5dcef29cefcb56a3c4b43848fbc6be81d2c3b32b
[unix-history] / usr / src / sys / vax / uba / uda.c
/*
* Copyright (c) 1987 Regents of the University of California.
* All rights reserved. The Berkeley software License Agreement
* specifies the terms and conditions for redistribution.
*
* @(#)uda.c 7.10 (Berkeley) %G%
*
*/
/*
* UDA50/MSCP device driver
*/
#define POLLSTATS
/*
* TODO
* write bad block forwarding code
*/
#include "ra.h"
#if NUDA > 0
/*
* CONFIGURATION OPTIONS. The next three defines are tunable -- tune away!
*
* COMPAT_42 enables 4.2/4.3 compatibility (label mapping)
*
* NRSPL2 and NCMDL2 control the number of response and command
* packets respectively. They may be any value from 0 to 7, though
* setting them higher than 5 is unlikely to be of any value.
* If you get warnings about your command ring being too small,
* try increasing the values by one.
*
* MAXUNIT controls the maximum unit number (number of drives per
* controller) we are prepared to handle.
*
* DEFAULT_BURST must be at least 1.
*/
#define COMPAT_42
#define NRSPL2 5 /* log2 number of response packets */
#define NCMDL2 5 /* log2 number of command packets */
#define MAXUNIT 8 /* maximum allowed unit number */
#define DEFAULT_BURST 4 /* default DMA burst size */
#include "../machine/pte.h"
#include "param.h"
#include "systm.h"
#include "buf.h"
#include "conf.h"
#include "dir.h"
#include "file.h"
#include "ioctl.h"
#include "user.h"
#include "map.h"
#include "vm.h"
#include "dkstat.h"
#include "cmap.h"
#include "disklabel.h"
#include "syslog.h"
#include "stat.h"
#include "../vax/cpu.h"
#include "ubareg.h"
#include "ubavar.h"
#define NRSP (1 << NRSPL2)
#define NCMD (1 << NCMDL2)
#include "udareg.h"
#include "../vax/mscp.h"
#include "../vax/mscpvar.h"
#include "../vax/mtpr.h"
/*
* Backwards compatibility: Reuse the old names. Should fix someday.
*/
#define udaprobe udprobe
#define udaslave udslave
#define udaattach udattach
#define udaopen udopen
#define udaclose udclose
#define udastrategy udstrategy
#define udaread udread
#define udawrite udwrite
#define udaioctl udioctl
#define udareset udreset
#define udaintr udintr
#define udadump uddump
#define udasize udsize
/*
* UDA communications area and MSCP packet pools, per controller.
*/
struct uda {
struct udaca uda_ca; /* communications area */
struct mscp uda_rsp[NRSP]; /* response packets */
struct mscp uda_cmd[NCMD]; /* command packets */
} uda[NUDA];
/*
* Software status, per controller.
*/
struct uda_softc {
struct uda *sc_uda; /* Unibus address of uda struct */
short sc_state; /* UDA50 state; see below */
short sc_flags; /* flags; see below */
int sc_micro; /* microcode revision */
int sc_ivec; /* interrupt vector address */
struct mscp_info sc_mi;/* MSCP info (per mscpvar.h) */
#ifndef POLLSTATS
int sc_wticks; /* watchdog timer ticks */
#else
short sc_wticks;
short sc_ncmd;
#endif
} uda_softc[NUDA];
#ifdef POLLSTATS
struct udastats {
int ncmd;
int cmd[NCMD + 1];
} udastats = { NCMD + 1 };
#endif
/*
* Controller states
*/
#define ST_IDLE 0 /* uninitialised */
#define ST_STEP1 1 /* in `STEP 1' */
#define ST_STEP2 2 /* in `STEP 2' */
#define ST_STEP3 3 /* in `STEP 3' */
#define ST_SETCHAR 4 /* in `Set Controller Characteristics' */
#define ST_RUN 5 /* up and running */
/*
* Flags
*/
#define SC_MAPPED 0x01 /* mapped in Unibus I/O space */
#define SC_INSTART 0x02 /* inside udastart() */
#define SC_GRIPED 0x04 /* griped about cmd ring too small */
#define SC_INSLAVE 0x08 /* inside udaslave() */
#define SC_DOWAKE 0x10 /* wakeup when ctlr init done */
#define SC_STARTPOLL 0x20 /* need to initiate polling */
/*
* Device to unit number and partition and back
*/
#define UNITSHIFT 3
#define UNITMASK 7
#define udaunit(dev) (minor(dev) >> UNITSHIFT)
#define udapart(dev) (minor(dev) & UNITMASK)
#define udaminor(u, p) (((u) << UNITSHIFT) | (p))
/*
* Drive status, per drive
*/
struct ra_info {
daddr_t ra_dsize; /* size in sectors */
u_long ra_type; /* drive type */
u_long ra_mediaid; /* media id */
int ra_state; /* open/closed state */
struct ra_geom { /* geometry information */
u_short rg_nsectors; /* sectors/track */
u_short rg_ngroups; /* track groups */
u_short rg_ngpc; /* groups/cylinder */
u_short rg_ntracks; /* ngroups*ngpc */
u_short rg_ncyl; /* ra_dsize/ntracks/nsectors */
#ifdef notyet
u_short rg_rctsize; /* size of rct */
u_short rg_rbns; /* replacement blocks per track */
u_short rg_nrct; /* number of rct copies */
#endif
} ra_geom;
u_long ra_openpart; /* partitions open */
u_long ra_bopenpart; /* block partitions open */
u_long ra_copenpart; /* character partitions open */
} ra_info[NRA];
/*
* Software state, per drive
*/
#define CLOSED 0
#define WANTOPEN 1
#define RDLABEL 2
#define OPEN 3
#define OPENRAW 4
/*
* Definition of the driver for autoconf.
*/
int udaprobe(), udaslave(), udaattach(), udadgo(), udaintr();
struct uba_ctlr *udaminfo[NUDA];
struct uba_device *udadinfo[NRA];
struct disklabel udalabel[NRA];
u_short udastd[] = { 0772150, 0772550, 0777550, 0 };
struct uba_driver udadriver =
{ udaprobe, udaslave, udaattach, udadgo, udastd, "ra", udadinfo, "uda",
udaminfo };
/*
* More driver definitions, for generic MSCP code.
*/
int udadgram(), udactlrdone(), udaunconf(), udaiodone();
int udaonline(), udagotstatus(), udaioerror(), udareplace(), udabb();
struct buf udautab[NRA]; /* per drive transfer queue */
struct mscp_driver udamscpdriver =
{ MAXUNIT, NRA, UNITSHIFT, udautab, udadinfo,
udadgram, udactlrdone, udaunconf, udaiodone,
udaonline, udagotstatus, udareplace, udaioerror, udabb,
"uda", "ra" };
/*
* Miscellaneous private variables.
