m_len < sizeof (struct tcpiphdr)) {
231 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
232 tcpstat.tcps_rcvshort++;
233 return;
234 }
235 ti = mtod(m, struct tcpiphdr *);
236 }
237
238 /*
239 * Checksum extended TCP header and data.
240 */
241 tlen = ((struct ip *)ti)->ip_len;
242 len = sizeof (struct ip) + tlen;
243 ti->ti_next = ti->ti_prev = 0;
244 ti->ti_x1 = 0;
245 ti->ti_len = (u_short)tlen;
246 HTONS(ti->ti_len);
247 if (ti->ti_sum = in_cksum(m, len)) {
248 tcpstat.tcps_rcvbadsum++;
249 goto drop;
250 }
251
252 /*
253 * Check that TCP offset makes sense,
254 * pull out TCP options and adjust length. XXX
255 */
256 off = ti->ti_off << 2;
257 if (off < sizeof (struct tcphdr) || off > tlen) {
258 tcpstat.tcps_rcvbadoff++;
259 goto drop;
260 }
261 tlen -= off;
262 ti->ti_len = tlen;
263 if (off > sizeof (struct tcphdr)) {
264 if (m->m_len < sizeof(struct ip) + off) {
265 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
266 tcpstat.tcps_rcvshort++;
267 return;
268 }
269 ti = mtod(m, struct tcpiphdr *);
270 }
271 om = m_get(M_DONTWAIT, MT_DATA);
272 if (om == 0)
273 goto drop;
274 om->m_len = off - sizeof (struct tcphdr);
275 { caddr_t op = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
276 bcopy(op, mtod(om, caddr_t), (unsigned)om->m_len);
277 m->m_len -= om->m_len;
278 m->m_pkthdr.len -= om->m_len;
279 bcopy(op+om->m_len, op,
280 (unsigned)(m->m_len-sizeof (struct tcpiphdr)));
281 }
282 }
283 tiflags = ti->ti_flags;
284
285 /*
286 * Convert TCP protocol specific fields to host format.
287 */
288 NTOHL(ti->ti_seq);
289 NTOHL(ti->ti_ack);
290 NTOHS(ti->ti_win);
291 NTOHS(ti->ti_urp);
292
293 /*
294 * Locate pcb for segment.
295 */
296findpcb:
297 inp = tcp_last_inpcb;
298 if (inp->inp_lport != ti->ti_dport ||
299 inp->inp_fport != ti->ti_sport ||
300 inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
301 inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
302 inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport,
303 ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
304 if (inp)
305 tcp_last_inpcb = inp;
306 ++tcppcbcachemiss;
307 }
308
309 /*
310 * If the state is CLOSED (i.e., TCB does not exist) then
311 * all data in the incoming segment is discarded.
312 * If the TCB exists but is in CLOSED state, it is embryonic,
313 * but should either do a listen or a connect soon.
314 */
315 if (inp == 0)
316 goto dropwithreset;
317 tp = intotcpcb(inp);
318 if (tp == 0)
319 goto dropwithreset;
320 if (tp->t_state == TCPS_CLOSED)
321 goto drop;
322 so = inp->inp_socket;
323 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
324 if (so->so_options & SO_DEBUG) {
325 ostate = tp->t_state;
326 tcp_saveti = *ti;
327 }
328 if (so->so_options & SO_ACCEPTCONN) {
329 so = sonewconn(so, 0);
330 if (so == 0)
331 goto drop;
332 /*
333 * This is ugly, but ....
334 *
335 * Mark socket as temporary until we're
336 * committed to keeping it. The code at
337 * ``drop'' and ``dropwithreset'' check the
338 * flag dropsocket to see if the temporary
339 * socket created here should be discarded.
340 * We mark the socket as discardable until
341 * we're committed to it below in TCPS_LISTEN.
342 */
343 dropsocket++;
344 inp = (struct inpcb *)so->so_pcb;
345 inp->inp_laddr = ti->ti_dst;
346 inp->inp_lport = ti->ti_dport;
347#if BSD>=43
348 inp->inp_options = ip_srcroute();
349#endif
350 tp = intotcpcb(inp);
351 tp->t_state = TCPS_LISTEN;
352 }
353 }
354
355 /*
356 * Segment received on connection.
357 * Reset idle time and keep-alive timer.
358 */
359 tp->t_idle = 0;
360 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
361
362 /*
363 * Process options if not in LISTEN state,
364 * else do it below (after getting remote address).
365 */
366 if (om && tp->t_state != TCPS_LISTEN) {
367 tcp_dooptions(tp, om, ti);
368 om = 0;
369 }
370 /*
371 * Header prediction: check for the two common cases
372 * of a uni-directional data xfer. If the packet has
373 * no control flags, is in-sequence, the window didn't
374 * change and we're not retransmitting, it's a
375 * candidate. If the length is zero and the ack moved
376 * forward, we're the sender side of the xfer. Just
377 * free the data acked & wake any higher level process
378 * that was blocked waiting for space. If the length
379 * is non-zero and the ack didn't move, we're the
380 * receiver side. If we're getting packets in-order
381 * (the reassembly queue is empty), add the data to
382 * the socket buffer and note that we need a delayed ack.
383 */
384 if (tp->t_state == TCPS_ESTABLISHED &&
385 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
386 ti->ti_seq == tp->rcv_nxt &&
387 ti->ti_win && ti->ti_win == tp->snd_wnd &&
388 tp->snd_nxt == tp->snd_max) {
389 if (ti->ti_len == 0) {
390 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
391 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
392 tp->snd_cwnd >= tp->snd_wnd) {
393 /*
394 * this is a pure ack for outstanding data.
