new copyright notice
[unix-history] / usr / src / sys / tahoe / if / if_enp.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1988 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Computer Consoles Inc.
7 *
8 * %sccs.include.redist.c%
9 *
10 * @(#)if_enp.c 7.7 (Berkeley) %G%
11 */
12
13#include "enp.h"
14#if NENP > 0
15/*
16 * CMC ENP-20 Ethernet Controller.
17 */
18#include "param.h"
19#include "systm.h"
20#include "mbuf.h"
21#include "buf.h"
22#include "protosw.h"
23#include "socket.h"
24#include "vmmac.h"
25#include "ioctl.h"
26#include "errno.h"
27#include "vmparam.h"
28#include "syslog.h"
29#include "uio.h"
30
31#include "../net/if.h"
32#include "../net/netisr.h"
33#include "../net/route.h"
34#ifdef INET
35#include "../netinet/in.h"
36#include "../netinet/in_systm.h"
37#include "../netinet/in_var.h"
38#include "../netinet/ip.h"
39#include "../netinet/ip_var.h"
40#include "../netinet/if_ether.h"
41#endif
42#ifdef NS
43#include "../netns/ns.h"
44#include "../netns/ns_if.h"
45#endif
46
47#include "../tahoe/cpu.h"
48#include "../tahoe/pte.h"
49#include "../tahoe/mtpr.h"
50
51#include "../tahoevba/vbavar.h"
52#include "../tahoeif/if_enpreg.h"
53
54#define ENPSTART 0xf02000 /* standard enp start addr */
55#define ENPUNIT(dev) (minor(dev)) /* for enp ram devices */
56/* macros for dealing with longs in i/o space */
57#define ENPGETLONG(a) ((((u_short *)(a))[0] << 16)|(((u_short *)(a))[1]))
58#define ENPSETLONG(a,v) \
59 { register u_short *wp = (u_short *)(a); \
60 wp[0] = ((u_short *)&(v))[0]; wp[1] = ((u_short *)&(v))[1];}
61
62int enpprobe(), enpattach(), enpintr();
63long enpstd[] = { 0xfff41000, 0xfff61000, 0 };
64struct vba_device *enpinfo[NENP];
65struct vba_driver enpdriver =
66 { enpprobe, 0, enpattach, 0, enpstd, "enp", enpinfo, "enp-20", 0 };
67
68int enpinit(), enpioctl(), enpreset(), enpoutput(), enpstart();
69struct mbuf *enpget();
70
71/*
72 * Ethernet software status per interface.
73 *
74 * Each interface is referenced by a network interface structure,
75 * es_if, which the routing code uses to locate the interface.
76 * This structure contains the output queue for the interface, its address, ...
77 */
78struct enp_softc {
79 struct arpcom es_ac; /* common ethernet structures */
80#define es_if es_ac.ac_if
81#define es_addr es_ac.ac_enaddr
82 short es_ivec; /* interrupt vector */
83} enp_softc[NENP];
84extern struct ifnet loif;
85
86enpprobe(reg, vi)
87 caddr_t reg;
88 struct vba_device *vi;
89{
90 register br, cvec; /* must be r12, r11 */
91 register struct enpdevice *addr = (struct enpdevice *)reg;
92 struct enp_softc *es = &enp_softc[vi->ui_unit];
93
94#ifdef lint
95 br = 0; cvec = br; br = cvec;
96 enpintr(0);
97#endif
98 if (badaddr((caddr_t)addr, 2) || badaddr((caddr_t)&addr->enp_ram[0], 2))
99 return (0);
100 es->es_ivec = --vi->ui_hd->vh_lastiv;
101 addr->enp_state = S_ENPRESET; /* reset by VERSAbus reset */
102 br = 0x14, cvec = es->es_ivec; /* XXX */
103 return (sizeof (struct enpdevice));
104}
105
106/*
107 * Interface exists: make available by filling in network interface
108 * record. System will initialize the interface when it is ready
109 * to accept packets.
110 */
111enpattach(ui)
112 register struct vba_device *ui;
113{
114 struct enp_softc *es = &enp_softc[ui->ui_unit];
115 register struct ifnet *ifp = &es->es_if;
116
117 ifp->if_unit = ui->ui_unit;
118 ifp->if_name = "enp";
119 ifp->if_mtu = ETHERMTU;
120 ifp->if_init = enpinit;
121 ifp->if_ioctl = enpioctl;
122 ifp->if_output = ether_output;
123 ifp->if_start = enpstart;
124 ifp->if_reset = enpreset;
125 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX;
126 if_attach(ifp);
127}
128
129/*
130 * Reset of interface after "system" reset.