*/
char udasr_bits[] = UDASR_BITS;
struct uba_device *udaip[NUDA][MAXUNIT];
/* inverting pointers: ctlr & unit => Unibus
device pointer */
int udaburst[NUDA] = { 0 }; /* burst size, per UDA50, zero => default;
in data space so patchable via adb */
struct mscp udaslavereply; /* get unit status response packet, set
for udaslave by udaunconf, via udaintr */
static struct uba_ctlr *probeum;/* this is a hack---autoconf should pass ctlr
info to slave routine; instead, we remember
the last ctlr argument to probe */
int udawstart, udawatch(); /* watchdog timer */
/*
* Externals
*/
int wakeup();
int hz;
/*
* Poke at a supposed UDA50 to see if it is there.
* This routine duplicates some of the code in udainit() only
* because autoconf has not set up the right information yet.
* We have to do everything `by hand'.
*/
udaprobe(reg, ctlr, um)
caddr_t reg;
int ctlr;
struct uba_ctlr *um;
{
register int br, cvec;
register struct uda_softc *sc;
register struct udadevice *udaddr;
register struct mscp_info *mi;
int timeout, tries;
#ifdef VAX750
/*
* The UDA50 wants to share BDPs on 750s, but not on 780s or
* 8600s. (730s have no BDPs anyway.) Toward this end, we
* here set the `keep bdp' flag in the per-driver information
* if this is a 750. (We just need to do it once, but it is
* easiest to do it now, for each UDA50.)
*/
if (cpu == VAX_750)
udadriver.ud_keepbdp = 1;
#endif
probeum = um; /* remember for udaslave() */
#ifdef lint
br = 0; cvec = br; br = cvec; udaintr(0);
#endif
/*
* Set up the controller-specific generic MSCP driver info.
* Note that this should really be done in the (nonexistent)
* controller attach routine.
*/
sc = &uda_softc[ctlr];
mi = &sc->sc_mi;
mi->mi_md = &udamscpdriver;
mi->mi_ctlr = um->um_ctlr;
mi->mi_tab = &um->um_tab;
mi->mi_ip = udaip[ctlr];
mi->mi_cmd.mri_size = NCMD;
mi->mi_cmd.mri_desc = uda[ctlr].uda_ca.ca_cmddsc;
mi->mi_cmd.mri_ring = uda[ctlr].uda_cmd;
mi->mi_rsp.mri_size = NRSP;
mi->mi_rsp.mri_desc = uda[ctlr].uda_ca.ca_rspdsc;
mi->mi_rsp.mri_ring = uda[ctlr].uda_rsp;
mi->mi_wtab.av_forw = mi->mi_wtab.av_back = &mi->mi_wtab;
/*
* More controller specific variables. Again, this should
* be in the controller attach routine.
*/
if (udaburst[ctlr] == 0)
udaburst[ctlr] = DEFAULT_BURST;
/*
* Get an interrupt vector. Note that even if the controller
* does not respond, we keep the vector. This is not a serious
* problem; but it would be easily fixed if we had a controller
* attach routine. Sigh.
*/
sc->sc_ivec = (uba_hd[numuba].uh_lastiv -= 4);
udaddr = (struct udadevice *) reg;
/*
* Initialise the controller (partially). The UDA50 programmer's
* manual states that if initialisation fails, it should be retried
* at least once, but after a second failure the port should be
* considered `down'; it also mentions that the controller should
* initialise within ten seconds. Or so I hear; I have not seen
* this manual myself.
*/
tries = 0;
again:
udaddr->udaip = 0; /* start initialisation */
timeout = todr() + 1000; /* timeout in 10 seconds */
while ((udaddr->udasa & UDA_STEP1) == 0)
if (todr() > timeout)
goto bad;
udaddr->udasa = UDA_ERR | (NCMDL2 << 11) | (NRSPL2 << 8) | UDA_IE |
(sc->sc_ivec >> 2);
while ((udaddr->udasa & UDA_STEP2) == 0)
if (todr() > timeout)
goto bad;
/* should have interrupted by now */
#ifdef VAX630
if (cpu == VAX_630)
br = 0x15; /* screwy interrupt structure */
#endif
return (sizeof (struct udadevice));
bad:
if (++tries < 2)
goto again;
return (0);
}
/*
* Find a slave. We allow wildcard slave numbers (something autoconf
* is not really prepared to deal with); and we need to know the
* controller number to talk to the UDA. For the latter, we keep
* track of the last controller probed, since a controller probe
* immediately precedes all slave probes for that controller. For the
* former, we simply put the unit number into ui->ui_slave after we
* have found one.
*
* Note that by the time udaslave is called, the interrupt vector
* for the UDA50 has been set up (so that udaunconf() will be called).
*/
udaslave(ui, reg)
register struct uba_device *ui;
caddr_t reg;
{
register struct uba_ctlr *um = probeum;
register struct mscp *mp;
register struct uda_softc *sc;
register struct ra_info *ra;
int next = 0, type, timeout, tries, i;
#ifdef lint
i = 0; i = i;
#endif
/*
* Make sure the controller is fully initialised, by waiting
* for it if necessary.
*/
sc = &uda_softc[um->um_ctlr];
if (sc->sc_state == ST_RUN)
goto findunit;
tries = 0;
again:
if (udainit(ui->ui_ctlr))
return (0);
timeout = todr() + 1000; /* 10 seconds */
while (todr() < timeout)
if (sc->sc_state == ST_RUN) /* made it */
goto findunit;
if (++tries < 2)
goto again;
printf("uda%d: controller hung\n", um->um_ctlr);
return (0);
/*
* The controller is all set; go find the unit. Grab an
* MSCP packet and send out a Get Unit Status command, with
* the `next unit' modifier if we are looking for a generic
* unit. We set the `in slave' flag so that udaunconf()
* knows to copy the response to `udaslavereply'.
*/
findunit:
udaslavereply.mscp_opcode = 0;
sc->sc_flags |= SC_INSLAVE;
if ((mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT)) == NULL)
panic("udaslave"); /* `cannot happen' */
mp->mscp_opcode = M_OP_GETUNITST;
if (ui->ui_slave == '?') {
mp->mscp_unit = next;
mp->mscp_modifier = M_GUM_NEXTUNIT;
} else {
mp->mscp_unit = ui->ui_slave;
mp->mscp_modifier = 0;
}
*mp->mscp_addr |= MSCP_OWN | MSCP_INT;
i = ((struct udadevice *) reg)->udaip; /* initiate polling */
mp = &udaslavereply;
timeout = todr() + 1000;
while (todr() < timeout)
if (mp->mscp_opcode)
goto gotit;
printf("uda%d: no response to Get Unit Status request\n",
um->um_ctlr);
sc->sc_flags &= ~SC_INSLAVE;
return (0);
gotit:
sc->sc_flags &= ~SC_INSLAVE;
/*
* Got a slave response. If the unit is there, use it.