395 */
396 ++tcppredack;
397 if (tp->t_rtt && SEQ_GT(ti->ti_ack,tp->t_rtseq))
398 tcp_xmit_timer(tp);
399 acked = ti->ti_ack - tp->snd_una;
400 tcpstat.tcps_rcvackpack++;
401 tcpstat.tcps_rcvackbyte += acked;
402 sbdrop(&so->so_snd, acked);
403 tp->snd_una = ti->ti_ack;
404 m_freem(m);
405
406 /*
407 * If all outstanding data are acked, stop
408 * retransmit timer, otherwise restart timer
409 * using current (possibly backed-off) value.
410 * If process is waiting for space,
411 * wakeup/selwakeup/signal. If data
412 * are ready to send, let tcp_output
413 * decide between more output or persist.
414 */
415 if (tp->snd_una == tp->snd_max)
416 tp->t_timer[TCPT_REXMT] = 0;
417 else if (tp->t_timer[TCPT_PERSIST] == 0)
418 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
419
420 if (so->so_snd.sb_flags & SB_NOTIFY)
421 sowwakeup(so);
422 if (so->so_snd.sb_cc)
423 (void) tcp_output(tp);
424 return;
425 }
426 } else if (ti->ti_ack == tp->snd_una &&
427 tp->seg_next == (struct tcpiphdr *)tp &&
428 ti->ti_len <= sbspace(&so->so_rcv)) {
429 /*
430 * this is a pure, in-sequence data packet
431 * with nothing on the reassembly queue and
432 * we have enough buffer space to take it.
433 */
434 ++tcppreddat;
435 tp->rcv_nxt += ti->ti_len;
436 tcpstat.tcps_rcvpack++;
437 tcpstat.tcps_rcvbyte += ti->ti_len;
438 /*
439 * Drop TCP and IP headers then add data
440 * to socket buffer
441 */
442 m->m_data += sizeof(struct tcpiphdr);
443 m->m_len -= sizeof(struct tcpiphdr);
444 sbappend(&so->so_rcv, m);
445 sorwakeup(so);
446 tp->t_flags |= TF_DELACK;
447 return;
448 }
449 }
450
451 /*
452 * Drop TCP and IP headers; TCP options were dropped above.
453 */
454 m->m_data += sizeof(struct tcpiphdr);
455 m->m_len -= sizeof(struct tcpiphdr);
456
457 /*
458 * Calculate amount of space in receive window,
459 * and then do TCP input processing.
460 * Receive window is amount of space in rcv queue,
461 * but not less than advertised window.
462 */
463 { int win;
464
465 win = sbspace(&so->so_rcv);
466 if (win < 0)
467 win = 0;
468 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
469 }
470
471 switch (tp->t_state) {
472
473 /*
474 * If the state is LISTEN then ignore segment if it contains an RST.
475 * If the segment contains an ACK then it is bad and send a RST.
476 * If it does not contain a SYN then it is not interesting; drop it.
477 * Don't bother responding if the destination was a broadcast.
478 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
479 * tp->iss, and send a segment:
480 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
481 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
482 * Fill in remote peer address fields if not previously specified.
483 * Enter SYN_RECEIVED state, and process any other fields of this
484 * segment in this state.
485 */
486 case TCPS_LISTEN: {
487 struct mbuf *am;
488 register struct sockaddr_in *sin;
489
490 if (tiflags & TH_RST)
491 goto drop;
492 if (tiflags & TH_ACK)
493 goto dropwithreset;
494 if ((tiflags & TH_SYN) == 0)
495 goto drop;
496 if (m->m_flags & M_BCAST)
497 goto drop;
498 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
499 if (am == NULL)
500 goto drop;
501 am->m_len = sizeof (struct sockaddr_in);
502 sin = mtod(am, struct sockaddr_in *);
503 sin->sin_family = AF_INET;
504 sin->sin_len = sizeof(*sin);
505 sin->sin_addr = ti->ti_src;
506 sin->sin_port = ti->ti_sport;
507 laddr = inp->inp_laddr;
508 if (inp->inp_laddr.s_addr == INADDR_ANY)
509 inp->inp_laddr = ti->ti_dst;
510 if (in_pcbconnect(inp, am)) {
511 inp->inp_laddr = laddr;
512 (void) m_free(am);
513 goto drop;
514 }
515 (void) m_free(am);
516 tp->t_template = tcp_template(tp);
517 if (tp->t_template == 0) {
518 tp = tcp_drop(tp, ENOBUFS);
519 dropsocket = 0; /* socket is already gone */
520 goto drop;
521 }
522 if (om) {
523 tcp_dooptions(tp, om, ti);
524 om = 0;
525 }
526 if (iss)
527 tp->iss = iss;
528 else
529 tp->iss = tcp_iss;
530 tcp_iss += TCP_ISSINCR/2;
531 tp->irs = ti->ti_seq;
532 tcp_sendseqinit(tp);
533 tcp_rcvseqinit(tp);
534 tp->t_flags |= TF_ACKNOW;
535 tp->t_state = TCPS_SYN_RECEIVED;
536 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
537 dropsocket = 0; /* committed to socket */
538 tcpstat.tcps_accepts++;
539 goto trimthenstep6;
540 }
541
542 /*
543 * If the state is SYN_SENT:
544 * if seg contains an ACK, but not for our SYN, drop the input.
