only delete space used by inode, on inode deletion; required
[unix-history] / usr / src / sys / ufs / lfs / lfs_segment.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * %sccs.include.redist.c%
6 *
7 * @(#)lfs_segment.c 7.11 (Berkeley) %G%
8 */
9
10#include <sys/param.h>
11#include <sys/systm.h>
12#include <sys/namei.h>
13#include <sys/kernel.h>
14#include <sys/resourcevar.h>
15#include <sys/file.h>
16#include <sys/stat.h>
17#include <sys/buf.h>
18#include <sys/proc.h>
19#include <sys/conf.h>
20#include <sys/vnode.h>
21#include <sys/specdev.h>
22#include <sys/fifo.h>
23#include <sys/malloc.h>
24#include <sys/mount.h>
25
26#include <ufs/ufs/quota.h>
27#include <ufs/ufs/inode.h>
28#include <ufs/ufs/dir.h>
29#include <ufs/ufs/ufsmount.h>
30
31#include <ufs/lfs/lfs.h>
32#include <ufs/lfs/lfs_extern.h>
33
34/* In-memory description of a segment about to be written. */
35struct segment {
36 struct buf **bpp; /* pointer to buffer array */
37 struct buf **cbpp; /* pointer to next available bp */
38 struct buf *ibp; /* buffer pointer to inode page */
39 struct finfo *fip; /* current fileinfo pointer */
40 void *segsum; /* segment summary info */
41 u_long ninodes; /* number of inodes in this segment */
42 u_long seg_bytes_left; /* bytes left in segment */
43 u_long sum_bytes_left; /* bytes left in summary block */
44 u_long seg_number; /* number of this segment */
45#define SEGM_CKP 0x01 /* doing a checkpoint */
46 u_long seg_flags; /* run-time flags for this segment */
47};
48
49/*
50 * Determine if it's OK to start a partial in this segment, or if we need
51 * to go on to a new segment.
52 */
53#define LFS_PARTIAL_FITS(fs) \
54 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
55 1 << (fs)->lfs_fsbtodb)
56
57int lfs_callback __P((struct buf *));
58void lfs_gather __P((struct lfs *, struct segment *,
59 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
60void lfs_initseg __P((struct lfs *, struct segment *));
61void lfs_iset __P((struct inode *, daddr_t, time_t));
62int lfs_match_data __P((struct lfs *, struct buf *));
63int lfs_match_dindir __P((struct lfs *, struct buf *));
64int lfs_match_indir __P((struct lfs *, struct buf *));
65int lfs_match_tindir __P((struct lfs *, struct buf *));
66struct buf *
67 lfs_newbuf __P((struct lfs *, struct segment *, daddr_t, size_t));
68void lfs_newseg __P((struct lfs *));
69void lfs_shellsort __P((struct buf **, daddr_t *, register int));
70void lfs_updatemeta __P((struct lfs *,
71 struct segment *, struct vnode *, daddr_t *, struct buf **, int));
72void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
73void lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
74void lfs_writeseg __P((struct lfs *, struct segment *));
75void lfs_writesuper __P((struct lfs *, struct segment *));
76
77int lfs_allclean_wakeup; /* Cleaner wakeup address. */
78
79/*
80 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
81 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
82 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
83 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
84 */
85
86int
87lfs_vflush(vp)
88 struct vnode *vp;
89{
90 struct inode *ip;
91 struct lfs *fs;
92 struct mount *mp;
93 struct segment *sp;
94 int error, s;
95
96#ifdef VERBOSE
97 printf("lfs_vflush\n");
98#endif
99 mp = vp->v_mount;
100 fs = VFSTOUFS(mp)->um_lfs;
101
102 /*
103 * XXX
104 * check flags?
105 * mp->mnt_flag & (MNT_MLOCK|MNT_RDONLY|MNT_MPBUSY) ||
106 */
107 if (vfs_busy(mp))
108 return (0);
109
110 /*
111 * Allocate a segment structure and enough space to hold pointers to
112 * the maximum possible number of buffers which can be described in a
113 * single summary block.