131 */
132enpreset(unit, vban)
133 int unit, vban;
134{
135 register struct vba_device *ui;
136
137 if (unit >= NENP || (ui = enpinfo[unit]) == 0 || ui->ui_alive == 0 ||
138 ui->ui_vbanum != vban)
139 return;
140 printf(" enp%d", unit);
141 enpinit(unit);
142}
143
144/*
145 * Initialization of interface; clear recorded pending operations.
146 */
147enpinit(unit)
148 int unit;
149{
150 struct enp_softc *es = &enp_softc[unit];
151 register struct vba_device *ui = enpinfo[unit];
152 struct enpdevice *addr;
153 register struct ifnet *ifp = &es->es_if;
154 int s;
155
156 if (ifp->if_addrlist == (struct ifaddr *)0)
157 return;
158 if ((ifp->if_flags & IFF_RUNNING) == 0) {
159 addr = (struct enpdevice *)ui->ui_addr;
160 s = splimp();
161 RESET_ENP(addr);
162 DELAY(200000);
163 es->es_if.if_flags |= IFF_RUNNING;
164 splx(s);
165 }
166}
167
168/*
169 * Ethernet interface interrupt.
170 */
171enpintr(unit)
172 int unit;
173{
174 register struct enpdevice *addr;
175 register BCB *bcbp;
176
177 addr = (struct enpdevice *)enpinfo[unit]->ui_addr;
178#if ENP == 30
179 if (!IS_ENP_INTR(addr))
180 return;
181 ACK_ENP_INTR(addr);
182#endif
183 while ((bcbp = (BCB *)ringget((RING *)&addr->enp_tohost )) != 0) {
184 enpread(&enp_softc[unit], bcbp);
185 (void) ringput((RING *)&addr->enp_enpfree, bcbp);
186 }
187}
188
189/*
190 * Read input packet, examine its packet type, and enqueue it.
191 */
192enpread(es, bcbp)
193 struct enp_softc *es;
194 register BCB *bcbp;
195{
196 register struct ether_header *enp;
197 struct mbuf *m;
198 int s, len, off, resid;
199
200 es->es_if.if_ipackets++;
201 /*
202 * Get input data length.
203 * Get pointer to ethernet header (in input buffer).
204 * Deal with trailer protocol: if type is PUP trailer
205 * get true type from first 16-bit word past data.
206 * Remember that type was trailer by setting off.
207 */
208 len = bcbp->b_msglen - sizeof (struct ether_header);
209 enp = (struct ether_header *)ENPGETLONG(&bcbp->b_addr);
210#define enpdataaddr(enp, off, type) \
211 ((type)(((caddr_t)(((char *)enp)+sizeof (struct ether_header))+(off))))
212 enp->ether_type = ntohs((u_short)enp->ether_type);
213 if (enp->ether_type >= ETHERTYPE_TRAIL &&
214 enp->ether_type < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
215 off = (enp->ether_type - ETHERTYPE_TRAIL) * 512;
216 if (off >= ETHERMTU)
217 return;
218 enp->ether_type = ntohs(*enpdataaddr(enp, off, u_short *));
219 resid = ntohs(*(enpdataaddr(enp, off+2, u_short *)));
220 if (off + resid > len)
221 return;
222 len = off + resid;
223 } else
224 off = 0;
225 if (len == 0)
226 return;
227
228 /*
229 * Pull packet off interface. Off is nonzero if packet
230 * has trailing header; enpget will then force this header
231 * information to be at the front.
232 */
233 m = enpget((u_char *)enp, len, off, &es->es_if);
234 if (m == 0)
235 return;
236 ether_input(&es->es_if, enp, m);
237}
238
239enpstart(ifp)
240 struct ifnet *ifp;
241{
242
243 if (enpput(ifp))
244 return (ENOBUFS);
245 else
246 return (0);
247}
248
249/*
250 * Routine to copy from mbuf chain to transmitter buffer on the VERSAbus.