545 * if seg contains a RST, then drop the connection.
546 * if seg does not contain SYN, then drop it.
547 * Otherwise this is an acceptable SYN segment
548 * initialize tp->rcv_nxt and tp->irs
549 * if seg contains ack then advance tp->snd_una
550 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
551 * arrange for segment to be acked (eventually)
552 * continue processing rest of data/controls, beginning with URG
553 */
554 case TCPS_SYN_SENT:
555 if ((tiflags & TH_ACK) &&
556 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
557 SEQ_GT(ti->ti_ack, tp->snd_max)))
558 goto dropwithreset;
559 if (tiflags & TH_RST) {
560 if (tiflags & TH_ACK)
561 tp = tcp_drop(tp, ECONNREFUSED);
562 goto drop;
563 }
564 if ((tiflags & TH_SYN) == 0)
565 goto drop;
566 if (tiflags & TH_ACK) {
567 tp->snd_una = ti->ti_ack;
568 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
569 tp->snd_nxt = tp->snd_una;
570 }
571 tp->t_timer[TCPT_REXMT] = 0;
572 tp->irs = ti->ti_seq;
573 tcp_rcvseqinit(tp);
574 tp->t_flags |= TF_ACKNOW;
575 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
576 tcpstat.tcps_connects++;
577 soisconnected(so);
578 tp->t_state = TCPS_ESTABLISHED;
579 (void) tcp_reass(tp, (struct tcpiphdr *)0,
580 (struct mbuf *)0);
581 /*
582 * if we didn't have to retransmit the SYN,
583 * use its rtt as our initial srtt & rtt var.
584 */
585 if (tp->t_rtt)
586 tcp_xmit_timer(tp);
587 } else
588 tp->t_state = TCPS_SYN_RECEIVED;
589
590trimthenstep6:
591 /*
592 * Advance ti->ti_seq to correspond to first data byte.
593 * If data, trim to stay within window,
594 * dropping FIN if necessary.
595 */
596 ti->ti_seq++;
597 if (ti->ti_len > tp->rcv_wnd) {
598 todrop = ti->ti_len - tp->rcv_wnd;
599 m_adj(m, -todrop);
600 ti->ti_len = tp->rcv_wnd;
601 tiflags &= ~TH_FIN;
602 tcpstat.tcps_rcvpackafterwin++;
603 tcpstat.tcps_rcvbyteafterwin += todrop;
604 }
605 tp->snd_wl1 = ti->ti_seq - 1;
606 tp->rcv_up = ti->ti_seq;
607 goto step6;
608 }
609
610 /*
611 * States other than LISTEN or SYN_SENT.
612 * First check that at least some bytes of segment are within
613 * receive window. If segment begins before rcv_nxt,
614 * drop leading data (and SYN); if nothing left, just ack.
615 */
616 todrop = tp->rcv_nxt - ti->ti_seq;
617 if (todrop > 0) {
618 if (tiflags & TH_SYN) {
619 tiflags &= ~TH_SYN;
620 ti->ti_seq++;
621 if (ti->ti_urp > 1)
622 ti->ti_urp--;
623 else
624 tiflags &= ~TH_URG;
625 todrop--;
626 }
627 if (todrop > ti->ti_len ||
628 todrop == ti->ti_len && (tiflags&TH_FIN) == 0) {
629 tcpstat.tcps_rcvduppack++;
630 tcpstat.tcps_rcvdupbyte += ti->ti_len;
631 /*
632 * If segment is just one to the left of the window,
633 * check two special cases:
634 * 1. Don't toss RST in response to 4.2-style keepalive.
635 * 2. If the only thing to drop is a FIN, we can drop
636 * it, but check the ACK or we will get into FIN
637 * wars if our FINs crossed (both CLOSING).
638 * In either case, send ACK to resynchronize,
639 * but keep on processing for RST or ACK.
640 */
641 if ((tiflags & TH_FIN && todrop == ti->ti_len + 1)
642#ifdef TCP_COMPAT_42
643 || (tiflags & TH_RST && ti->ti_seq == tp->rcv_nxt - 1)
644#endif
645 ) {
646 todrop = ti->ti_len;
647 tiflags &= ~TH_FIN;
648 tp->t_flags |= TF_ACKNOW;
649 } else
650 goto dropafterack;
651 } else {
652 tcpstat.tcps_rcvpartduppack++;
653 tcpstat.tcps_rcvpartdupbyte += todrop;
654 }
655 m_adj(m, todrop);
656 ti->ti_seq += todrop;
657 ti->ti_len -= todrop;
658 if (ti->ti_urp > todrop)
659 ti->ti_urp -= todrop;
660 else {
661 tiflags &= ~TH_URG;
662 ti->ti_urp = 0;
663 }
664 }
665
666 /*
667 * If new data are received on a connection after the
668 * user processes are gone, then RST the other end.
669 */
670 if ((so->so_state & SS_NOFDREF) &&
671 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
672 tp = tcp_close(tp);
673 tcpstat.tcps_rcvafterclose++;
674 goto dropwithreset;
675 }
676
677 /*
678 * If segment ends after window, drop trailing data
679 * (and PUSH and FIN); if nothing left, just ACK.
680 */
681 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
682 if (todrop > 0) {
683 tcpstat.tcps_rcvpackafterwin++;
684 if (todrop >= ti->ti_len) {
685 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
686 /*
687 * If a new connection request is received
688 * while in TIME_WAIT, drop the old connection
689 * and start over if the sequence numbers
690 * are above the previous ones.