*/
switch (mp->mscp_status & M_ST_MASK) {
case M_ST_SUCCESS: /* worked */
case M_ST_AVAILABLE: /* found another drive */
break; /* use it */
case M_ST_OFFLINE:
/*
* Figure out why it is off line. It may be because
* it is nonexistent, or because it is spun down, or
* for some other reason.
*/
switch (mp->mscp_status & ~M_ST_MASK) {
case M_OFFLINE_UNKNOWN:
/*
* No such drive, and there are none with
* higher unit numbers either, if we are
* using M_GUM_NEXTUNIT.
*/
return (0);
case M_OFFLINE_UNMOUNTED:
/*
* The drive is not spun up. Use it anyway.
*
* N.B.: this seems to be a common occurrance
* after a power failure. The first attempt
* to bring it on line seems to spin it up
* (and thus takes several minutes). Perhaps
* we should note here that the on-line may
* take longer than usual.
*/
break;
default:
/*
* In service, or something else equally unusable.
*/
printf("uda%d: unit %d off line: ", um->um_ctlr,
mp->mscp_unit);
mscp_printevent(mp);
goto try_another;
}
break;
default:
printf("uda%d: unable to get unit status: ", um->um_ctlr);
mscp_printevent(mp);
return (0);
}
/*
* Does this ever happen? What (if anything) does it mean?
*/
if (mp->mscp_unit < next) {
printf("uda%d: unit %d, next %d\n",
um->um_ctlr, mp->mscp_unit, next);
return (0);
}
if (mp->mscp_unit >= MAXUNIT) {
printf("uda%d: cannot handle unit number %d (max is %d)\n",
um->um_ctlr, mp->mscp_unit, MAXUNIT - 1);
return (0);
}
/*
* See if we already handle this drive.
* (Only likely if ui->ui_slave=='?'.)
*/
if (udaip[um->um_ctlr][mp->mscp_unit] != NULL) {
try_another:
if (ui->ui_slave != '?')
return (0);
next = mp->mscp_unit + 1;
goto findunit;
}
/*
* Voila!
*/
uda_rasave(ui->ui_unit, mp, 0);
ui->ui_flags = 0; /* not on line, nor anything else */
ui->ui_slave = mp->mscp_unit;
return (1);
}
/*
* Attach a found slave. Make sure the watchdog timer is running.
* If this disk is being profiled, fill in the `mspw' value (used by
* what?). Set up the inverting pointer, and attempt to bring the
* drive on line and read its label.
*/
udaattach(ui)
register struct uba_device *ui;
{
register int unit = ui->ui_unit;
if (udawstart == 0) {
timeout(udawatch, (caddr_t) 0, hz);
udawstart++;
}
if (ui->ui_dk >= 0)
dk_mspw[ui->ui_dk] = 1.0 / (60 * 31 * 256); /* approx */
udaip[ui->ui_ctlr][ui->ui_slave] = ui;
if (uda_rainit(ui, 0))
printf("ra%d: offline\n", unit);
else {
printf("ra%d: %s\n", unit, udalabel[unit].d_typename);
#ifdef notyet
addswap(makedev(UDADEVNUM, udaminor(unit, 0)), &udalabel[unit]);
#endif
}
}
/*
* Initialise a UDA50. Return true iff something goes wrong.
*/
udainit(ctlr)
int ctlr;
{
register struct uda_softc *sc;
register struct udadevice *udaddr;
struct uba_ctlr *um;
int timo, ubinfo;
sc = &uda_softc[ctlr];
um = udaminfo[ctlr];
if ((sc->sc_flags & SC_MAPPED) == 0) {
/*
* Map the communication area and command and
* response packets into Unibus space.
*/
ubinfo = uballoc(um->um_ubanum, (caddr_t) &uda[ctlr],
sizeof (struct uda), UBA_CANTWAIT);
if (ubinfo == 0) {
printf("uda%d: uballoc map failed\n", ctlr);
return (-1);
}
sc->sc_uda = (struct uda *) (ubinfo & 0x3ffff);
sc->sc_flags |= SC_MAPPED;
}
/*
* While we are thinking about it, reset the next command
* and response indicies.
*/
sc->sc_mi.mi_cmd.mri_next = 0;
sc->sc_mi.mi_rsp.mri_next = 0;
/*
* Start up the hardware initialisation sequence.
*/
#define STEP0MASK (UDA_ERR | UDA_STEP4 | UDA_STEP3 | UDA_STEP2 | \
UDA_STEP1 | UDA_NV)
sc->sc_state = ST_IDLE; /* in case init fails */
udaddr = (struct udadevice *) um->um_addr;
udaddr->udaip = 0;
timo = todr() + 1000;
while ((udaddr->udasa & STEP0MASK) == 0) {
if (todr() > timo) {
printf("uda%d: timeout during init\n", ctlr);
return (-1);
}
}
if ((udaddr->udasa & STEP0MASK) != UDA_STEP1) {
printf("uda%d: init failed, sa=%b\n", ctlr,
udaddr->udasa, udasr_bits);
return (-1);
}
/*
* Success! Record new state, and start step 1 initialisation.
* The rest is done in the interrupt handler.
*/
sc->sc_state = ST_STEP1;
udaddr->udasa = UDA_ERR | (NCMDL2 << 11) | (NRSPL2 << 8) | UDA_IE |
(sc->sc_ivec >> 2);
return (0);
}
/*
* Open a drive.
*/
/*ARGSUSED*/
udaopen(dev, flag, fmt)
dev_t dev;
int flag, fmt;
{
register int unit;
register struct uba_device *ui;
register struct uda_softc *sc;
register struct disklabel *lp;
register struct partition *pp;
register struct ra_info *ra;
int s, i, part, mask, error = 0;
daddr_t start, end;
/*
* Make sure this is a reasonable open request.
*/
unit = udaunit(dev);
if (unit >= NRA || (ui = udadinfo[unit]) == 0 || ui->ui_alive == 0)
return (ENXIO);
/*
* Make sure the controller is running, by (re)initialising it if
* necessary.
*/
sc = &uda_softc[ui->ui_ctlr];
s = spl5();
if (sc->sc_state != ST_RUN) {
if (sc->sc_state == ST_IDLE && udainit(ui->ui_ctlr)) {
splx(s);
return (EIO);
}
/*
* In case it does not come up, make sure we will be
* restarted in 10 seconds. This corresponds to the
* 10 second timeouts in udaprobe() and udaslave().