251 */
252enpput(ifp)
253struct ifnet *ifp;
254{
255 register BCB *bcbp;
256 register struct enpdevice *addr;
257 register struct mbuf *mp;
258 register u_char *bp;
259 register u_int len;
260 int unit = ifp->if_unit, ret = 1;
261 struct mbuf *m;
262
263 addr = (struct enpdevice *)enpinfo[unit]->ui_addr;
264again:
265 if (ringempty((RING *)&addr->enp_hostfree)) {
266 /* ifp->if_flags |= IFF_OACTIVE; */
267 return (ret);
268 }
269 IF_DEQUEUE(&ifp->if_snd, m);
270 if (m == 0) {
271 ifp->if_flags &= ~IFF_OACTIVE;
272 return (0);
273 }
274 bcbp = (BCB *)ringget((RING *)&addr->enp_hostfree);
275 bcbp->b_len = 0;
276 bp = (u_char *)ENPGETLONG(&bcbp->b_addr);
277 for (mp = m; mp; mp = mp->m_next) {
278 len = mp->m_len;
279 if (len == 0)
280 continue;
281 enpcopy(mtod(mp, u_char *), bp, len);
282 bp += len;
283 bcbp->b_len += len;
284 }
285 bcbp->b_len = max(ETHERMIN+sizeof (struct ether_header), bcbp->b_len);
286 bcbp->b_reserved = 0;
287 if (ringput((RING *)&addr->enp_toenp, bcbp) == 1)
288 INTR_ENP(addr);
289 m_freem(m);
290 ret = 0;
291 goto again;
292}
293
294/*
295 * Routine to copy from VERSAbus memory into mbufs.
296 *
297 * Warning: This makes the fairly safe assumption that
298 * mbufs have even lengths.
299 */
300struct mbuf *
301enpget(rxbuf, totlen, off, ifp)
302 u_char *rxbuf;
303 int totlen, off;
304 struct ifnet *ifp;
305{
306 register u_char *cp;
307 register struct mbuf *m;
308 struct mbuf *top = 0, **mp = &top;
309 int len;
310 u_char *packet_end;
311
312 rxbuf += sizeof (struct ether_header);
313 cp = rxbuf;
314 packet_end = cp + totlen;
315 if (off) {
316 off += 2 * sizeof(u_short);
317 totlen -= 2 *sizeof(u_short);
318 cp = rxbuf + off;
319 }
320
321 MGETHDR(m, M_DONTWAIT, MT_DATA);
322 if (m == 0)
323 return (0);
324 m->m_pkthdr.rcvif = ifp;
325 m->m_pkthdr.len = totlen;
326 m->m_len = MHLEN;
327
328 while (totlen > 0) {
329 if (top) {
330 MGET(m, M_DONTWAIT, MT_DATA);
331 if (m == 0) {
332 m_freem(top);
333 return (0);
334 }
335 m->m_len = MLEN;
336 }
337 len = min(totlen, (packet_end - cp));
338 if (len >= MINCLSIZE) {
339 MCLGET(m, M_DONTWAIT);
340 if (m->m_flags & M_EXT)
341 m->m_len = len = min(len, MCLBYTES);
342 else
343 len = m->m_len;
344 } else {
345 /*
346 * Place initial small packet/header at end of mbuf.
347 */
348 if (len < m->m_len) {
349 if (top == 0 && len + max_linkhdr <= m->m_len)
350 m->m_data += max_linkhdr;
351 m->m_len = len;
352 } else
353 len = m->m_len;
354 }
355 enpcopy(cp, mtod(m, u_char *), (u_int)len);
356 *mp = m;
357 mp = &m->m_next;
358 totlen -= len;
359 cp += len;
360 if (cp == packet_end)
361 cp = rxbuf;
362 }
363 return (top);
364}
365
366enpcopy(from, to, cnt)
367 register u_char *from, *to;
368 register u_int cnt;
369{
370 register c;
371 register short *f, *t;
372
373 if (((int)from&01) && ((int)to&01)) {
374 /* source & dest at odd addresses */
375 *to++ = *from++;
376 --cnt;
377 }
378 if (cnt > 1 && (((int)to&01) == 0) && (((int)from&01) == 0)) {
379 t = (short *)to;
380 f = (short *)from;
381 for (c = cnt>>1; c; --c) /* even address copy */
382 *t++ = *f++;
383 cnt &= 1;
384 if (cnt) { /* odd len */
385 from = (u_char *)f;
386 to = (u_char *)t;
387 *to = *from;
388 }
389 }
390 while ((int)cnt-- > 0) /* one of the address(es) must be odd */
391 *to++ = *from++;
392}
393
394/*
395 * Process an ioctl request.