691 */
692 if (tiflags & TH_SYN &&
693 tp->t_state == TCPS_TIME_WAIT &&
694 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
695 iss = tp->rcv_nxt + TCP_ISSINCR;
696 tp = tcp_close(tp);
697 goto findpcb;
698 }
699 /*
700 * If window is closed can only take segments at
701 * window edge, and have to drop data and PUSH from
702 * incoming segments. Continue processing, but
703 * remember to ack. Otherwise, drop segment
704 * and ack.
705 */
706 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
707 tp->t_flags |= TF_ACKNOW;
708 tcpstat.tcps_rcvwinprobe++;
709 } else
710 goto dropafterack;
711 } else
712 tcpstat.tcps_rcvbyteafterwin += todrop;
713 m_adj(m, -todrop);
714 ti->ti_len -= todrop;
715 tiflags &= ~(TH_PUSH|TH_FIN);
716 }
717
718 /*
719 * If the RST bit is set examine the state:
720 * SYN_RECEIVED STATE:
721 * If passive open, return to LISTEN state.
722 * If active open, inform user that connection was refused.
723 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
724 * Inform user that connection was reset, and close tcb.
725 * CLOSING, LAST_ACK, TIME_WAIT STATES
726 * Close the tcb.
727 */
728 if (tiflags&TH_RST) switch (tp->t_state) {
729
730 case TCPS_SYN_RECEIVED:
731 so->so_error = ECONNREFUSED;
732 goto close;
733
734 case TCPS_ESTABLISHED:
735 case TCPS_FIN_WAIT_1:
736 case TCPS_FIN_WAIT_2:
737 case TCPS_CLOSE_WAIT:
738 so->so_error = ECONNRESET;
739 close:
740 tp->t_state = TCPS_CLOSED;
741 tcpstat.tcps_drops++;
742 tp = tcp_close(tp);
743 goto drop;
744
745 case TCPS_CLOSING:
746 case TCPS_LAST_ACK:
747 case TCPS_TIME_WAIT:
748 tp = tcp_close(tp);
749 goto drop;
750 }
751
752 /*
753 * If a SYN is in the window, then this is an
754 * error and we send an RST and drop the connection.
755 */
756 if (tiflags & TH_SYN) {
757 tp = tcp_drop(tp, ECONNRESET);
758 goto dropwithreset;
759 }
760
761 /*
762 * If the ACK bit is off we drop the segment and return.
763 */
764 if ((tiflags & TH_ACK) == 0)
765 goto drop;
766
767 /*
768 * Ack processing.
769 */
770 switch (tp->t_state) {
771
772 /*
773 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
774 * ESTABLISHED state and continue processing, otherwise
775 * send an RST.
776 */
777 case TCPS_SYN_RECEIVED:
778 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
779 SEQ_GT(ti->ti_ack, tp->snd_max))
780 goto dropwithreset;
781 tcpstat.tcps_connects++;
782 soisconnected(so);
783 tp->t_state = TCPS_ESTABLISHED;
784 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
785 tp->snd_wl1 = ti->ti_seq - 1;
786 /* fall into ... */
787
788 /*
789 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
790 * ACKs. If the ack is in the range
791 * tp->snd_una < ti->ti_ack <= tp->snd_max
792 * then advance tp->snd_una to ti->ti_ack and drop
793 * data from the retransmission queue. If this ACK reflects
794 * more up to date window information we update our window information.
795 */
796 case TCPS_ESTABLISHED:
797 case TCPS_FIN_WAIT_1:
798 case TCPS_FIN_WAIT_2:
799 case TCPS_CLOSE_WAIT:
800 case TCPS_CLOSING:
801 case TCPS_LAST_ACK:
802 case TCPS_TIME_WAIT:
803
804 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
805 if (ti->ti_len == 0 && ti->ti_win == tp->snd_wnd) {
806 tcpstat.tcps_rcvdupack++;
807 /*
808 * If we have outstanding data (other than
809 * a window probe), this is a completely
810 * duplicate ack (ie, window info didn't
811 * change), the ack is the biggest we've
812 * seen and we've seen exactly our rexmt
813 * threshhold of them, assume a packet
814 * has been dropped and retransmit it.
815 * Kludge snd_nxt & the congestion
816 * window so we send only this one
817 * packet.
818 *
819 * We know we're losing at the current
820 * window size so do congestion avoidance
821 * (set ssthresh to half the current window
822 * and pull our congestion window back to
823 * the new ssthresh).
824 *
825 * Dup acks mean that packets have left the
826 * network (they're now cached at the receiver)
827 * so bump cwnd by the amount in the receiver
828 * to keep a constant cwnd packets in the
829 * network.
830 */
831 if (tp->t_timer[TCPT_REXMT] == 0 ||
832 ti->ti_ack != tp->snd_una)
833 tp->t_dupacks = 0;
834 else if (++tp->t_dupacks == tcprexmtthresh) {
835 tcp_seq onxt = tp->snd_nxt;
836 u_int win =
837 min(tp->snd_wnd, tp->snd_cwnd) / 2 /
838 tp->t_maxseg;
839
840 if (win < 2)
841 win = 2;
842 tp->snd_ssthresh = win * tp->t_maxseg;
843 tp->t_timer[TCPT_REXMT] = 0;
844 tp->t_rtt = 0;
845 tp->snd_nxt = ti->ti_ack;
846 tp->snd_cwnd = tp->t_maxseg;
847 (void) tcp_output(tp);
848 tp->snd_cwnd = tp->snd_ssthresh +
849 tp->t_maxseg * tp->t_dupacks;
850 if (SEQ_GT(onxt, tp->snd_nxt))
851 tp->snd_nxt = onxt;
852 goto drop;
853 } else if (tp->t_dupacks > tcprexmtthresh) {
854 tp->snd_cwnd += tp->t_maxseg;
855 (void) tcp_output(tp);
856 goto drop;
857 }
858 } else
859 tp->t_dupacks = 0;
860 break;
861 }
862 /*
863 * If the congestion window was inflated to account
864 * for the other side's cached packets, retract it.
