lint
[unix-history] / usr / src / sys / kern / vfs_bio.c
... / ...
CommitLineData
1/* vfs_bio.c 4.16 %G% */
2
3#include "../h/param.h"
4#include "../h/systm.h"
5#include "../h/dir.h"
6#include "../h/user.h"
7#include "../h/buf.h"
8#include "../h/conf.h"
9#include "../h/proc.h"
10#include "../h/seg.h"
11#include "../h/pte.h"
12#include "../h/vm.h"
13#include "../h/trace.h"
14
15/*
16 * The following several routines allocate and free
17 * buffers with various side effects. In general the
18 * arguments to an allocate routine are a device and
19 * a block number, and the value is a pointer to
20 * to the buffer header; the buffer is marked "busy"
21 * so that no one else can touch it. If the block was
22 * already in core, no I/O need be done; if it is
23 * already busy, the process waits until it becomes free.
24 * The following routines allocate a buffer:
25 * getblk
26 * bread
27 * breada
28 * baddr (if it is incore)
29 * Eventually the buffer must be released, possibly with the
30 * side effect of writing it out, by using one of
31 * bwrite
32 * bdwrite
33 * bawrite
34 * brelse
35 */
36
37struct buf bfreelist[BQUEUES];
38struct buf bswlist, *bclnlist;
39
40#define BUFHSZ 63
41struct bufhd bufhash[BUFHSZ];
42#define BUFHASH(dev, dblkno) \
43 ((struct buf *)&bufhash[((int)(dev)+(int)(dblkno)) % BUFHSZ])
44
45/*
46 * Initialize hash links for buffers.
47 */
48bhinit()
49{
50 register int i;
51 register struct bufhd *bp;
52
53 for (bp = bufhash, i = 0; i < BUFHSZ; i++, bp++)
54 bp->b_forw = bp->b_back = (struct buf *)bp;
55}
56
57/* #define DISKMON 1 */
58
59#ifdef DISKMON
60struct {
61 int nbuf;
62 long nread;
63 long nreada;
64 long ncache;
65 long nwrite;
66 long bufcount[64];
67} io_info;
68#endif
69
70/*
71 * Swap IO headers -
72 * They contain the necessary information for the swap I/O.
73 * At any given time, a swap header can be in three
74 * different lists. When free it is in the free list,
75 * when allocated and the I/O queued, it is on the swap
76 * device list, and finally, if the operation was a dirty
77 * page push, when the I/O completes, it is inserted
78 * in a list of cleaned pages to be processed by the pageout daemon.
79 */
80struct buf *swbuf;
81short *swsize; /* CAN WE JUST USE B_BCOUNT? */
82int *swpf;
83
84
85#ifndef UNFAST
86#define notavail(bp) \
87{ \
88 int s = spl6(); \
89 (bp)->av_back->av_forw = (bp)->av_forw; \
90 (bp)->av_forw->av_back = (bp)->av_back; \
91 (bp)->b_flags |= B_BUSY; \
92 splx(s); \
93}
94#endif
95
96/*
97 * Read in (if necessary) the block and return a buffer pointer.