396 */
397enpioctl(ifp, cmd, data)
398 register struct ifnet *ifp;
399 int cmd;
400 caddr_t data;
401{
402 register struct ifaddr *ifa = (struct ifaddr *)data;
403 struct enpdevice *addr;
404 int s = splimp(), error = 0;
405
406 switch (cmd) {
407
408 case SIOCSIFADDR:
409 ifp->if_flags |= IFF_UP;
410 switch (ifa->ifa_addr->sa_family) {
411#ifdef INET
412 case AF_INET:
413 enpinit(ifp->if_unit);
414 ((struct arpcom *)ifp)->ac_ipaddr =
415 IA_SIN(ifa)->sin_addr;
416 arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
417 break;
418#endif
419#ifdef NS
420 case AF_NS: {
421 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
422 struct enp_softc *es = &enp_softc[ifp->if_unit];
423
424 if (!ns_nullhost(*ina)) {
425 ifp->if_flags &= ~IFF_RUNNING;
426 addr = (struct enpdevice *)
427 enpinfo[ifp->if_unit]->ui_addr;
428 enpsetaddr(ifp->if_unit, addr,
429 ina->x_host.c_host);
430 } else
431 ina->x_host = *(union ns_host *)es->es_addr;
432 enpinit(ifp->if_unit);
433 break;
434 }
435#endif
436 default:
437 enpinit(ifp->if_unit);
438 break;
439 }
440 break;
441
442 case SIOCSIFFLAGS:
443 if ((ifp->if_flags&IFF_UP) == 0 && ifp->if_flags&IFF_RUNNING) {
444 enpinit(ifp->if_unit); /* reset board */
445 ifp->if_flags &= ~IFF_RUNNING;
446 } else if (ifp->if_flags&IFF_UP &&
447 (ifp->if_flags&IFF_RUNNING) == 0)
448 enpinit(ifp->if_unit);
449 break;
450
451 default:
452 error = EINVAL;
453 }
454 splx(s);
455 return (error);
456}
457
458enpsetaddr(unit, addr, enaddr)
459 int unit;
460 struct enpdevice *addr;
461 u_char *enaddr;
462{
463
464 enpcopy(enaddr, addr->enp_addr.e_baseaddr.ea_addr,
465 sizeof (struct ether_addr));
466 enpinit(unit);
467 enpgetaddr(unit, addr);
468}
469
470enpgetaddr(unit, addr)
471 int unit;
472 struct enpdevice *addr;
473{
474 struct enp_softc *es = &enp_softc[unit];
475
476 enpcopy(addr->enp_addr.e_baseaddr.ea_addr, es->es_addr,
477 sizeof (struct ether_addr));
478 printf("enp%d: hardware address %s\n",
479 unit, ether_sprintf(es->es_addr));
480}
481
482/*
483 * Routines to synchronize enp and host.
484 */
485#ifdef notdef
486static
487ringinit(rp, size)
488 register RING *rp;
489{
490
491 rp->r_rdidx = rp->r_wrtidx = 0;
492 rp->r_size = size;
493}
494
495static
496ringfull(rp)
497 register RING *rp;
498{
499 register short idx;
500
501 idx = (rp->r_wrtidx + 1) & (rp->r_size-1);
502 return (idx == rp->r_rdidx);
503}
504
505static
506fir(rp)
507 register RING *rp;
508{
509
510 return (rp->r_rdidx != rp->r_wrtidx ? rp->r_slot[rp->r_rdidx] : 0);
511}
512#endif
513
514static
515ringempty(rp)
516 register RING *rp;
517{
518
519 return (rp->r_rdidx == rp->r_wrtidx);
520}
521
522static
523ringput(rp, v)
524 register RING *rp;
525 BCB *v;
526{
527 register int idx;
528
529 idx = (rp->r_wrtidx + 1) & (rp->r_size-1);
530 if (idx != rp->r_rdidx) {
531 ENPSETLONG(&rp->r_slot[rp->r_wrtidx], v);
532 rp->r_wrtidx = idx;
533 if ((idx -= rp->r_rdidx) < 0)
534 idx += rp->r_size;
535 return (idx); /* num ring entries */
536 }
537 return (0);
538}
539
540static
541ringget(rp)
542 register RING *rp;
543{
544 register int i = 0;
545
546 if (rp->r_rdidx != rp->r_wrtidx) {
547 i = ENPGETLONG(&rp->r_slot[rp->r_rdidx]);
548 rp->r_rdidx = (++rp->r_rdidx) & (rp->r_size-1);
549 }
550 return (i);
551}
552
553/*
554 * ENP Ram device.