865 */
866 if (tp->t_dupacks > tcprexmtthresh &&
867 tp->snd_cwnd > tp->snd_ssthresh)
868 tp->snd_cwnd = tp->snd_ssthresh;
869 tp->t_dupacks = 0;
870 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
871 tcpstat.tcps_rcvacktoomuch++;
872 goto dropafterack;
873 }
874 acked = ti->ti_ack - tp->snd_una;
875 tcpstat.tcps_rcvackpack++;
876 tcpstat.tcps_rcvackbyte += acked;
877
878 /*
879 * If transmit timer is running and timed sequence
880 * number was acked, update smoothed round trip time.
881 * Since we now have an rtt measurement, cancel the
882 * timer backoff (cf., Phil Karn's retransmit alg.).
883 * Recompute the initial retransmit timer.
884 */
885 if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
886 tcp_xmit_timer(tp);
887
888 /*
889 * If all outstanding data is acked, stop retransmit
890 * timer and remember to restart (more output or persist).
891 * If there is more data to be acked, restart retransmit
892 * timer, using current (possibly backed-off) value.
893 */
894 if (ti->ti_ack == tp->snd_max) {
895 tp->t_timer[TCPT_REXMT] = 0;
896 needoutput = 1;
897 } else if (tp->t_timer[TCPT_PERSIST] == 0)
898 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
899 /*
900 * When new data is acked, open the congestion window.
901 * If the window gives us less than ssthresh packets
902 * in flight, open exponentially (maxseg per packet).
903 * Otherwise open linearly: maxseg per window
904 * (maxseg^2 / cwnd per packet), plus a constant
905 * fraction of a packet (maxseg/8) to help larger windows
906 * open quickly enough.
907 */
908 {
909 register u_int cw = tp->snd_cwnd;
910 register u_int incr = tp->t_maxseg;
911
912 if (cw > tp->snd_ssthresh)
913 incr = incr * incr / cw + incr / 8;
914 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN);
915 }
916 if (acked > so->so_snd.sb_cc) {
917 tp->snd_wnd -= so->so_snd.sb_cc;
918 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
919 ourfinisacked = 1;
920 } else {
921 sbdrop(&so->so_snd, acked);
922 tp->snd_wnd -= acked;
923 ourfinisacked = 0;
924 }
925 if (so->so_snd.sb_flags & SB_NOTIFY)
926 sowwakeup(so);
927 tp->snd_una = ti->ti_ack;
928 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
929 tp->snd_nxt = tp->snd_una;
930
931 switch (tp->t_state) {
932
933 /*
934 * In FIN_WAIT_1 STATE in addition to the processing
935 * for the ESTABLISHED state if our FIN is now acknowledged
936 * then enter FIN_WAIT_2.
937 */
938 case TCPS_FIN_WAIT_1:
939 if (ourfinisacked) {
940 /*
941 * If we can't receive any more
942 * data, then closing user can proceed.
943 * Starting the timer is contrary to the
944 * specification, but if we don't get a FIN
945 * we'll hang forever.
946 */
947 if (so->so_state & SS_CANTRCVMORE) {
948 soisdisconnected(so);
949 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
950 }
951 tp->t_state = TCPS_FIN_WAIT_2;
952 }
953 break;
954
955 /*
956 * In CLOSING STATE in addition to the processing for
957 * the ESTABLISHED state if the ACK acknowledges our FIN
958 * then enter the TIME-WAIT state, otherwise ignore
959 * the segment.
960 */
961 case TCPS_CLOSING:
962 if (ourfinisacked) {
963 tp->t_state = TCPS_TIME_WAIT;
964 tcp_canceltimers(tp);
965 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
966 soisdisconnected(so);
967 }
968 break;
969
970 /*
971 * In LAST_ACK, we may still be waiting for data to drain
972 * and/or to be acked, as well as for the ack of our FIN.
973 * If our FIN is now acknowledged, delete the TCB,
974 * enter the closed state and return.
975 */
976 case TCPS_LAST_ACK:
977 if (ourfinisacked) {
978 tp = tcp_close(tp);
979 goto drop;
980 }
981 break;
982
983 /*
984 * In TIME_WAIT state the only thing that should arrive
985 * is a retransmission of the remote FIN. Acknowledge
986 * it and restart the finack timer.
987 */
988 case TCPS_TIME_WAIT:
989 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
990 goto dropafterack;
991 }
992 }
993
994step6:
995 /*
996 * Update window information.
997 * Don't look at window if no ACK: TAC's send garbage on first SYN.
998 */
999 if ((tiflags & TH_ACK) &&
1000 (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
1001 (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
1002 tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd))) {
1003 /* keep track of pure window updates */
1004 if (ti->ti_len == 0 &&
1005 tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd)
1006 tcpstat.tcps_rcvwinupd++;
1007 tp->snd_wnd = ti->ti_win;
1008 tp->snd_wl1 = ti->ti_seq;
1009 tp->snd_wl2 = ti->ti_ack;
1010 if (tp->snd_wnd > tp->max_sndwnd)
1011 tp->max_sndwnd = tp->snd_wnd;
1012 needoutput = 1;
1013 }
1014
1015 /*
1016 * Process segments with URG.