114 */
115 sp = malloc(sizeof(struct segment), M_SEGMENT, M_WAITOK);
116 sp->bpp = malloc(((LFS_SUMMARY_SIZE - sizeof(SEGSUM)) /
117 sizeof(daddr_t) + 1) * sizeof(struct buf *), M_SEGMENT, M_WAITOK);
118 sp->seg_flags = SEGM_CKP;
119 lfs_initseg(fs, sp);
120
121 /*
122 * Keep a cumulative count of the outstanding I/O operations. If the
123 * disk drive catches up with us it could go to zero before we finish,
124 * so we artificially increment it by one until we've scheduled all of
125 * the writes we intend to do.
126 */
127 s = splbio();
128 fs->lfs_iocount = 1;
129 splx(s);
130
131 if (vp->v_dirtyblkhd != NULL)
132 lfs_writefile(fs, sp, vp);
133 ip = VTOI(vp);
134 lfs_writeinode(fs, sp, ip);
135 ip->i_flags &= ~(IMOD | IACC | IUPD | ICHG);
136
137 lfs_writeseg(fs, sp);
138
139 /*
140 * If the I/O count is non-zero, sleep until it reaches zero. At the
141 * moment, the user's process hangs around so we can sleep.
142 */
143 s = splbio();
144 if (--fs->lfs_iocount && (error =
145 tsleep((caddr_t)&fs->lfs_iocount, PRIBIO + 1, "lfs vflush", 0)))
146 return (error);
147 splx(s);
148 vfs_unbusy(mp);
149
150 free(sp->bpp, M_SEGMENT);
151 free(sp, M_SEGMENT);
152
153 return (0);
154}
155
156int
157lfs_segwrite(mp, do_ckp)
158 struct mount *mp;
159 int do_ckp; /* Do a checkpoint. */
160{
161 struct inode *ip;
162 struct lfs *fs;
163 struct segment *sp;
164 struct vnode *vp;
165 int error, islocked, s;
166
167#ifdef VERBOSE
168 printf("lfs_segwrite\n");
169#endif
170 fs = VFSTOUFS(mp)->um_lfs;
171
172 /*
173 * Allocate a segment structure and enough space to hold pointers to
174 * the maximum possible number of buffers which can be described in a
175 * single summary block.
176 */
177 sp = malloc(sizeof(struct segment), M_SEGMENT, M_WAITOK);
178 sp->bpp = malloc(((LFS_SUMMARY_SIZE - sizeof(SEGSUM)) /
179 sizeof(daddr_t) + 1) * sizeof(struct buf *), M_SEGMENT, M_WAITOK);
180 sp->seg_flags = do_ckp ? SEGM_CKP : 0;
181 lfs_initseg(fs, sp);
182
183 /*
184 * If doing a checkpoint, we keep a cumulative count of the outstanding
185 * I/O operations. If the disk drive catches up with us it could go to
186 * zero before we finish, so we artificially increment it by one until
187 * we've scheduled all of the writes we intend to do.
188 */
189 if (do_ckp) {
190 s = splbio();
191 fs->lfs_iocount = 1;
192 splx(s);
193 }
194
195loop: for (vp = mp->mnt_mounth; vp; vp = vp->v_mountf) {
196 /*
197 * If the vnode that we are about to sync is no longer
198 * associated with this mount point, start over.
199 */
200 if (vp->v_mount != mp)
201 goto loop;
202
203 islocked = VOP_ISLOCKED(vp);
204
205 /*
206 * XXX
207 * This is wrong, I think -- we should just wait until we
208 * get the vnode and go on. Probably going to reschedule
209 * all of the writes we already scheduled...
210 */
211 if (islocked)
212 VREF(vp);
213 else if (vget(vp))
214{
215printf("lfs_segment: failed to get vnode (tell Keith)!\n");
216 goto loop;
217}
218 /*
219 * Write the inode/file if dirty and it's not the
220 * the IFILE.
221 */
222 ip = VTOI(vp);
223 if ((ip->i_flag & (IMOD | IACC | IUPD | ICHG) ||
224 vp->v_dirtyblkhd != NULL) &&
225 ip->i_number != LFS_IFILE_INUM) {
226 if (vp->v_dirtyblkhd != NULL)
227 lfs_writefile(fs, sp, vp);
228 lfs_writeinode(fs, sp, ip);
229 ip->i_flags &= ~(IMOD | IACC | IUPD | ICHG);
230 }
231 if (islocked)
232 vrele(vp);
233 else
234 vput(vp);
235 }
236 if (do_ckp) {
237 vp = fs->lfs_ivnode;
238 while (vget(vp));
239 ip = VTOI(vp);
240 if (vp->v_dirtyblkhd != NULL)
241 lfs_writefile(fs, sp, vp);
242 lfs_writeinode(fs, sp, ip);
243 ip->i_flags &= ~(IMOD | IACC | IUPD | ICHG);
244 vput(vp);
245 }
246 lfs_writeseg(fs, sp);
247
248 /*
249 * If the I/O count is non-zero, sleep until it reaches zero. At the
250 * moment, the user's process hangs around so we can sleep.