*/
sc->sc_flags |= SC_DOWAKE;
timeout(wakeup, (caddr_t) sc, 10 * hz);
sleep((caddr_t) sc, PRIBIO);
if (sc->sc_state != ST_RUN) {
splx(s);
printf("uda%d: controller hung\n", ui->ui_ctlr);
return (EIO);
}
untimeout(wakeup, (caddr_t) sc);
}
/*
* Wait for the state to settle
*/
ra = &ra_info[unit];
while (ra->ra_state != OPEN && ra->ra_state != OPENRAW &&
ra->ra_state != CLOSED)
sleep((caddr_t)ra, PZERO + 1);
/*
* If not on line, or we are not sure of the label, reinitialise
* the drive.
*/
if ((ui->ui_flags & UNIT_ONLINE) == 0 ||
(ra->ra_state != OPEN && ra->ra_state != OPENRAW))
error = uda_rainit(ui, flag);
splx(s);
if (error)
return (error);
part = udapart(dev);
lp = &udalabel[unit];
if (part >= lp->d_npartitions)
return (ENXIO);
/*
* Warn if a partition is opened that overlaps another
* already open, unless either is the `raw' partition
* (whole disk).
*/
#define RAWPART 2 /* 'c' partition */ /* XXX */
mask = 1 << part;
if ((ra->ra_openpart & mask) == 0 && part != RAWPART) {
pp = &lp->d_partitions[part];
start = pp->p_offset;
end = pp->p_offset + pp->p_size;
for (pp = lp->d_partitions, i = 0;
i < lp->d_npartitions; pp++, i++) {
if (pp->p_offset + pp->p_size <= start ||
pp->p_offset >= end || i == RAWPART)
continue;
if (ra->ra_openpart & (1 << i))
log(LOG_WARNING,
"ra%d%c: overlaps open partition (%c)\n",
unit, part + 'a', i + 'a');
}
}
switch (fmt) {
case S_IFCHR:
ra->ra_copenpart |= mask;
break;
case S_IFBLK:
ra->ra_bopenpart |= mask;
break;
}
ra->ra_openpart |= mask;
return (0);
}
udaclose(dev, flags, fmt)
dev_t dev;
int flags, fmt;
{
register int unit = udaunit(dev);
register struct ra_info *ra = &ra_info[unit];
int s, mask = (1 << udapart(dev));
switch (fmt) {
case S_IFCHR:
ra->ra_copenpart &= ~mask;
break;
case S_IFBLK:
ra->ra_bopenpart &= ~mask;
break;
}
ra->ra_openpart = ra->ra_copenpart | ra->ra_bopenpart;
/*
* Should wait for I/O to complete on this partition even if
* others are open, but wait for work on blkflush().
*/
if (ra->ra_openpart == 0) {
s = spl5();
while (udautab[unit].b_actf)
sleep((caddr_t)&udautab[unit], PZERO - 1);
splx(s);
ra->ra_state = CLOSED;
}
return (0);
}
/*
* Initialise a drive. If it is not already, bring it on line,
* and set a timeout on it in case it fails to respond.
* When on line, read in the pack label.
*/
uda_rainit(ui, flags)
register struct uba_device *ui;
int flags;
{
register struct uda_softc *sc = &uda_softc[ui->ui_ctlr];
register struct disklabel *lp;
register struct mscp *mp;
register int unit = ui->ui_unit;
register struct ra_info *ra;
char *msg, *readdisklabel();
int s, i, udastrategy();
extern int cold;
ra = &ra_info[unit];
if ((ui->ui_flags & UNIT_ONLINE) == 0) {
mp = mscp_getcp(&sc->sc_mi, MSCP_WAIT);
mp->mscp_opcode = M_OP_ONLINE;
mp->mscp_unit = ui->ui_slave;
mp->mscp_cmdref = (long)&ui->ui_flags;
*mp->mscp_addr |= MSCP_OWN | MSCP_INT;
ra->ra_state = WANTOPEN;
if (!cold)
s = spl5();
i = ((struct udadevice *)ui->ui_addr)->udaip;
if (cold) {
i = todr() + 1000;
while ((ui->ui_flags & UNIT_ONLINE) == 0)
if (todr() > i)
break;
} else {
timeout(wakeup, (caddr_t)&ui->ui_flags, 10 * hz);
sleep((caddr_t)&ui->ui_flags, PSWP + 1);
splx(s);
untimeout(wakeup, (caddr_t)&ui->ui_flags);
}
if (ra->ra_state != OPENRAW) {
ra->ra_state = CLOSED;
wakeup((caddr_t)ra);
return (EIO);
}
}
lp = &udalabel[unit];
lp->d_secsize = DEV_BSIZE;
lp->d_secperunit = ra->ra_dsize;
if (flags & O_NDELAY)
return (0);
ra->ra_state = RDLABEL;
/*
* Set up default sizes until we have the label, or longer
* if there is none. Set secpercyl, as readdisklabel wants
* to compute b_cylin (although we do not need it).
*/
lp->d_secpercyl = 1;
lp->d_npartitions = 1;
lp->d_partitions[0].p_size = lp->d_secperunit;
lp->d_partitions[0].p_offset = 0;
/*
* Read pack label.
*/
if ((msg = readdisklabel(udaminor(unit, 0), udastrategy, lp)) != NULL) {
log(LOG_ERR, "ra%d: %s\n", unit, msg);
#ifdef COMPAT_42
if (udamaptype(unit, lp))
ra->ra_state = OPEN;
else
ra->ra_state = OPENRAW;
#else
ra->ra_state = OPENRAW;
/* uda_makefakelabel(ra, lp); */
#endif
} else
ra->ra_state = OPEN;
wakeup((caddr_t)ra);
return (0);
}
/*
* Copy the geometry information for the given ra from a
* GET UNIT STATUS response. If check, see if it changed.
*/
uda_rasave(unit, mp, check)
int unit;
register struct mscp *mp;
int check;
{
register struct ra_info *ra = &ra_info[unit];
if (check && ra->ra_type != mp->mscp_guse.guse_drivetype) {
printf("ra%d: changed types! was %d now %d\n",
ra->ra_type, mp->mscp_guse.guse_drivetype);
ra->ra_state = CLOSED; /* ??? */
}
ra->ra_type = mp->mscp_guse.guse_drivetype;
ra->ra_mediaid = mp->mscp_guse.guse_mediaid;
ra->ra_geom.rg_nsectors = mp->mscp_guse.guse_nspt;
ra->ra_geom.rg_ngroups = mp->mscp_guse.guse_group;
ra->ra_geom.rg_ngpc = mp->mscp_guse.guse_ngpc;
ra->ra_geom.rg_ntracks = ra->ra_geom.rg_ngroups * ra->ra_geom.rg_ngpc;
/* ra_geom.rg_ncyl cannot be computed until we have ra_dsize */
#ifdef notyet
ra->ra_geom.rg_rctsize = mp->mscp_guse.guse_rctsize;
ra->ra_geom.rg_rbns = mp->mscp_guse.guse_nrpt;
ra->ra_geom.rg_nrct = mp->mscp_guse.guse_nrct;
#endif
}
/*
* Queue a transfer request, and if possible, hand it to the controller.
