1b0de9538a46c557d9ee2c0a06fe4478d6679a77
[unix-history] / usr / src / lib / libc / stdlib / radixsort.c
/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* %sccs.include.redist.c%
*/
#if defined(LIBC_SCCS) && !defined(lint)
static char sccsid[] = "@(#)radixsort.c 5.4 (Berkeley) %G%";
#endif /* LIBC_SCCS and not lint */
#include <sys/types.h>
#include <limits.h>
#include <stdlib.h>
#include <stddef.h>
/*
* Shellsort (diminishing increment sort) from Data Structures and
* Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
* see also Knuth Vol. 3, page 84. The increments are selected from
* formula (8), page 95. Roughly O(N^3/2).
*
* __rspartition is the cutoff point for a further partitioning instead
* of a shellsort. If it changes check __rsshell_increments. Both of
* these are exported, as the best values are data dependent. Unrolling
* this loop has not proven worthwhile.
*/
#define NPARTITION 40
int __rspartition = NPARTITION;
int __rsshell_increments[] = { 4, 1, 0, 0, 0, 0, 0, 0 };
#define SHELLSORT { \
register u_char ch, *s1, *s2; \
register int incr, *incrp; \
for (incrp = __rsshell_increments; incr = *incrp++;) \
for (t1 = incr; t1 < nmemb; ++t1) \
for (t2 = t1 - incr; t2 >= 0;) { \
s1 = p[t2] + indx; \
s2 = p[t2 + incr] + indx; \
while ((ch = tr[*s1++]) == tr[*s2] && ch) \
++s2; \
if (ch > tr[*s2]) { \
s1 = p[t2]; \
p[t2] = p[t2 + incr]; \
p[t2 + incr] = s1; \
t2 -= incr; \
} else \
break; \
} \
}
/*
* Stackp points to context structures, where each structure schedules a
* partitioning. Radixsort exits when the stack is empty.
*
* If the buckets are placed on the stack randomly, the worst case is when
* all the buckets but one contain (npartitions + 1) elements and the bucket
* pushed on the stack last contains the rest of the elements. In this case,
* stack growth is bounded by:
*
* limit = (nelements / (npartitions + 1)) - 1;
*
* This is a very large number, 52,377,648 for the maximum 32-bit signed int.
*
* By forcing the largest bucket to be pushed on the stack first, the worst
* case is when all but two buckets each contain (npartitions + 1) elements,
* with the remaining elements split equally between the first and last
* buckets pushed on the stack. In this case, stack growth is bounded when:
*
* for (partition_cnt = 0; nelements > npartitions; ++partition_cnt)
* nelements =
* (nelements - (npartitions + 1) * (nbuckets - 2)) / 2;
* The bound is:
*
* limit = partition_cnt * (nbuckets - 1);
*
* This is a much smaller number, 4590 for the maximum 32-bit signed int.
*/
#define NBUCKETS (UCHAR_MAX + 1)
typedef struct _stack {
u_char **bot;
int indx, nmemb;
} CONTEXT;
#define STACKPUSH { \
stackp->bot = p; \
stackp->nmemb = nmemb; \
stackp->indx = indx; \
++stackp; \
}
#define STACKPOP { \
if (stackp == stack) \
break; \
--stackp; \
bot = stackp->bot; \
nmemb = stackp->nmemb; \
indx = stackp->indx; \
}
/*
* A variant of MSD radix sorting; see Knuth Vol. 3, page 177, and 5.2.5,
* Ex. 10 and 12. Also, "Three Partition Refinement Algorithms, Paige
* and Tarjan, SIAM J. Comput. Vol. 16, No. 6, December 1987.
*
* This uses a simple sort as soon as a bucket crosses a cutoff point,
* rather than sorting the entire list after partitioning is finished.
* This should be an advantage.
*
* This is pure MSD instead of LSD of some number of MSD, switching to
* the simple sort as soon as possible. Takes linear time relative to
* the number of bytes in the strings.