251 */
252 if (do_ckp) {
253 s = splbio();
254 if (--fs->lfs_iocount &&
255 (error = tsleep((caddr_t)&fs->lfs_iocount, PRIBIO + 1,
256 "lfs sync", 0)))
257 return (error);
258 splx(s);
259 lfs_writesuper(fs, sp);
260 }
261
262 free(sp->bpp, M_SEGMENT);
263 free(sp, M_SEGMENT);
264
265 /* Wake up any cleaning processes waiting on this file system. */
266 wakeup((caddr_t)&fs->lfs_nextseg);
267 wakeup((caddr_t)&lfs_allclean_wakeup);
268
269 return (0);
270}
271
272/*
273 * Write the dirty blocks associated with a vnode.
274 */
275void
276lfs_writefile(fs, sp, vp)
277 struct lfs *fs;
278 struct segment *sp;
279 struct vnode *vp;
280{
281 struct buf *bp;
282 struct finfo *fip;
283 IFILE *ifp;
284
285#ifdef VERBOSE
286 printf("lfs_writefile\n");
287#endif
288 if (sp->seg_bytes_left < fs->lfs_bsize ||
289 sp->sum_bytes_left < sizeof(struct finfo)) {
290 lfs_writeseg(fs, sp);
291 lfs_initseg(fs, sp);
292 }
293 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
294
295 fip = sp->fip;
296 fip->fi_nblocks = 0;
297 fip->fi_ino = VTOI(vp)->i_number;
298 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
299 fip->fi_version = ifp->if_version;
300 brelse(bp);
301
302 /*
303 * It may not be necessary to write the meta-data blocks at this point,
304 * as the roll-forward recovery code should be able to reconstruct the
305 * list.
306 */
307 lfs_gather(fs, sp, vp, lfs_match_data);
308 lfs_gather(fs, sp, vp, lfs_match_indir);
309 lfs_gather(fs, sp, vp, lfs_match_dindir);
310#ifdef TRIPLE
311 lfs_gather(fs, sp, vp, lfs_match_tindir);
312#endif
313
314 fip = sp->fip;
315#ifdef META
316 printf("lfs_writefile: adding %d blocks\n", fip->fi_nblocks);
317#endif
318 if (fip->fi_nblocks != 0) {
319 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
320 sp->fip =
321 (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
322 sizeof(daddr_t) * (fip->fi_nblocks - 1));
323 }
324}
325
326void
327lfs_writeinode(fs, sp, ip)
328 struct lfs *fs;
329 struct segment *sp;
330 struct inode *ip;
331{
332 struct buf *bp, *ibp;
333 IFILE *ifp;
334 daddr_t next_addr;
335 ino_t ino;
336 int ndx;
337
338#ifdef VERBOSE
339 printf("lfs_writeinode\n");
340#endif
341 /* Allocate a new inode block if necessary. */
342 if (sp->ibp == NULL) {
343 /* Allocate a new segment if necessary. */
344 if (sp->seg_bytes_left < fs->lfs_bsize ||
345 sp->sum_bytes_left < sizeof(daddr_t)) {
346 lfs_writeseg(fs, sp);
347 lfs_initseg(fs, sp);
348 }
349
350 /* Get next inode block. */
351 next_addr = fs->lfs_offset;
352 fs->lfs_offset += fsbtodb(fs, 1);
353 sp->ibp = *sp->cbpp++ =
354 lfs_newbuf(fs, sp, next_addr, fs->lfs_bsize);
355
356 /* Set remaining space counter. */
357 sp->seg_bytes_left -= fs->lfs_bsize;
358 sp->sum_bytes_left -= sizeof(daddr_t);
359 ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
360 sp->ninodes / INOPB(fs) - 1;
361 ((daddr_t *)(sp->segsum))[ndx] = next_addr;
362 }
363
364 /* Update the inode times and copy the inode onto the inode page. */
365 ITIMES(ip, &time, &time);
366 bp = sp->ibp;
367 bp->b_un.b_dino[sp->ninodes % INOPB(fs)] = ip->i_din;
368
369 /* Increment inode count in segment summary block. */
370 ++((SEGSUM *)(sp->segsum))->ss_ninos;
371
372 /* If this page is full, set flag to allocate a new page. */
373 if (++sp->ninodes % INOPB(fs) == 0)
374 sp->ibp = NULL;
375
376 /*
377 * If updating the ifile, update the super-block. Update the disk
378 * address and access times for this inode in the ifile.