*
* This routine is broken into two so that the internal version
* udastrat1() can be called by the (nonexistent, as yet) bad block
* revectoring routine.
*/
udastrategy(bp)
register struct buf *bp;
{
register int unit;
register struct uba_device *ui;
register struct disklabel *lp;
register struct ra_info *ra;
struct partition *pp;
int p;
daddr_t sz, maxsz;
/*
* Make sure this is a reasonable drive to use.
*/
if ((unit = udaunit(bp->b_dev)) >= NRA ||
(ui = udadinfo[unit]) == NULL || ui->ui_alive == 0 ||
(ra = &ra_info[unit])->ra_state == CLOSED) {
bp->b_error = ENXIO;
goto bad;
}
/*
* If drive is open `raw' or reading label, let it at it.
*/
if (ra->ra_state < OPEN) {
udastrat1(bp);
return;
}
p = udapart(bp->b_dev);
if ((ra->ra_openpart & (1 << p)) == 0) /* can't happen? */
panic("udastrategy");
/* alternatively, ENODEV */
/*
* Determine the size of the transfer, and make sure it is
* within the boundaries of the partition.
*/
pp = &udalabel[unit].d_partitions[p];
maxsz = pp->p_size;
if (pp->p_offset + pp->p_size > ra->ra_dsize)
maxsz = ra->ra_dsize - pp->p_offset;
sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
/* if exactly at end of disk, return an EOF */
if (bp->b_blkno == maxsz) {
bp->b_resid = bp->b_bcount;
biodone(bp);
return;
}
/* or truncate if part of it fits */
sz = maxsz - bp->b_blkno;
if (sz <= 0) {
bp->b_error = EINVAL; /* or hang it up */
goto bad;
}
bp->b_bcount = sz << DEV_BSHIFT;
}
udastrat1(bp);
return;
bad:
bp->b_flags |= B_ERROR;
biodone(bp);
}
/*
* Work routine for udastrategy.
*/
udastrat1(bp)
register struct buf *bp;
{
register int unit = udaunit(bp->b_dev);
register struct uba_ctlr *um;
register struct buf *dp;
struct uba_device *ui;
int s = spl5();
/*
* Append the buffer to the drive queue, and if it is not
* already there, the drive to the controller queue. (However,
* if the drive queue is marked to be requeued, we must be
* awaiting an on line or get unit status command; in this
* case, leave it off the controller queue.)
*/
um = (ui = udadinfo[unit])->ui_mi;
dp = &udautab[unit];
APPEND(bp, dp, av_forw);
if (dp->b_active == 0 && (ui->ui_flags & UNIT_REQUEUE) == 0) {
APPEND(dp, &um->um_tab, b_forw);
dp->b_active++;
}
/*
* Start activity on the controller. Note that unlike other
* Unibus drivers, we must always do this, not just when the
* controller is not active.
*/
udastart(um);
splx(s);
}
/*
* Start up whatever transfers we can find.
* Note that udastart() must be called at spl5().
*/
udastart(um)
register struct uba_ctlr *um;
{
register struct uda_softc *sc = &uda_softc[um->um_ctlr];
register struct buf *bp, *dp;
register struct mscp *mp;
struct uba_device *ui;
struct udadevice *udaddr;
struct partition *pp;
int i, sz;
#ifdef lint
i = 0; i = i;
#endif
/*
* If it is not running, try (again and again...) to initialise
* it. If it is currently initialising just ignore it for now.
*/
if (sc->sc_state != ST_RUN) {
if (sc->sc_state == ST_IDLE && udainit(um->um_ctlr))
printf("uda%d: still hung\n", um->um_ctlr);
return;
}
/*
* If um_cmd is nonzero, this controller is on the Unibus
* resource wait queue. It will not help to try more requests;
* instead, when the Unibus unblocks and calls udadgo(), we
* will call udastart() again.
*/
if (um->um_cmd)
return;
sc->sc_flags |= SC_INSTART;
udaddr = (struct udadevice *) um->um_addr;
loop:
/*
* Service the drive at the head of the queue. It may not
* need anything, in which case it might be shutting down
* in udaclose().
*/
if ((dp = um->um_tab.b_actf) == NULL)
goto out;
if ((bp = dp->b_actf) == NULL) {
dp->b_active = 0;
um->um_tab.b_actf = dp->b_forw;
if (ra_info[dp - udautab].ra_openpart == 0)
wakeup((caddr_t)dp); /* finish close protocol */
goto loop;
}
if (udaddr->udasa & UDA_ERR) { /* ctlr fatal error */
udasaerror(um);
goto out;
}
/*
* Get an MSCP packet, then figure out what to do. If
* we cannot get a command packet, the command ring may
* be too small: We should have at least as many command
* packets as credits, for best performance.
*/
if ((mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT)) == NULL) {
if (sc->sc_mi.mi_credits > MSCP_MINCREDITS &&
(sc->sc_flags & SC_GRIPED) == 0) {
log(LOG_NOTICE, "uda%d: command ring too small\n",
um->um_ctlr);
sc->sc_flags |= SC_GRIPED;/* complain only once */
}
goto out;
}
/*
* Bring the drive on line if it is not already. Get its status
* if we do not already have it. Otherwise just start the transfer.
*/
ui = udadinfo[udaunit(bp->b_dev)];
if ((ui->ui_flags & UNIT_ONLINE) == 0) {
mp->mscp_opcode = M_OP_ONLINE;
goto common;
}
if ((ui->ui_flags & UNIT_HAVESTATUS) == 0) {
mp->mscp_opcode = M_OP_GETUNITST;
common:
if (ui->ui_flags & UNIT_REQUEUE) panic("udastart");
/*
* Take the drive off the controller queue. When the
* command finishes, make sure the drive is requeued.
*/
um->um_tab.b_actf = dp->b_forw;
dp->b_active = 0;
ui->ui_flags |= UNIT_REQUEUE;
mp->mscp_unit = ui->ui_slave;
*mp->mscp_addr |= MSCP_OWN | MSCP_INT;
sc->sc_flags |= SC_STARTPOLL;
#ifdef POLLSTATS
sc->sc_ncmd++;
#endif
goto loop;
}
pp = &udalabel[ui->ui_unit].d_partitions[udapart(bp->b_dev)];
mp->mscp_opcode = (bp->b_flags & B_READ) ? M_OP_READ : M_OP_WRITE;
mp->mscp_unit = ui->ui_slave;
mp->mscp_seq.seq_lbn = bp->b_blkno + pp->p_offset;
sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
mp->mscp_seq.seq_bytecount = bp->b_blkno + sz > pp->p_size ?
(pp->p_size - bp->b_blkno) >> DEV_BSHIFT : bp->b_bcount;
/* mscp_cmdref is filled in by mscp_go() */
/*
* Drop the packet pointer into the `command' field so udadgo()
* can tell what to start. If ubago returns 1, we can do another
* transfer. If not, um_cmd will still point at mp, so we will
* know that we are waiting for resources.