1017 */
1018 if ((tiflags & TH_URG) && ti->ti_urp &&
1019 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1020 /*
1021 * This is a kludge, but if we receive and accept
1022 * random urgent pointers, we'll crash in
1023 * soreceive. It's hard to imagine someone
1024 * actually wanting to send this much urgent data.
1025 */
1026 if (ti->ti_urp + so->so_rcv.sb_cc > SB_MAX) {
1027 ti->ti_urp = 0; /* XXX */
1028 tiflags &= ~TH_URG; /* XXX */
1029 goto dodata; /* XXX */
1030 }
1031 /*
1032 * If this segment advances the known urgent pointer,
1033 * then mark the data stream. This should not happen
1034 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1035 * a FIN has been received from the remote side.
1036 * In these states we ignore the URG.
1037 *
1038 * According to RFC961 (Assigned Protocols),
1039 * the urgent pointer points to the last octet
1040 * of urgent data. We continue, however,
1041 * to consider it to indicate the first octet
1042 * of data past the urgent section as the original
1043 * spec states (in one of two places).
1044 */
1045 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1046 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1047 so->so_oobmark = so->so_rcv.sb_cc +
1048 (tp->rcv_up - tp->rcv_nxt) - 1;
1049 if (so->so_oobmark == 0)
1050 so->so_state |= SS_RCVATMARK;
1051 sohasoutofband(so);
1052 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1053 }
1054 /*
1055 * Remove out of band data so doesn't get presented to user.
1056 * This can happen independent of advancing the URG pointer,
1057 * but if two URG's are pending at once, some out-of-band
1058 * data may creep in... ick.
1059 */
1060 if (ti->ti_urp <= ti->ti_len
1061#ifdef SO_OOBINLINE
1062 && (so->so_options & SO_OOBINLINE) == 0
1063#endif
1064 )
1065 tcp_pulloutofband(so, ti, m);
1066 } else
1067 /*
1068 * If no out of band data is expected,
1069 * pull receive urgent pointer along
1070 * with the receive window.
1071 */
1072 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1073 tp->rcv_up = tp->rcv_nxt;
1074dodata: /* XXX */
1075
1076 /*
1077 * Process the segment text, merging it into the TCP sequencing queue,
1078 * and arranging for acknowledgment of receipt if necessary.
1079 * This process logically involves adjusting tp->rcv_wnd as data
1080 * is presented to the user (this happens in tcp_usrreq.c,
1081 * case PRU_RCVD). If a FIN has already been received on this
1082 * connection then we just ignore the text.
1083 */
1084 if ((ti->ti_len || (tiflags&TH_FIN)) &&
1085 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1086 TCP_REASS(tp, ti, m, so, tiflags);
1087 /*
1088 * Note the amount of data that peer has sent into
1089 * our window, in order to estimate the sender's
1090 * buffer size.
1091 */
1092 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1093 } else {
1094 m_freem(m);
1095 tiflags &= ~TH_FIN;
1096 }
1097
1098 /*
1099 * If FIN is received ACK the FIN and let the user know
1100 * that the connection is closing.
1101 */
1102 if (tiflags & TH_FIN) {
1103 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1104 socantrcvmore(so);
1105 tp->t_flags |= TF_ACKNOW;
1106 tp->rcv_nxt++;
1107 }
1108 switch (tp->t_state) {
1109
1110 /*
1111 * In SYN_RECEIVED and ESTABLISHED STATES
1112 * enter the CLOSE_WAIT state.
1113 */
1114 case TCPS_SYN_RECEIVED:
1115 case TCPS_ESTABLISHED:
1116 tp->t_state = TCPS_CLOSE_WAIT;
1117 break;
1118
1119 /*
1120 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1121 * enter the CLOSING state.
1122 */
1123 case TCPS_FIN_WAIT_1:
1124 tp->t_state = TCPS_CLOSING;
1125 break;
1126
1127 /*
1128 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1129 * starting the time-wait timer, turning off the other
1130 * standard timers.
1131 */
1132 case TCPS_FIN_WAIT_2:
1133 tp->t_state = TCPS_TIME_WAIT;
1134 tcp_canceltimers(tp);
1135 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1136 soisdisconnected(so);
1137 break;
1138
1139 /*
1140 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1141 */
1142 case TCPS_TIME_WAIT:
1143 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1144 break;
1145 }
1146 }
1147 if (so->so_options & SO_DEBUG)
1148 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1149
1150 /*
1151 * Return any desired output.
1152 */
1153 if (needoutput || (tp->t_flags & TF_ACKNOW))
1154 (void) tcp_output(tp);
1155 return;
1156
1157dropafterack:
1158 /*
1159 * Generate an ACK dropping incoming segment if it occupies
1160 * sequence space, where the ACK reflects our state.
1161 */
1162 if (tiflags & TH_RST)
1163 goto drop;
1164 m_freem(m);
1165 tp->t_flags |= TF_ACKNOW;
1166 (void) tcp_output(tp);
1167 return;
1168
1169dropwithreset:
1170 if (om) {
1171 (void) m_free(om);
1172 om = 0;
1173 }
1174 /*
1175 * Generate a RST, dropping incoming segment.
1176 * Make ACK acceptable to originator of segment.