379 */
380 ino = ip->i_number;
381 if (ino == LFS_IFILE_INUM)
382 fs->lfs_idaddr = bp->b_blkno;
383
384 LFS_IENTRY(ifp, fs, ino, ibp);
385 ifp->if_daddr = bp->b_blkno;
386 LFS_UBWRITE(ibp);
387}
388
389void
390lfs_gather(fs, sp, vp, match)
391 struct lfs *fs;
392 struct segment *sp;
393 struct vnode *vp;
394 int (*match) __P((struct lfs *, struct buf *));
395{
396 struct buf **bpp, *bp, *nbp;
397 struct finfo *fip;
398 struct inode *ip;
399 daddr_t *lbp, *start_lbp;
400 u_long version;
401 int s;
402
403#ifdef VERBOSE
404 printf("lfs_gather\n");
405#endif
406 ip = VTOI(vp);
407 bpp = sp->cbpp;
408 fip = sp->fip;
409 start_lbp = lbp = &fip->fi_blocks[fip->fi_nblocks];
410
411 s = splbio();
412 for (bp = vp->v_dirtyblkhd; bp; bp = nbp) {
413 nbp = bp->b_blockf;
414 /*
415 * XXX
416 * Should probably sleep on any BUSY buffer if
417 * doing an fsync?
418 */
419 if (bp->b_flags & B_BUSY || !match(fs, bp))
420 continue;
421
422#ifdef DIAGNOSTIC
423 if (!(bp->b_flags & B_DELWRI))
424 panic("lfs_gather: bp not B_DELWRI");
425 if (!(bp->b_flags & B_LOCKED))
426 panic("lfs_gather: bp not B_LOCKED");
427#endif
428 /* Insert into the buffer list, update the FINFO block. */
429 *sp->cbpp++ = bp;
430 ++fip->fi_nblocks;
431 *lbp++ = bp->b_lblkno;
432
433 /*
434 * If full, finish this segment. We may be doing I/O, so
435 * release and reacquire the splbio().
436 */
437 sp->sum_bytes_left -= sizeof(daddr_t);
438 sp->seg_bytes_left -= bp->b_bufsize;
439 if (sp->sum_bytes_left < sizeof(daddr_t) ||
440 sp->seg_bytes_left < fs->lfs_bsize) {
441 splx(s);
442 lfs_updatemeta(fs,
443 sp, vp, start_lbp, bpp, lbp - start_lbp);
444
445 /* Add the current file to the segment summary. */
446 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
447
448 version = fip->fi_version;
449 lfs_writeseg(fs, sp);
450 lfs_initseg(fs, sp);
451
452 fip = sp->fip;
453 fip->fi_version = version;
454 fip->fi_ino = ip->i_number;
455 start_lbp = lbp = fip->fi_blocks;
456
457 bpp = sp->cbpp;
458 s = splbio();
459 }
460 }
461 splx(s);
462 lfs_updatemeta(fs, sp, vp, start_lbp, bpp, lbp - start_lbp);
463}
464
465/*
466 * Update the metadata that points to the blocks listed in the FINFO
467 * array.
468 */
469void
470lfs_updatemeta(fs, sp, vp, lbp, bpp, nblocks)
471 struct lfs *fs;
472 struct segment *sp;
473 struct vnode *vp;
474 daddr_t *lbp;
475 struct buf **bpp;
476 int nblocks;
477{
478 SEGUSE *sup;
479 struct buf *bp;
480 INDIR a[NIADDR], *ap;
481 struct inode *ip;
482 daddr_t daddr, lbn, off;
483 int db_per_fsb, error, i, num;
484
485#ifdef VERBOSE
486 printf("lfs_updatemeta\n");
487#endif
488 if (nblocks == 0)
489 return;
490
491 /* Sort the blocks. */
492 lfs_shellsort(bpp, lbp, nblocks);
493
494 /*
495 * Assign disk addresses, and update references to the logical
496 * block and the segment usage information.