*/
um->um_cmd = (int)mp;
if (ubago(ui))
goto loop;
/*
* All done, or blocked in ubago(). If we managed to
* issue some commands, start up the beast.
*/
out:
if (sc->sc_flags & SC_STARTPOLL) {
#ifdef POLLSTATS
udastats.cmd[sc->sc_ncmd]++;
sc->sc_ncmd = 0;
#endif
i = ((struct udadevice *) um->um_addr)->udaip;
}
sc->sc_flags &= ~(SC_INSTART | SC_STARTPOLL);
}
/*
* Start a transfer.
*
* If we are not called from within udastart(), we must have been
* blocked, so call udastart to do more requests (if any). If
* this calls us again immediately we will not recurse, because
* that time we will be in udastart(). Clever....
*/
udadgo(um)
register struct uba_ctlr *um;
{
struct uda_softc *sc = &uda_softc[um->um_ctlr];
struct mscp *mp = (struct mscp *)um->um_cmd;
um->um_tab.b_active++; /* another transfer going */
/*
* Fill in the MSCP packet and move the buffer to the
* I/O wait queue. Mark the controller as no longer on
* the resource queue, and remember to initiate polling.
*/
mp->mscp_seq.seq_buffer = (um->um_ubinfo & 0x3ffff) |
(UBAI_BDP(um->um_ubinfo) << 24);
mscp_go(&sc->sc_mi, mp, um->um_ubinfo);
um->um_cmd = 0;
um->um_ubinfo = 0; /* tyke it awye */
sc->sc_flags |= SC_STARTPOLL;
#ifdef POLLSTATS
sc->sc_ncmd++;
#endif
if ((sc->sc_flags & SC_INSTART) == 0)
udastart(um);
}
udaiodone(mi, bp, info)
register struct mscp_info *mi;
struct buf *bp;
int info;
{
register struct uba_ctlr *um = udaminfo[mi->mi_ctlr];
um->um_ubinfo = info;
ubadone(um);
biodone(bp);
if (um->um_bdp && mi->mi_wtab.av_forw == &mi->mi_wtab)
ubarelse(um->um_ubanum, &um->um_bdp);
um->um_tab.b_active--; /* another transfer done */
}
/*
* The error bit was set in the controller status register. Gripe,
* reset the controller, requeue pending transfers.
*/
udasaerror(um)
register struct uba_ctlr *um;
{
printf("uda%d: controller error, sa=%b\n", um->um_ctlr,
((struct udadevice *) um->um_addr)->udasa, udasr_bits);
mscp_requeue(&uda_softc[um->um_ctlr].sc_mi);
(void) udainit(um->um_ctlr);
}
/*
* Interrupt routine. Depending on the state of the controller,
* continue initialisation, or acknowledge command and response
* interrupts, and process responses.
*/
udaintr(ctlr)
int ctlr;
{
register struct uba_ctlr *um = udaminfo[ctlr];
register struct uda_softc *sc = &uda_softc[ctlr];
register struct udadevice *udaddr = (struct udadevice *) um->um_addr;
register struct uda *ud;
register struct mscp *mp;
register int i;
#ifdef VAX630
(void) spl5(); /* Qbus interrupt protocol is odd */
#endif
sc->sc_wticks = 0; /* reset interrupt watchdog */
/*
* Combinations during steps 1, 2, and 3: STEPnMASK
* corresponds to which bits should be tested;
* STEPnGOOD corresponds to the pattern that should
* appear after the interrupt from STEPn initialisation.
* All steps test the bits in ALLSTEPS.
*/
#define ALLSTEPS (UDA_ERR|UDA_STEP4|UDA_STEP3|UDA_STEP2|UDA_STEP1)
#define STEP1MASK (ALLSTEPS | UDA_IE | UDA_NCNRMASK)
#define STEP1GOOD (UDA_STEP2 | UDA_IE | (NCMDL2 << 3) | NRSPL2)
#define STEP2MASK (ALLSTEPS | UDA_IE | UDA_IVECMASK)
#define STEP2GOOD (UDA_STEP3 | UDA_IE | (sc->sc_ivec >> 2))
#define STEP3MASK ALLSTEPS
#define STEP3GOOD UDA_STEP4
switch (sc->sc_state) {
case ST_IDLE:
/*
* Ignore unsolicited interrupts.
*/
log(LOG_WARNING, "uda%d: stray intr\n", ctlr);
return;
case ST_STEP1:
/*
* Begin step two initialisation.
*/
if ((udaddr->udasa & STEP1MASK) != STEP1GOOD) {
i = 1;
initfailed:
printf("uda%d: init step %d failed, sa=%b\n",
ctlr, i, udaddr->udasa, udasr_bits);
sc->sc_state = ST_IDLE;
if (sc->sc_flags & SC_DOWAKE) {
sc->sc_flags &= ~SC_DOWAKE;
wakeup((caddr_t) sc);
}
return;
}
udaddr->udasa = (int) &sc->sc_uda->uda_ca.ca_rspdsc[0] |
(cpu == VAX_780 || cpu == VAX_8600 ? UDA_PI : 0);
sc->sc_state = ST_STEP2;
return;
case ST_STEP2:
/*
* Begin step 3 initialisation.
*/
if ((udaddr->udasa & STEP2MASK) != STEP2GOOD) {
i = 2;
goto initfailed;
}
udaddr->udasa = ((int) &sc->sc_uda->uda_ca.ca_rspdsc[0]) >> 16;
sc->sc_state = ST_STEP3;
return;
case ST_STEP3:
/*
* Set controller characteristics (finish initialisation).
*/
if ((udaddr->udasa & STEP3MASK) != STEP3GOOD) {
i = 3;
goto initfailed;
}
i = udaddr->udasa & 0xff;
if (i != sc->sc_micro) {
sc->sc_micro = i;
printf("uda%d: version %d model %d\n",
ctlr, i & 0xf, i >> 4);
}
/*
* Present the burst size, then remove it. Why this
* should be done this way, I have no idea.
*
* Note that this assumes udaburst[ctlr] > 0.
*/
udaddr->udasa = UDA_GO | (udaburst[ctlr] - 1) << 2;
udaddr->udasa = UDA_GO;
printf("uda%d: DMA burst size set to %d\n",
ctlr, udaburst[ctlr]);
udainitds(ctlr); /* initialise data structures */
/*
* Before we can get a command packet, we need some
* credits. Fake some up to keep mscp_getcp() happy,
* get a packet, and cancel all credits (the right
* number should come back in the response to the
* SCC packet).