1177 * Don't bother to respond if destination was broadcast.
1178 */
1179 if ((tiflags & TH_RST) || m->m_flags & M_BCAST)
1180 goto drop;
1181 if (tiflags & TH_ACK)
1182 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1183 else {
1184 if (tiflags & TH_SYN)
1185 ti->ti_len++;
1186 tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1187 TH_RST|TH_ACK);
1188 }
1189 /* destroy temporarily created socket */
1190 if (dropsocket)
1191 (void) soabort(so);
1192 return;
1193
1194drop:
1195 if (om)
1196 (void) m_free(om);
1197 /*
1198 * Drop space held by incoming segment and return.
1199 */
1200 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1201 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1202 m_freem(m);
1203 /* destroy temporarily created socket */
1204 if (dropsocket)
1205 (void) soabort(so);
1206 return;
1207}
1208
1209tcp_dooptions(tp, om, ti)
1210 struct tcpcb *tp;
1211 struct mbuf *om;
1212 struct tcpiphdr *ti;
1213{
1214 register u_char *cp;
1215 u_short mss;
1216 int opt, optlen, cnt;
1217
1218 cp = mtod(om, u_char *);
1219 cnt = om->m_len;
1220 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1221 opt = cp[0];
1222 if (opt == TCPOPT_EOL)
1223 break;
1224 if (opt == TCPOPT_NOP)
1225 optlen = 1;
1226 else {
1227 optlen = cp[1];
1228 if (optlen <= 0)
1229 break;
1230 }
1231 switch (opt) {
1232
1233 default:
1234 continue;
1235
1236 case TCPOPT_MAXSEG:
1237 if (optlen != 4)
1238 continue;
1239 if (!(ti->ti_flags & TH_SYN))
1240 continue;
1241 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1242 NTOHS(mss);
1243 (void) tcp_mss(tp, mss); /* sets t_maxseg */
1244 break;
1245 }
1246 }
1247 (void) m_free(om);
1248}
1249
1250/*
1251 * Pull out of band byte out of a segment so
1252 * it doesn't appear in the user's data queue.
1253 * It is still reflected in the segment length for
1254 * sequencing purposes.
1255 */
1256tcp_pulloutofband(so, ti, m)
1257 struct socket *so;
1258 struct tcpiphdr *ti;
1259 register struct mbuf *m;
1260{
1261 int cnt = ti->ti_urp - 1;
1262
1263 while (cnt >= 0) {
1264 if (m->m_len > cnt) {
1265 char *cp = mtod(m, caddr_t) + cnt;
1266 struct tcpcb *tp = sototcpcb(so);
1267
1268 tp->t_iobc = *cp;
1269 tp->t_oobflags |= TCPOOB_HAVEDATA;
1270 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1271 m->m_len--;
1272 return;
1273 }
1274 cnt -= m->m_len;
1275 m = m->m_next;
1276 if (m == 0)
1277 break;
1278 }
1279 panic("tcp_pulloutofband");
1280}
1281
1282/*
1283 * Collect new round-trip time estimate
1284 * and update averages and current timeout.
1285 */
1286tcp_xmit_timer(tp)
1287 register struct tcpcb *tp;
1288{
1289 register short delta;
1290
1291 tcpstat.tcps_rttupdated++;
1292 if (tp->t_srtt != 0) {
1293 /*
1294 * srtt is stored as fixed point with 3 bits after the
1295 * binary point (i.e., scaled by 8). The following magic
1296 * is equivalent to the smoothing algorithm in rfc793 with
1297 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1298 * point). Adjust t_rtt to origin 0.
1299 */
1300 delta = tp->t_rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
1301 if ((tp->t_srtt += delta) <= 0)
1302 tp->t_srtt = 1;
1303 /*
1304 * We accumulate a smoothed rtt variance (actually, a
1305 * smoothed mean difference), then set the retransmit
1306 * timer to smoothed rtt + 4 times the smoothed variance.
1307 * rttvar is stored as fixed point with 2 bits after the
1308 * binary point (scaled by 4). The following is
1309 * equivalent to rfc793 smoothing with an alpha of .75
1310 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1311 * rfc793's wired-in beta.
1312 */
1313 if (delta < 0)
1314 delta = -delta;
1315 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1316 if ((tp->t_rttvar += delta) <= 0)
1317 tp->t_rttvar = 1;
1318 } else {
1319 /*
1320 * No rtt measurement yet - use the unsmoothed rtt.
1321 * Set the variance to half the rtt (so our first
1322 * retransmit happens at 2*rtt)
1323 */
1324 tp->t_srtt = tp->t_rtt << TCP_RTT_SHIFT;
1325 tp->t_rttvar = tp->t_rtt << (TCP_RTTVAR_SHIFT - 1);
1326 }
1327 tp->t_rtt = 0;
1328 tp->t_rxtshift = 0;
1329
1330 /*
1331 * the retransmit should happen at rtt + 4 * rttvar.
1332 * Because of the way we do the smoothing, srtt and rttvar
1333 * will each average +1/2 tick of bias. When we compute
1334 * the retransmit timer, we want 1/2 tick of rounding and
1335 * 1 extra tick because of +-1/2 tick uncertainty in the
1336 * firing of the timer. The bias will give us exactly the
1337 * 1.5 tick we need. But, because the bias is
1338 * statistical, we have to test that we don't drop below
1339 * the minimum feasible timer (which is 2 ticks).