555 */
556enpr_open(dev)
557 dev_t dev;
558{
559 register int unit = ENPUNIT(dev);
560 struct vba_device *ui;
561 struct enpdevice *addr;
562
563 if (unit >= NENP || (ui = enpinfo[unit]) == 0 || ui->ui_alive == 0 ||
564 (addr = (struct enpdevice *)ui->ui_addr) == 0)
565 return (ENODEV);
566 if (addr->enp_state != S_ENPRESET)
567 return (EACCES); /* enp is not in reset state, don't open */
568 return (0);
569}
570
571/*ARGSUSED*/
572enpr_close(dev)
573 dev_t dev;
574{
575
576 return (0);
577}
578
579enpr_read(dev, uio)
580 dev_t dev;
581 register struct uio *uio;
582{
583 register struct iovec *iov;
584 struct enpdevice *addr;
585
586 if (uio->uio_offset > RAM_SIZE)
587 return (ENODEV);
588 iov = uio->uio_iov;
589 if (uio->uio_offset + iov->iov_len > RAM_SIZE)
590 iov->iov_len = RAM_SIZE - uio->uio_offset;
591 addr = (struct enpdevice *)enpinfo[ENPUNIT(dev)]->ui_addr;
592 if (useracc(iov->iov_base, (unsigned)iov->iov_len, 0) == 0)
593 return (EFAULT);
594 enpcopy((u_char *)&addr->enp_ram[uio->uio_offset],
595 (u_char *)iov->iov_base, (u_int)iov->iov_len);
596 uio->uio_resid -= iov->iov_len;
597 iov->iov_len = 0;
598 return (0);
599}
600
601enpr_write(dev, uio)
602 dev_t dev;
603 register struct uio *uio;
604{
605 register struct enpdevice *addr;
606 register struct iovec *iov;
607
608 addr = (struct enpdevice *)enpinfo[ENPUNIT(dev)]->ui_addr;
609 iov = uio->uio_iov;
610 if (uio->uio_offset > RAM_SIZE)
611 return (ENODEV);
612 if (uio->uio_offset + iov->iov_len > RAM_SIZE)
613 iov->iov_len = RAM_SIZE - uio->uio_offset;
614 if (useracc(iov->iov_base, (unsigned)iov->iov_len, 1) == 0)
615 return (EFAULT);
616 enpcopy((u_char *)iov->iov_base,
617 (u_char *)&addr->enp_ram[uio->uio_offset], (u_int)iov->iov_len);
618 uio->uio_resid -= iov->iov_len;
619 uio->uio_offset += iov->iov_len;
620 iov->iov_len = 0;
621 return (0);
622}
623
624/*ARGSUSED*/
625enpr_ioctl(dev, cmd, data)
626 dev_t dev;
627 caddr_t data;
628{
629 register unit = ENPUNIT(dev);
630 struct enpdevice *addr;
631
632 addr = (struct enpdevice *)enpinfo[unit]->ui_addr;
633 switch(cmd) {
634
635 case ENPIOGO:
636 ENPSETLONG(&addr->enp_base, addr);
637 addr->enp_intrvec = enp_softc[unit].es_ivec;
638 ENP_GO(addr, ENPSTART);
639 DELAY(200000);
640 enpinit(unit);
641 /*
642 * Fetch Ethernet address after link level
643 * is booted (firmware copies manufacturer's
644 * address from on-board ROM).
645 */
646 enpgetaddr(unit, addr);
647 addr->enp_state = S_ENPRUN;
648 break;
649
650 case ENPIORESET:
651 RESET_ENP(addr);
652 addr->enp_state = S_ENPRESET;
653 DELAY(100000);
654 break;
655 default:
656 return (EINVAL);
657 }
658 return (0);
659}
660#endif