98 */
99struct buf *
100bread(dev, blkno)
101dev_t dev;
102daddr_t blkno;
103{
104 register struct buf *bp;
105
106 bp = getblk(dev, blkno);
107 if (bp->b_flags&B_DONE) {
108#ifdef EPAWNJ
109 trace(TR_BREAD|TR_HIT, dev, blkno);
110#endif
111#ifdef DISKMON
112 io_info.ncache++;
113#endif
114 return(bp);
115 }
116 bp->b_flags |= B_READ;
117 bp->b_bcount = BSIZE;
118 (*bdevsw[major(dev)].d_strategy)(bp);
119#ifdef EPAWNJ
120 trace(TR_BREAD|TR_MISS, dev, blkno);
121#endif
122#ifdef DISKMON
123 io_info.nread++;
124#endif
125 u.u_vm.vm_inblk++; /* pay for read */
126 iowait(bp);
127 return(bp);
128}
129
130/*
131 * Read in the block, like bread, but also start I/O on the
132 * read-ahead block (which is not allocated to the caller)
133 */
134struct buf *
135breada(dev, blkno, rablkno)
136dev_t dev;
137daddr_t blkno, rablkno;
138{
139 register struct buf *bp, *rabp;
140
141 bp = NULL;
142 if (!incore(dev, blkno)) {
143 bp = getblk(dev, blkno);
144 if ((bp->b_flags&B_DONE) == 0) {
145 bp->b_flags |= B_READ;
146 bp->b_bcount = BSIZE;
147 (*bdevsw[major(dev)].d_strategy)(bp);
148#ifdef EPAWNJ
149 trace(TR_BREAD|TR_MISS, dev, blkno);
150#endif
151#ifdef DISKMON
152 io_info.nread++;
153#endif
154 u.u_vm.vm_inblk++; /* pay for read */
155 }
156#ifdef EPAWNJ
157 else
158 trace(TR_BREAD|TR_HIT, dev, blkno);
159#endif
160 }
161 if (rablkno && !incore(dev, rablkno)) {
162 rabp = getblk(dev, rablkno);
163 if (rabp->b_flags & B_DONE) {
164 brelse(rabp);
165#ifdef EPAWNJ
166 trace(TR_BREAD|TR_HIT|TR_RA, dev, blkno);
167#endif
168 } else {
169 rabp->b_flags |= B_READ|B_ASYNC;
170 rabp->b_bcount = BSIZE;
171 (*bdevsw[major(dev)].d_strategy)(rabp);
172#ifdef EPAWNJ
173 trace(TR_BREAD|TR_MISS|TR_RA, dev, rablock);
174#endif
175#ifdef DISKMON
176 io_info.nreada++;
177#endif
178 u.u_vm.vm_inblk++; /* pay in advance */
179 }
180 }
181 if(bp == NULL)
182 return(bread(dev, blkno));
183 iowait(bp);
184 return(bp);
185}
186
187/*
188 * Write the buffer, waiting for completion.
189 * Then release the buffer.
190 */
191bwrite(bp)
192register struct buf *bp;
193{
194 register flag;
195
196 flag = bp->b_flags;
197 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI | B_AGE);
198 bp->b_bcount = BSIZE;
199#ifdef DISKMON
200 io_info.nwrite++;
201#endif
202 if ((flag&B_DELWRI) == 0)
203 u.u_vm.vm_oublk++; /* noone paid yet */
204#ifdef EPAWNJ
205 trace(TR_BWRITE, bp->b_dev, dbtofsb(bp->b_blkno));
206#endif
207 (*bdevsw[major(bp->b_dev)].d_strategy)(bp);
208 if ((flag&B_ASYNC) == 0) {
209 iowait(bp);
210 brelse(bp);
211 } else if (flag & B_DELWRI)
212 bp->b_flags |= B_AGE;
213 else
214 geterror(bp);
215}
216
217/*
218 * Release the buffer, marking it so that if it is grabbed
219 * for another purpose it will be written out before being
220 * given up (e.g. when writing a partial block where it is
221 * assumed that another write for the same block will soon follow).
222 * This can't be done for magtape, since writes must be done
223 * in the same order as requested.
224 */
225bdwrite(bp)
226register struct buf *bp;
227{
228 register int flags;
229
230 if ((bp->b_flags&B_DELWRI) == 0)
231 u.u_vm.vm_oublk++; /* noone paid yet */
232 flags = bdevsw[major(bp->b_dev)].d_flags;
233 if(flags & B_TAPE)
234 bawrite(bp);
235 else {
236 bp->b_flags |= B_DELWRI | B_DONE;
237 brelse(bp);
238 }
239}
240
241/*
242 * Release the buffer, start I/O on it, but don't wait for completion.
243 */
244bawrite(bp)
245register struct buf *bp;
246{
247
248 bp->b_flags |= B_ASYNC;
249 bwrite(bp);
250}
251
252/*
253 * release the buffer, with no I/O implied.