*/
radixsort(l1, nmemb, tab, endbyte)
u_char **l1, *tab, endbyte;
register int nmemb;
{
register int i, indx, t1, t2;
register u_char **l2, **p, **bot, *tr;
CONTEXT *stack, *stackp;
int c[NBUCKETS + 1], max;
u_char ltab[NBUCKETS];
if (nmemb <= 1)
return(0);
/*
* T1 is the constant part of the equation, the number of elements
* represented on the stack between the top and bottom entries.
* It doesn't get rounded as the divide by 2 rounds down (correct
* for a value being subtracted). T2, the nelem value, has to be
* rounded up before each divide because we want an upper bound;
* this could overflow if nmemb is the maximum int.
*/
t1 = ((__rspartition + 1) * (NBUCKETS - 2)) >> 1;
for (i = 0, t2 = nmemb; t2 > __rspartition; i += NBUCKETS - 1)
t2 = (++t2 >> 1) - t1;
if (i) {
if (!(stack = stackp = (CONTEXT *)malloc(i * sizeof(CONTEXT))))
return(-1);
} else
stack = stackp = NULL;
/*
* There are two arrays, one provided by the user (l1), and the
* temporary one (l2). The data is sorted to the temporary stack,
* and then copied back. The speedup of using index to determine
* which stack the data is on and simply swapping stacks back and
* forth, thus avoiding the copy every iteration, turns out to not
* be any faster than the current implementation.
*/
if (!(l2 = (u_char **)malloc(sizeof(u_char *) * nmemb)))
return(-1);
/*
* Tr references a table of sort weights; multiple entries may
* map to the same weight; EOS char must have the lowest weight.
*/
if (tab)
tr = tab;
else {
tr = ltab;
for (t1 = 0, t2 = endbyte; t1 < t2; ++t1)
tr[t1] = t1 + 1;
tr[t2] = 0;
for (t1 = endbyte + 1; t1 < NBUCKETS; ++t1)
tr[t1] = t1;
}
/* First sort is entire stack */
bot = l1;
indx = 0;
for (;;) {
/* Clear bucket count array */
bzero((char *)c, sizeof(c));
/*
* Compute number of items that sort to the same bucket
* for this index.
*/
for (p = bot, i = nmemb; i--;)
++c[tr[(*p++)[indx]]];
/*
* Sum the number of characters into c, dividing the temp
* stack into the right number of buckets for this bucket,
* this index. C contains the cumulative total of keys
* before and included in this bucket, and will later be
* used as an index to the bucket. c[NBUCKETS] contains
* the total number of elements, for determining how many
* elements the last bucket contains. At the same time
* find the largest bucket so it gets pushed first.
*/
for (i = max = t1 = 0, t2 = __rspartition; i <= NBUCKETS; ++i) {
if (c[i] > t2) {
t2 = c[i];
max = i;
}
t1 = c[i] += t1;
}
/*
* Partition the elements into buckets; c decrements through
* the bucket, and ends up pointing to the first element of
* the bucket.
*/
for (i = nmemb; i--;) {
--p;
l2[--c[tr[(*p)[indx]]]] = *p;
}
/* Copy the partitioned elements back to user stack */
bcopy(l2, bot, nmemb * sizeof(u_char *));
++indx;
/*
* Sort buckets as necessary; don't sort c[0], it's the
* EOS character bucket, and nothing can follow EOS.
*/
for (i = max; i; --i) {
if ((nmemb = c[i + 1] - (t1 = c[i])) < 2)
continue;
p = bot + t1;
if (nmemb > __rspartition)
STACKPUSH
else
SHELLSORT
}
for (i = max + 1; i < NBUCKETS; ++i) {
if ((nmemb = c[i + 1] - (t1 = c[i])) < 2)
continue;
p = bot + t1;
if (nmemb > __rspartition)
STACKPUSH
else
SHELLSORT
}
/* Break out when stack is empty */
STACKPOP
}
free((char *)l2);
free((char *)stack);
return(0);
}