1340 */
1341 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1342 tp->t_rttmin, TCPTV_REXMTMAX);
1343
1344 /*
1345 * We received an ack for a packet that wasn't retransmitted;
1346 * it is probably safe to discard any error indications we've
1347 * received recently. This isn't quite right, but close enough
1348 * for now (a route might have failed after we sent a segment,
1349 * and the return path might not be symmetrical).
1350 */
1351 tp->t_softerror = 0;
1352}
1353
1354/*
1355 * Determine a reasonable value for maxseg size.
1356 * If the route is known, check route for mtu.
1357 * If none, use an mss that can be handled on the outgoing
1358 * interface without forcing IP to fragment; if bigger than
1359 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1360 * to utilize large mbufs. If no route is found, route has no mtu,
1361 * or the destination isn't local, use a default, hopefully conservative
1362 * size (usually 512 or the default IP max size, but no more than the mtu
1363 * of the interface), as we can't discover anything about intervening
1364 * gateways or networks. We also initialize the congestion/slow start
1365 * window to be a single segment if the destination isn't local.
1366 * While looking at the routing entry, we also initialize other path-dependent
1367 * parameters from pre-set or cached values in the routing entry.
1368 */
1369
1370tcp_mss(tp, offer)
1371 register struct tcpcb *tp;
1372 u_short offer;
1373{
1374 struct route *ro;
1375 register struct rtentry *rt;
1376 struct ifnet *ifp;
1377 register int rtt, mss;
1378 u_long bufsize;
1379 struct inpcb *inp;
1380 struct socket *so;
1381 extern int tcp_mssdflt, tcp_rttdflt;
1382
1383 inp = tp->t_inpcb;
1384 ro = &inp->inp_route;
1385
1386 if ((rt = ro->ro_rt) == (struct rtentry *)0) {
1387 /* No route yet, so try to acquire one */
1388 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1389 ro->ro_dst.sa_family = AF_INET;
1390 ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1391 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1392 inp->inp_faddr;
1393 rtalloc(ro);
1394 }
1395 if ((rt = ro->ro_rt) == (struct rtentry *)0)
1396 return (tcp_mssdflt);
1397 }
1398 ifp = rt->rt_ifp;
1399 so = inp->inp_socket;
1400
1401#ifdef RTV_MTU /* if route characteristics exist ... */
1402 /*
1403 * While we're here, check if there's an initial rtt
1404 * or rttvar. Convert from the route-table units
1405 * to scaled multiples of the slow timeout timer.
1406 */
1407 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1408 if (rt->rt_rmx.rmx_locks & RTV_MTU)
1409 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1410 tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
1411 if (rt->rt_rmx.rmx_rttvar)
1412 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1413 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
1414 else
1415 /* default variation is +- 1 rtt */
1416 tp->t_rttvar =
1417 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1418 TCPT_RANGESET(tp->t_rxtcur,
1419 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1420 tp->t_rttmin, TCPTV_REXMTMAX);
1421 }
1422 /*
1423 * if there's an mtu associated with the route, use it
1424 */
1425 if (rt->rt_rmx.rmx_mtu)
1426 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1427 else
1428#endif /* RTV_MTU */
1429 {
1430 mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1431#if (MCLBYTES & (MCLBYTES - 1)) == 0
1432 if (mss > MCLBYTES)
1433 mss &= ~(MCLBYTES-1);
1434#else
1435 if (mss > MCLBYTES)
1436 mss = mss / MCLBYTES * MCLBYTES;
1437#endif
1438 if (!in_localaddr(inp->inp_faddr))
1439 mss = min(mss, tcp_mssdflt);
1440 }
1441 /*
1442 * The current mss, t_maxseg, is initialized to the default value.
1443 * If we compute a smaller value, reduce the current mss.
1444 * If we compute a larger value, return it for use in sending
1445 * a max seg size option, but don't store it for use
1446 * unless we received an offer at least that large from peer.
1447 * However, do not accept offers under 32 bytes.
1448 */
1449 if (offer)
1450 mss = min(mss, offer);
1451 mss = max(mss, 32); /* sanity */
1452 if (mss < tp->t_maxseg || offer != 0) {
1453 /*
1454 * If there's a pipesize, change the socket buffer
1455 * to that size. Make the socket buffers an integral
1456 * number of mss units; if the mss is larger than
1457 * the socket buffer, decrease the mss.
1458 */
1459#ifdef RTV_SPIPE
1460 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
1461#endif
1462 bufsize = so->so_snd.sb_hiwat;
1463 if (bufsize < mss)
1464 mss = bufsize;
1465 else {
1466 bufsize = min(bufsize, SB_MAX) / mss * mss;
1467 (void) sbreserve(&so->so_snd, bufsize);
1468 }
1469 tp->t_maxseg = mss;
1470
1471#ifdef RTV_RPIPE
1472 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
1473#endif
1474 bufsize = so->so_rcv.sb_hiwat;
1475 if (bufsize > mss) {
1476 bufsize = min(bufsize, SB_MAX) / mss * mss;
1477 (void) sbreserve(&so->so_rcv, bufsize);
1478 }
1479 }
1480 tp->snd_cwnd = mss;
1481
1482#ifdef RTV_SSTHRESH
1483 if (rt->rt_rmx.rmx_ssthresh) {
1484 /*
1485 * There's some sort of gateway or interface
1486 * buffer limit on the path. Use this to set
1487 * the slow start threshhold, but set the
1488 * threshold to no less than 2*mss.
1489 */
1490 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1491 }
1492#endif /* RTV_MTU */
1493 return (mss);
1494}