254 */
255brelse(bp)
256register struct buf *bp;
257{
258 register struct buf *flist;
259 register s;
260
261 if (bp->b_flags&B_WANTED)
262 wakeup((caddr_t)bp);
263 if (bfreelist[0].b_flags&B_WANTED) {
264 bfreelist[0].b_flags &= ~B_WANTED;
265 wakeup((caddr_t)bfreelist);
266 }
267 if (bp->b_flags&B_ERROR)
268 if (bp->b_flags & B_LOCKED)
269 bp->b_flags &= ~B_ERROR; /* try again later */
270 else
271 bp->b_dev = NODEV; /* no assoc */
272 s = spl6();
273 if (bp->b_flags & (B_ERROR|B_INVAL)) {
274 /* block has no info ... put at front of most free list */
275 flist = &bfreelist[BQUEUES-1];
276 flist->av_forw->av_back = bp;
277 bp->av_forw = flist->av_forw;
278 flist->av_forw = bp;
279 bp->av_back = flist;
280 } else {
281 if (bp->b_flags & B_LOCKED)
282 flist = &bfreelist[BQ_LOCKED];
283 else if (bp->b_flags & B_AGE)
284 flist = &bfreelist[BQ_AGE];
285 else
286 flist = &bfreelist[BQ_LRU];
287 flist->av_back->av_forw = bp;
288 bp->av_back = flist->av_back;
289 flist->av_back = bp;
290 bp->av_forw = flist;
291 }
292 bp->b_flags &= ~(B_WANTED|B_BUSY|B_ASYNC|B_AGE);
293 splx(s);
294}
295
296/*
297 * See if the block is associated with some buffer
298 * (mainly to avoid getting hung up on a wait in breada)
299 */
300incore(dev, blkno)
301dev_t dev;
302daddr_t blkno;
303{
304 register struct buf *bp;
305 register struct buf *dp;
306 register int dblkno = fsbtodb(blkno);
307
308 dp = BUFHASH(dev, dblkno);
309 for (bp = dp->b_forw; bp != dp; bp = bp->b_forw)
310 if (bp->b_blkno == dblkno && bp->b_dev == dev &&
311 !(bp->b_flags & B_INVAL))
312 return (1);
313 return (0);
314}
315
316struct buf *
317baddr(dev, blkno)
318dev_t dev;
319daddr_t blkno;
320{
321
322 if (incore(dev, blkno))
323 return (bread(dev, blkno));
324 return (0);
325}
326
327/*
328 * Assign a buffer for the given block. If the appropriate
329 * block is already associated, return it; otherwise search
330 * for the oldest non-busy buffer and reassign it.
331 */
332struct buf *
333getblk(dev, blkno)
334dev_t dev;
335daddr_t blkno;
336{
337 register struct buf *bp, *dp, *ep;
338 register int dblkno = fsbtodb(blkno);
339#ifdef DISKMON
340 register int i;
341#endif
342
343 if ((unsigned)blkno >= 1 << (sizeof(int)*NBBY-PGSHIFT))
344 blkno = 1 << ((sizeof(int)*NBBY-PGSHIFT) + 1);
345 dblkno = fsbtodb(blkno);
346 dp = BUFHASH(dev, dblkno);
347 loop:
348 (void) spl0();
349 for (bp = dp->b_forw; bp != dp; bp = bp->b_forw) {
350 if (bp->b_blkno != dblkno || bp->b_dev != dev ||
351 bp->b_flags&B_INVAL)
352 continue;
353 (void) spl6();
354 if (bp->b_flags&B_BUSY) {
355 bp->b_flags |= B_WANTED;
356 sleep((caddr_t)bp, PRIBIO+1);
357 goto loop;
358 }
359 (void) spl0();
360#ifdef DISKMON
361 i = 0;
362 dp = bp->av_forw;
363 while ((dp->b_flags & B_HEAD) == 0) {
364 i++;
365 dp = dp->av_forw;
366 }
367 if (i<64)
368 io_info.bufcount[i]++;
369#endif
370 notavail(bp);
371 bp->b_flags |= B_CACHE;
372 return(bp);
373 }
374 if (major(dev) >= nblkdev)
375 panic("blkdev");
376 (void) spl6();
377 for (ep = &bfreelist[BQUEUES-1]; ep > bfreelist; ep--)
378 if (ep->av_forw != ep)
379 break;
380 if (ep == bfreelist) { /* no free blocks at all */
381 ep->b_flags |= B_WANTED;
382 sleep((caddr_t)ep, PRIBIO+1);
383 goto loop;
384 }
385 (void) spl0();
386 bp = ep->av_forw;
387 notavail(bp);
388 if (bp->b_flags & B_DELWRI) {
389 bp->b_flags |= B_ASYNC;
390 bwrite(bp);