497 */
498 db_per_fsb = fsbtodb(fs, 1);
499 for (i = nblocks; i--; ++bpp) {
500 lbn = *lbp++;
501 (*bpp)->b_blkno = off = fs->lfs_offset;
502 fs->lfs_offset += db_per_fsb;
503
504 if (error = lfs_bmaparray(vp, lbn, &daddr, a, &num))
505 panic("lfs_updatemeta: lfs_bmaparray %d", error);
506 ip = VTOI(vp);
507 switch (num) {
508 case 0:
509 ip->i_db[lbn] = off;
510 break;
511 case 1:
512 ip->i_ib[a[0].in_off] = off;
513 break;
514 default:
515 ap = &a[num - 1];
516 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
517 panic("lfs_updatemeta: bread bno %d",
518 ap->in_lbn);
519 bp->b_un.b_daddr[ap->in_off] = off;
520 lfs_bwrite(bp);
521 }
522
523 /* Update segment usage information. */
524 if (daddr != UNASSIGNED) {
525 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
526 sup->su_lastmod = time.tv_sec;
527#ifdef DIAGNOSTIC
528 if (sup->su_nbytes < fs->lfs_bsize)
529 panic("lfs: negative bytes (segment %d)\n",
530 datosn(fs, daddr));
531#endif
532 sup->su_nbytes -= fs->lfs_bsize;
533 LFS_UBWRITE(bp);
534 }
535 }
536}
537
538/*
539 * Start a new segment.
540 */
541void
542lfs_initseg(fs, sp)
543 struct lfs *fs;
544 struct segment *sp;
545{
546 SEGUSE *sup;
547 SEGSUM *ssp;
548 struct buf *bp;
549 daddr_t lbn, *lbnp;
550
551#ifdef VERBOSE
552 printf("lfs_initseg\n");
553#endif
554 /* Advance to the next segment. */
555 if (!LFS_PARTIAL_FITS(fs)) {
556 lfs_newseg(fs);
557 fs->lfs_offset = fs->lfs_curseg;
558 sp->seg_number = datosn(fs, fs->lfs_curseg);
559 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
560
561 /*
562 * If the segment contains a superblock, update the offset
563 * and summary address to skip over it.
564 */
565 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
566 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
567 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
568 sp->seg_bytes_left -= LFS_SBPAD;
569 }
570 brelse(bp);
571 } else {
572 sp->seg_number = datosn(fs, fs->lfs_curseg);
573 sp->seg_bytes_left = (fs->lfs_dbpseg -
574 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
575 }
576
577 sp->ibp = NULL;
578 sp->ninodes = 0;
579
580 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
581 sp->cbpp = sp->bpp;
582 *sp->cbpp = lfs_newbuf(fs, sp, fs->lfs_offset, LFS_SUMMARY_SIZE);
583 sp->segsum = (*sp->cbpp)->b_un.b_addr;
584 ++sp->cbpp;
585 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
586
587 /* Set point to SEGSUM, initialize it. */
588 ssp = sp->segsum;
589 ssp->ss_next = fs->lfs_nextseg;
590 ssp->ss_nfinfo = ssp->ss_ninos = 0;
591
592 /* Set pointer to first FINFO, initialize it. */
593 sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM));
594 sp->fip->fi_nblocks = 0;
595
596 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
597 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
598}
599
600/*
601 * Return the next segment to write.
602 */
603void
604lfs_newseg(fs)
605 struct lfs *fs;
606{
607 CLEANERINFO *cip;
608 SEGUSE *sup;
609 struct buf *bp;
610 int curseg, isdirty, sn;
611
612#ifdef VERBOSE
613 printf("lfs_newseg\n");
614#endif
615 /*
616 * Turn off the active bit for the current segment, turn on the
617 * active and dirty bits for the next segment, update the cleaner
618 * info. Set the current segment to the next segment, get a new
619 * next segment.