*/
sc->sc_mi.mi_credits = MSCP_MINCREDITS + 1;
mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT);
if (mp == NULL) /* `cannot happen' */
panic("udaintr");
sc->sc_mi.mi_credits = 0;
mp->mscp_opcode = M_OP_SETCTLRC;
mp->mscp_unit = 0;
mp->mscp_sccc.sccc_ctlrflags = M_CF_ATTN | M_CF_MISC |
M_CF_THIS;
*mp->mscp_addr |= MSCP_OWN | MSCP_INT;
i = udaddr->udaip;
sc->sc_state = ST_SETCHAR;
return;
case ST_SETCHAR:
case ST_RUN:
/*
* Handle Set Ctlr Characteristics responses and operational
* responses (via mscp_dorsp).
*/
break;
default:
printf("uda%d: driver bug, state %d\n", ctlr, sc->sc_state);
panic("udastate");
}
if (udaddr->udasa & UDA_ERR) { /* ctlr fatal error */
udasaerror(um);
return;
}
ud = &uda[ctlr];
/*
* Handle buffer purge requests.
* I have never seen these to work usefully, thus the log().
*/
if (ud->uda_ca.ca_bdp) {
log(LOG_DEBUG, "uda%d: purge bdp %d\n",
ctlr, ud->uda_ca.ca_bdp);
UBAPURGE(um->um_hd->uh_uba, ud->uda_ca.ca_bdp);
ud->uda_ca.ca_bdp = 0;
udaddr->udasa = 0; /* signal purge complete */
}
/*
* Check for response and command ring transitions.
*/
if (ud->uda_ca.ca_rspint) {
ud->uda_ca.ca_rspint = 0;
mscp_dorsp(&sc->sc_mi);
}
if (ud->uda_ca.ca_cmdint) {
ud->uda_ca.ca_cmdint = 0;
MSCP_DOCMD(&sc->sc_mi);
}
udastart(um);
}
#ifndef GENERIC_RAW
struct buf rudabuf[NRA];
/*
* Read and write.
*/
udaread(dev, uio)
dev_t dev;
struct uio *uio;
{
return (physio(udastrategy, &rudabuf[udaunit(dev)], dev, B_READ,
minphys, uio));
}
udawrite(dev, uio)
dev_t dev;
struct uio *uio;
{
return (physio(udastrategy, &rudabuf[udaunit(dev)], dev, B_WRITE,
minphys, uio));
}
#endif /* GENERIC_RAW */
/*
* Initialise the various data structures that control the UDA50.
*/
udainitds(ctlr)
int ctlr;
{
register struct uda *ud = &uda[ctlr];
register struct uda *uud = uda_softc[ctlr].sc_uda;
register struct mscp *mp;
register int i;
for (i = 0, mp = ud->uda_rsp; i < NRSP; i++, mp++) {
ud->uda_ca.ca_rspdsc[i] = MSCP_OWN | MSCP_INT |
(long)&uud->uda_rsp[i].mscp_cmdref;
mp->mscp_addr = &ud->uda_ca.ca_rspdsc[i];
mp->mscp_msglen = MSCP_MSGLEN;
}
for (i = 0, mp = ud->uda_cmd; i < NCMD; i++, mp++) {
ud->uda_ca.ca_cmddsc[i] = MSCP_INT |
(long)&uud->uda_cmd[i].mscp_cmdref;
mp->mscp_addr = &ud->uda_ca.ca_cmddsc[i];
mp->mscp_msglen = MSCP_MSGLEN;
}
}
/*
* Handle an error datagram. All we do now is decode it.
*/
udadgram(mi, mp)
struct mscp_info *mi;
struct mscp *mp;
{
mscp_decodeerror(mi->mi_md->md_mname, mi->mi_ctlr, mp);
}
/*
* The Set Controller Characteristics command finished.
* Record the new state of the controller.
*/
udactlrdone(mi, mp)
register struct mscp_info *mi;
struct mscp *mp;
{
register struct uda_softc *sc = &uda_softc[mi->mi_ctlr];
if ((mp->mscp_status & M_ST_MASK) == M_ST_SUCCESS)
sc->sc_state = ST_RUN;
else {
printf("uda%d: SETCTLRC failed: ",
mi->mi_ctlr, mp->mscp_status);
mscp_printevent(mp);
sc->sc_state = ST_IDLE;
}
if (sc->sc_flags & SC_DOWAKE) {
sc->sc_flags &= ~SC_DOWAKE;
wakeup((caddr_t)sc);
}
}
/*
* Received a response from an as-yet unconfigured drive. Configure it
* in, if possible.
*/
udaunconf(mi, mp)
struct mscp_info *mi;
register struct mscp *mp;
{
/*
* If it is a slave response, copy it to udaslavereply for
* udaslave() to look at.
*/
if (mp->mscp_opcode == (M_OP_GETUNITST | M_OP_END) &&
(uda_softc[mi->mi_ctlr].sc_flags & SC_INSLAVE) != 0) {
udaslavereply = *mp;
return (MSCP_DONE);
}
/*
* Otherwise, it had better be an available attention response.
*/
if (mp->mscp_opcode != M_OP_AVAILATTN)
return (MSCP_FAILED);
/* do what autoconf does */
return (MSCP_FAILED); /* not yet, arwhite, not yet */
}
/*
* A drive came on line. Check its type and size. Return DONE if
* we think the drive is truly on line. In any case, awaken anyone
* sleeping on the drive on-line-ness.
*/
udaonline(ui, mp)
register struct uba_device *ui;
struct mscp *mp;
{
register struct ra_info *ra = &ra_info[ui->ui_unit];
wakeup((caddr_t)&ui->ui_flags);
if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) {
printf("uda%d: attempt to bring ra%d on line failed: ",
ui->ui_ctlr, ui->ui_unit);
mscp_printevent(mp);
ra->ra_state = CLOSED;
return (MSCP_FAILED);
}
ra->ra_state = OPENRAW;
ra->ra_dsize = (daddr_t)mp->mscp_onle.onle_unitsize;
printf("ra%d: uda%d, unit %d, size = %d sectors\n", ui->ui_unit,
ui->ui_ctlr, mp->mscp_unit, ra->ra_dsize);
/* can now compute ncyl */
ra->ra_geom.rg_ncyl = ra->ra_dsize / ra->ra_geom.rg_ntracks /
ra->ra_geom.rg_nsectors;
return (MSCP_DONE);
}
/*
* We got some (configured) unit's status. Return DONE if it succeeded.
*/
udagotstatus(ui, mp)
register struct uba_device *ui;
register struct mscp *mp;
{
if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) {
printf("uda%d: attempt to get status for ra%d failed: ",
ui->ui_ctlr, ui->ui_unit);
mscp_printevent(mp);
return (MSCP_FAILED);
}
/* record for (future) bad block forwarding and whatever else */
uda_rasave(ui->ui_unit, mp, 1);
return (MSCP_DONE);
}
/*
* A transfer failed. We get a chance to fix or restart it.
* Need to write the bad block forwaring code first....