391 goto loop;
392 }
393#ifdef EPAWNJ
394 trace(TR_BRELSE, bp->b_dev, dbtofsb(bp->b_blkno));
395#endif
396 bp->b_flags = B_BUSY;
397 bp->b_back->b_forw = bp->b_forw;
398 bp->b_forw->b_back = bp->b_back;
399 bp->b_forw = dp->b_forw;
400 bp->b_back = dp;
401 dp->b_forw->b_back = bp;
402 dp->b_forw = bp;
403 bp->b_dev = dev;
404 bp->b_blkno = dblkno;
405 return(bp);
406}
407
408/*
409 * get an empty block,
410 * not assigned to any particular device
411 */
412struct buf *
413geteblk()
414{
415 register struct buf *bp, *dp;
416
417loop:
418 (void) spl6();
419 for (dp = &bfreelist[BQUEUES-1]; dp > bfreelist; dp--)
420 if (dp->av_forw != dp)
421 break;
422 if (dp == bfreelist) { /* no free blocks */
423 dp->b_flags |= B_WANTED;
424 sleep((caddr_t)dp, PRIBIO+1);
425 goto loop;
426 }
427 (void) spl0();
428 bp = dp->av_forw;
429 notavail(bp);
430 if (bp->b_flags & B_DELWRI) {
431 bp->b_flags |= B_ASYNC;
432 bwrite(bp);
433 goto loop;
434 }
435#ifdef EPAWNJ
436 trace(TR_BRELSE, bp->b_dev, dbtofsb(bp->b_blkno));
437#endif
438 bp->b_flags = B_BUSY|B_INVAL;
439 bp->b_back->b_forw = bp->b_forw;
440 bp->b_forw->b_back = bp->b_back;
441 bp->b_forw = dp->b_forw;
442 bp->b_back = dp;
443 dp->b_forw->b_back = bp;
444 dp->b_forw = bp;
445 bp->b_dev = (dev_t)NODEV;
446 return(bp);
447}
448
449/*
450 * Wait for I/O completion on the buffer; return errors
451 * to the user.
452 */
453iowait(bp)
454register struct buf *bp;
455{
456
457 (void) spl6();
458 while ((bp->b_flags&B_DONE)==0)
459 sleep((caddr_t)bp, PRIBIO);
460 (void) spl0();
461 geterror(bp);
462}
463
464#ifdef UNFAST
465/*
466 * Unlink a buffer from the available list and mark it busy.
467 * (internal interface)
468 */
469notavail(bp)
470register struct buf *bp;
471{
472 register s;
473
474 s = spl6();
475 bp->av_back->av_forw = bp->av_forw;
476 bp->av_forw->av_back = bp->av_back;
477 bp->b_flags |= B_BUSY;
478 splx(s);
479}
480#endif
481
482/*
483 * Mark I/O complete on a buffer. If the header
484 * indicates a dirty page push completion, the
485 * header is inserted into the ``cleaned'' list
486 * to be processed by the pageout daemon. Otherwise
487 * release it if I/O is asynchronous, and wake
488 * up anyone waiting for it.
489 */
490iodone(bp)
491register struct buf *bp;
492{
493 register int s;
494
495 if (bp->b_flags & B_DONE)
496 panic("dup iodone");
497 bp->b_flags |= B_DONE;
498 if (bp->b_flags & B_DIRTY) {
499 if (bp->b_flags & B_ERROR)
500 panic("IO err in push");
501 s = spl6();
502 cnt.v_pgout++;
503 bp->av_forw = bclnlist;
504 bp->b_bcount = swsize[bp - swbuf];
505 bp->b_pfcent = swpf[bp - swbuf];
506 bclnlist = bp;
507 if (bswlist.b_flags & B_WANTED)
508 wakeup((caddr_t)&proc[2]);
509 splx(s);
510 return;
511 }
512 if (bp->b_flags&B_ASYNC)
513 brelse(bp);
514 else {
515 bp->b_flags &= ~B_WANTED;
516 wakeup((caddr_t)bp);
517 }
518}
519
520/*
521 * Zero the core associated with a buffer.
522 */
523clrbuf(bp)
524struct buf *bp;
525{
526 register *p;
527 register c;
528
529 p = bp->b_un.b_words;
530 c = BSIZE/sizeof(int);
531 do
532 *p++ = 0;
533 while (--c);
534 bp->b_resid = 0;
535}
536
537/*
538 * swap I/O -
539 *
540 * If the flag indicates a dirty page push initiated
541 * by the pageout daemon, we map the page into the i th
542 * virtual page of process 2 (the daemon itself) where i is
543 * the index of the swap header that has been allocated.