620 */
621 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_curseg), bp);
622 sup->su_flags &= ~SEGUSE_ACTIVE;
623 LFS_UBWRITE(bp);
624
625 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
626 sup->su_flags |= SEGUSE_ACTIVE | SEGUSE_DIRTY;
627 LFS_UBWRITE(bp);
628
629 LFS_CLEANERINFO(cip, fs, bp);
630 --cip->clean;
631 ++cip->dirty;
632 LFS_UBWRITE(bp);
633
634 fs->lfs_lastseg = fs->lfs_curseg;
635 fs->lfs_curseg = fs->lfs_nextseg;
636 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
637 sn = (sn + 1) % fs->lfs_nseg;
638 if (sn == curseg)
639 panic("lfs_nextseg: no clean segments");
640 LFS_SEGENTRY(sup, fs, sn, bp);
641 isdirty = sup->su_flags & SEGUSE_DIRTY;
642 brelse(bp);
643 if (!isdirty)
644 break;
645 }
646 fs->lfs_nextseg = sntoda(fs, sn);
647}
648
649void
650lfs_writeseg(fs, sp)
651 struct lfs *fs;
652 struct segment *sp;
653{
654 struct buf **bpp, *bp;
655 SEGUSE *sup;
656 SEGSUM *ssp;
657 dev_t i_dev;
658 u_long *datap, *dp;
659 void *pmeta;
660 int flags, i, nblocks, s, (*strategy)__P((struct buf *));
661
662#ifdef VERBOSE
663 printf("lfs_writeseg\n");
664#endif
665 if ((nblocks = sp->cbpp - sp->bpp) == 0)
666 return;
667
668 /* Update the segment usage information. */
669 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
670 sup->su_nbytes += nblocks - 1 << fs->lfs_bshift;
671 sup->su_lastmod = time.tv_sec;
672 LFS_UBWRITE(bp);
673
674 /*
675 * Compute checksum across data and then across summary; the first
676 * block (the summary block) is skipped. Set the create time here
677 * so that it's guaranteed to be later than the inode mod times.
678 *
679 * XXX
680 * Fix this to do it inline, instead of malloc/copy.
681 */
682 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
683 for (bpp = sp->bpp, i = nblocks - 1; i--;)
684 *dp++ = (*++bpp)->b_un.b_words[0];
685 ssp = (SEGSUM *)sp->segsum;
686 ssp->ss_create = time.tv_sec;
687 ssp->ss_datasum = cksum(datap, nblocks * sizeof(u_long));
688 ssp->ss_sumsum =
689 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
690 free(datap, M_SEGMENT);
691
692 /*
693 * When we gathered the blocks for I/O we did not mark them busy or
694 * remove them from the freelist. As we do this, turn off the B_LOCKED
695 * bit so the future brelse will put them on the LRU list, and add the
696 * B_CALL flags if we're doing a checkpoint so we can count I/O's. LFS
697 * requires that the super blocks (on checkpoint) be written after all
698 * the segment data.
699 */
700 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
701 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op->vop_strategy;
702
703 s = splbio();
704 if (sp->seg_flags & SEGM_CKP) {
705 fs->lfs_iocount += nblocks;
706 flags = B_ASYNC | B_BUSY | B_CALL;
707 } else
708 flags = B_ASYNC | B_BUSY;
709 for (bpp = sp->bpp, i = nblocks; i--;) {
710 bp = *bpp++;
711 bp->b_flags |= flags;
712 bp->b_flags &=
713 ~(B_DONE | B_ERROR | B_READ | B_DELWRI | B_LOCKED);
714 bp->b_dev = i_dev;
715 bp->b_iodone = lfs_callback;
716 if (!(bp->b_flags & B_NOCACHE)) {
717 bremfree(bp);
718 reassignbuf(bp, bp->b_vp);
719 }
720 }
721 splx(s);
722
723 for (bpp = sp->bpp, i = nblocks; i--;)
724 (strategy)(*bpp++);
725}
726
727void
728lfs_writesuper(fs, sp)
729 struct lfs *fs;
730 struct segment *sp;
731{
732 struct buf *bp;
733 dev_t i_dev;
734 int (*strategy) __P((struct buf *));
735
736#ifdef VERBOSE
737 printf("lfs_writesuper\n");
738#endif
739 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
740 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op->vop_strategy;
741
742 /* Checksum the superblock and copy it into a buffer. */
743 fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
744 bp = lfs_newbuf(fs, sp, fs->lfs_sboffs[0], LFS_SBPAD);
745 *bp->b_un.b_lfs = *fs;
746
747 /* Write the first superblock (wait). */
748 bp->b_dev = i_dev;
749 bp->b_flags |= B_BUSY;
750 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
751 (strategy)(bp);
752 biowait(bp);
753
754 /* Write the second superblock (don't wait). */
755 bp->b_blkno = bp->b_lblkno = fs->lfs_sboffs[1];
756 bp->b_flags |= B_ASYNC | B_BUSY;
757 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
758 (strategy)(bp);
759}
760
761/*
762 * Logical block number match routines used when traversing the dirty block
763 * chain.