544 * We simply initialize the header and queue the I/O but
545 * do not wait for completion. When the I/O completes,
546 * iodone() will link the header to a list of cleaned
547 * pages to be processed by the pageout daemon.
548 */
549swap(p, dblkno, addr, nbytes, rdflg, flag, dev, pfcent)
550 struct proc *p;
551 swblk_t dblkno;
552 caddr_t addr;
553 int flag, nbytes;
554 dev_t dev;
555 unsigned pfcent;
556{
557 register struct buf *bp;
558 register int c;
559 int p2dp;
560 register struct pte *dpte, *vpte;
561
562 (void) spl6();
563 while (bswlist.av_forw == NULL) {
564 bswlist.b_flags |= B_WANTED;
565 sleep((caddr_t)&bswlist, PSWP+1);
566 }
567 bp = bswlist.av_forw;
568 bswlist.av_forw = bp->av_forw;
569 (void) spl0();
570
571 bp->b_flags = B_BUSY | B_PHYS | rdflg | flag;
572 if ((bp->b_flags & (B_DIRTY|B_PGIN)) == 0)
573 if (rdflg == B_READ)
574 sum.v_pswpin += btoc(nbytes);
575 else
576 sum.v_pswpout += btoc(nbytes);
577 bp->b_proc = p;
578 if (flag & B_DIRTY) {
579 p2dp = ((bp - swbuf) * CLSIZE) * KLMAX;
580 dpte = dptopte(&proc[2], p2dp);
581 vpte = vtopte(p, btop(addr));
582 for (c = 0; c < nbytes; c += NBPG) {
583 if (vpte->pg_pfnum == 0 || vpte->pg_fod)
584 panic("swap bad pte");
585 *dpte++ = *vpte++;
586 }
587 bp->b_un.b_addr = (caddr_t)ctob(p2dp);
588 } else
589 bp->b_un.b_addr = addr;
590 while (nbytes > 0) {
591 c = imin(ctob(120), nbytes);
592 bp->b_bcount = c;
593 bp->b_blkno = dblkno;
594 bp->b_dev = dev;
595 if (flag & B_DIRTY) {
596 swpf[bp - swbuf] = pfcent;
597 swsize[bp - swbuf] = nbytes;
598 }
599 (*bdevsw[major(dev)].d_strategy)(bp);
600 if (flag & B_DIRTY) {
601 if (c < nbytes)
602 panic("big push");
603 return;
604 }
605 (void) spl6();
606 while((bp->b_flags&B_DONE)==0)
607 sleep((caddr_t)bp, PSWP);
608 (void) spl0();
609 bp->b_un.b_addr += c;
610 bp->b_flags &= ~B_DONE;
611 if (bp->b_flags & B_ERROR) {
612 if ((flag & (B_UAREA|B_PAGET)) || rdflg == B_WRITE)
613 panic("hard IO err in swap");
614 swkill(p, (char *)0);
615 }
616 nbytes -= c;
617 dblkno += btoc(c);
618 }
619 (void) spl6();
620 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
621 bp->av_forw = bswlist.av_forw;
622 bswlist.av_forw = bp;
623 if (bswlist.b_flags & B_WANTED) {
624 bswlist.b_flags &= ~B_WANTED;
625 wakeup((caddr_t)&bswlist);
626 wakeup((caddr_t)&proc[2]);
627 }
628 (void) spl0();
629}
630
631/*
632 * If rout == 0 then killed on swap error, else
633 * rout is the name of the routine where we ran out of
634 * swap space.
635 */
636swkill(p, rout)
637 struct proc *p;
638 char *rout;
639{
640 char *mesg;
641
642 printf("pid %d: ", p->p_pid);
643 if (rout)
644 printf(mesg = "killed due to no swap space\n");
645 else
646 printf(mesg = "killed on swap error\n");
647 uprintf("sorry, pid %d was %s", p->p_pid, mesg);
648 /*
649 * To be sure no looping (e.g. in vmsched trying to
650 * swap out) mark process locked in core (as though
651 * done by user) after killing it so noone will try
652 * to swap it out.
653 */
654 psignal(p, SIGKILL);
655 p->p_flag |= SULOCK;
656}
657
658/*
659 * make sure all write-behind blocks
660 * on dev (or NODEV for all)
661 * are flushed out.
662 * (from umount and update)
663 */
664bflush(dev)
665dev_t dev;
666{
667 register struct buf *bp;
668 register struct buf *flist;
669
670loop:
671 (void) spl6();
672 for (flist = bfreelist; flist < &bfreelist[BQUEUES]; flist++)
673 for (bp = flist->av_forw; bp != flist; bp = bp->av_forw) {
674 if (bp->b_flags&B_DELWRI && (dev == NODEV||dev==bp->b_dev)) {
675 bp->b_flags |= B_ASYNC;
676 notavail(bp);
677 bwrite(bp);
678 goto loop;
679 }
680 }
681 (void) spl0();
682}
683
684/*
685 * Raw I/O. The arguments are
686 * The strategy routine for the device
687 * A buffer, which will always be a special buffer
688 * header owned exclusively by the device for this purpose
689 * The device number
690 * Read/write flag
691 * Essentially all the work is computing physical addresses and
692 * validating them.
693 * If the user has the proper access privilidges, the process is
694 * marked 'delayed unlock' and the pages involved in the I/O are
695 * faulted and locked. After the completion of the I/O, the above pages
696 * are unlocked.
697 */
698physio(strat, bp, dev, rw, mincnt)
699int (*strat)();
700register struct buf *bp;
701unsigned (*mincnt)();
702{
703 register int c;
704 char *a;
705
706 if (useracc(u.u_base,u.u_count,rw==B_READ?B_WRITE:B_READ) == NULL) {
707 u.u_error = EFAULT;
708 return;
709 }
710 (void) spl6();
711 while (bp->b_flags&B_BUSY) {
712 bp->b_flags |= B_WANTED;
713 sleep((caddr_t)bp, PRIBIO+1);
714 }
715 bp->b_error = 0;
716 bp->b_proc = u.u_procp;
717 bp->b_un.b_addr = u.u_base;
718 while (u.u_count != 0 && bp->b_error==0) {
719 bp->b_flags = B_BUSY | B_PHYS | rw;
720 bp->b_dev = dev;
721 bp->b_blkno = u.u_offset >> PGSHIFT;
722 bp->b_bcount = u.u_count;
723 (*mincnt)(bp);
724 c = bp->b_bcount;
725 u.u_procp->p_flag |= SPHYSIO;
726 vslock(a = bp->b_un.b_addr, c);
727 (*strat)(bp);
728 (void) spl6();
729 while ((bp->b_flags&B_DONE) == 0)
730 sleep((caddr_t)bp, PRIBIO);
731 vsunlock(a, c, rw);
732 u.u_procp->p_flag &= ~SPHYSIO;
733 if (bp->b_flags&B_WANTED)
734 wakeup((caddr_t)bp);
735 (void) spl0();
736 bp->b_un.b_addr += c;
737 u.u_count -= c;
738 u.u_offset += c;
739 }
740 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS);
741 u.u_count = bp->b_resid;
742 geterror(bp);
743}
744
745/*ARGSUSED*/
746unsigned
747minphys(bp)
748struct buf *bp;
749{
750
751 if (bp->b_bcount > 60 * 1024)
752 bp->b_bcount = 60 * 1024;
753}
754
755/*
756 * Pick up the device's error number and pass it to the user;
757 * if there is an error but the number is 0 set a generalized
758 * code. Actually the latter is always true because devices
759 * don't yet return specific errors.
760 */
761geterror(bp)
762register struct buf *bp;
763{
764
765 if (bp->b_flags&B_ERROR)
766 if ((u.u_error = bp->b_error)==0)
767 u.u_error = EIO;
768}
769
770/*
771 * Invalidate in core blocks belonging to closed or umounted filesystem
772 *
773 * This is not nicely done at all - the buffer ought to be removed from the
774 * hash chains & have its dev/blkno fields clobbered, but unfortunately we
775 * can't do that here, as it is quite possible that the block is still
776 * being used for i/o. Eventually, all disc drivers should be forced to
777 * have a close routine, which ought ensure that the queue is empty, then
778 * properly flush the queues. Until that happy day, this suffices for
779 * correctness. ... kre
780 */
781binval(dev)
782dev_t dev;
783{
784 register struct buf *bp;
785 register struct bufhd *hp;
786#define dp ((struct buf *)hp)
787
788 for (hp = bufhash; hp < &bufhash[BUFHSZ]; hp++)
789 for (bp = dp->b_forw; bp != dp; bp = bp->b_forw)
790 if (bp->b_dev == dev)
791 bp->b_flags |= B_INVAL;
792}