764 */
765int
766lfs_match_data(fs, bp)
767 struct lfs *fs;
768 struct buf *bp;
769{
770 return (bp->b_lblkno >= 0);
771}
772
773int
774lfs_match_indir(fs, bp)
775 struct lfs *fs;
776 struct buf *bp;
777{
778 int lbn;
779
780 lbn = bp->b_lblkno;
781 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
782}
783
784int
785lfs_match_dindir(fs, bp)
786 struct lfs *fs;
787 struct buf *bp;
788{
789 int lbn;
790
791 lbn = bp->b_lblkno;
792 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
793}
794
795int
796lfs_match_tindir(fs, bp)
797 struct lfs *fs;
798 struct buf *bp;
799{
800 int lbn;
801
802 lbn = bp->b_lblkno;
803 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
804}
805
806/*
807 * Allocate a new buffer header.
808 */
809struct buf *
810lfs_newbuf(fs, sp, daddr, size)
811 struct lfs *fs;
812 struct segment *sp;
813 daddr_t daddr;
814 size_t size;
815{
816 struct buf *bp;
817
818#ifdef VERBOSE
819 printf("lfs_newbuf\n");
820#endif
821 bp = getnewbuf();
822 bremhash(bp);
823 bgetvp(fs->lfs_ivnode, bp);
824 bp->b_bcount = 0;
825 bp->b_lblkno = daddr;
826 bp->b_blkno = daddr;
827 bp->b_error = 0;
828 bp->b_resid = 0;
829 allocbuf(bp, size);
830 bp->b_flags |= B_NOCACHE;
831 binshash(bp, &bfreelist[BQ_AGE]);
832 return (bp);
833}
834
835int /* XXX should be void */
836lfs_callback(bp)
837 struct buf *bp;
838{
839 struct lfs *fs;
840
841 fs = VFSTOUFS(bp->b_vp->v_mount)->um_lfs;
842#ifdef DIAGNOSTIC
843 if (fs->lfs_iocount == 0)
844 panic("lfs_callback: zero iocount\n");
845#endif
846 if (--fs->lfs_iocount == 0)
847 wakeup((caddr_t)&fs->lfs_iocount);
848
849 brelse(bp);
850}
851
852/*
853 * Shellsort (diminishing increment sort) from Data Structures and
854 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
855 * see also Knuth Vol. 3, page 84. The increments are selected from
856 * formula (8), page 95. Roughly O(N^3/2).
857 */
858/*
859 * This is our own private copy of shellsort because we want to sort
860 * two parallel arrays (the array of buffer pointers and the array of
861 * logical block numbers) simultaneously. Note that we cast the array
862 * of logical block numbers to a unsigned in this routine so that the
863 * negative block numbers (meta data blocks) sort AFTER the data blocks.
864 */
865void
866lfs_shellsort(bp_array, lb_array, nmemb)
867 struct buf **bp_array;
868 daddr_t *lb_array;
869 register int nmemb;
870{
871 static int __rsshell_increments[] = { 4, 1, 0 };
872 register int incr, *incrp, t1, t2;
873 struct buf *bp_temp;
874 u_long lb_temp;
875
876 for (incrp = __rsshell_increments; incr = *incrp++;)
877 for (t1 = incr; t1 < nmemb; ++t1)
878 for (t2 = t1 - incr; t2 >= 0;)
879 if (lb_array[t2] > lb_array[t2 + incr]) {
880 lb_temp = lb_array[t2];
881 lb_array[t2] = lb_array[t2 + incr];
882 lb_array[t2 + incr] = lb_temp;
883 bp_temp = bp_array[t2];
884 bp_array[t2] = bp_array[t2 + incr];
885 bp_array[t2 + incr] = bp_temp;
886 t2 -= incr;
887 } else
888 break;
889}