*/
/*ARGSUSED*/
udaioerror(ui, mp, bp)
register struct uba_device *ui;
register struct mscp *mp;
struct buf *bp;
{
if (mp->mscp_flags & M_EF_BBLKR) {
/*
* A bad block report. Eventually we will
* restart this transfer, but for now, just
* log it and give up.
*/
log(LOG_ERR, "ra%d: bad block report: %d%s\n",
ui->ui_unit, mp->mscp_seq.seq_lbn,
mp->mscp_flags & M_EF_BBLKU ? " + others" : "");
} else {
/*
* What the heck IS a `serious exception' anyway?
* IT SURE WOULD BE NICE IF DEC SOLD DOCUMENTATION
* FOR THEIR OWN CONTROLLERS.
*/
if (mp->mscp_flags & M_EF_SEREX)
log(LOG_ERR, "ra%d: serious exception reported\n",
ui->ui_unit);
}
return (MSCP_FAILED);
}
/*
* A replace operation finished.
*/
/*ARGSUSED*/
udareplace(ui, mp)
struct uba_device *ui;
struct mscp *mp;
{
panic("udareplace");
}
/*
* A bad block related operation finished.
*/
/*ARGSUSED*/
udabb(ui, mp, bp)
struct uba_device *ui;
struct mscp *mp;
struct buf *bp;
{
panic("udabb");
}
/*
* I/O controls.
*/
udaioctl(dev, cmd, data, flag)
dev_t dev;
int cmd;
caddr_t data;
int flag;
{
register int unit = udaunit(dev);
register struct disklabel *lp;
int error = 0;
lp = &udalabel[unit];
switch (cmd) {
case DIOCGDINFO:
*(struct disklabel *)data = *lp;
break;
case DIOCGPART:
((struct partinfo *)data)->disklab = lp;
((struct partinfo *)data)->part =
&lp->d_partitions[udapart(dev)];
break;
case DIOCSDINFO:
if ((flag & FWRITE) == 0)
error = EBADF;
else
error = setdisklabel(lp, (struct disklabel *)data,
ra_info[unit].ra_openpart);
break;
case DIOCWDINFO:
if ((flag & FWRITE) == 0)
error = EBADF;
else if ((error = setdisklabel(lp, (struct disklabel *)data,
ra_info[unit].ra_openpart)) == 0)
error = writedisklabel(dev, udastrategy, lp);
break;
#ifdef notyet
case UDAIOCREPLACE:
/*
* Initiate bad block replacement for the given LBN.
* (Should we allow modifiers?)
*/
error = EOPNOTSUPP;
break;
case UDAIOCGMICRO:
/*
* Return the microcode revision for the UDA50 running
* this drive.
*/
*(int *) data = uda_softc[uddinfo[unit]->ui_ctlr].sc_micro;
break;
#endif
default:
error = ENOTTY;
break;
}
return (error);
}
/*
* A Unibus reset has occurred on UBA uban. Reinitialise the controller(s)
* on that Unibus, and requeue outstanding I/O.
*/
udareset(uban)
int uban;
{
register struct uba_ctlr *um;
register struct uda_softc *sc;
register int ctlr;
for (ctlr = 0, sc = uda_softc; ctlr < NUDA; ctlr++, sc++) {
if ((um = udaminfo[ctlr]) == NULL || um->um_ubanum != uban ||
um->um_alive == 0)
continue;
printf(" uda%d", ctlr);
/*
* Our BDP (if any) is gone; our command (if any) is
* flushed; the device is no longer mapped; and the
* UDA50 is not yet initialised.
*/
if (um->um_bdp) {
printf("<%d>", UBAI_BDP(um->um_bdp));
um->um_bdp = 0;
}
um->um_ubinfo = 0;
um->um_cmd = 0;
sc->sc_flags &= ~SC_MAPPED;
sc->sc_state = ST_IDLE;
/* reset queues and requeue pending transfers */
mscp_requeue(&sc->sc_mi);
/*
* If it fails to initialise we will notice later and
* try again (and again...). Do not call udastart()
* here; it will be done after the controller finishes
* initialisation.
*/
if (udainit(ctlr))
printf(" (hung)");
}
}
/*
* Watchdog timer: If the controller is active, and no interrupts
* have occurred for 30 seconds, assume it has gone away.
*/
udawatch()
{
register int i;
register struct uba_ctlr *um;
register struct uda_softc *sc;
timeout(udawatch, (caddr_t) 0, hz); /* every second */
for (i = 0, sc = uda_softc; i < NUDA; i++, sc++) {
if ((um = udaminfo[i]) == 0 || !um->um_alive)
continue;
if (sc->sc_state == ST_IDLE)
continue;
if (sc->sc_state == ST_RUN && !um->um_tab.b_active)
sc->sc_wticks = 0;
else if (++sc->sc_wticks >= 30) {
sc->sc_wticks = 0;
printf("uda%d: lost interrupt\n", i);
ubareset(um->um_ubanum);
}
}
}
/*
* Do a panic dump. We set up the controller for one command packet
* and one response packet, for which we use `struct uda1'.
*/
struct uda1 {
struct uda1ca uda1_ca; /* communications area */
struct mscp uda1_rsp; /* response packet */
struct mscp uda1_cmd; /* command packet */
} uda1;
#define DBSIZE 32 /* dump 16K at a time */
udadump(dev)
dev_t dev;
{
struct udadevice *udaddr;
struct uda1 *ud_ubaddr;
char *start;
int num, blk, unit, maxsz, blkoff, reg;
struct partition *pp;
register struct uba_regs *uba;
register struct uba_device *ui;
register struct uda1 *ud;
register struct pte *io;
register int i;
/*
* Make sure the device is a reasonable place on which to dump.
*/
unit = udaunit(dev);
if (unit >= NRA)
return (ENXIO);
#define phys(cast, addr) ((cast) ((int) addr & 0x7fffffff))
ui = phys(struct uba_device *, udadinfo[unit]);
if (ui == NULL || ui->ui_alive == 0)
return (ENXIO);
/*
* Find and initialise the UBA; get the physical address of the
* device registers, and of communications area and command and
* response packet.
*/
uba = phys(struct uba_hd *, ui->ui_hd)->uh_physuba;
ubainit(uba);
udaddr = (struct udadevice *)ui->ui_physaddr;
ud = phys(struct uda1 *, &uda1);
/*
* Map the ca+packets into Unibus I/O space so the UDA50 can get
* at them. Use the registers at the end of the Unibus map (since
* we will use the registers at the beginning to map the memory
* we are dumping).
*/
num = btoc(sizeof(struct uda1)) + 1;
reg = NUBMREG - num;
io = &uba->uba_map[reg];
for (i = 0; i < num; i++)
*(int *)io++ = UBAMR_MRV | (btop(ud) + i);
ud_ubaddr = (struct uda1 *)(((int)ud & PGOFSET) | (reg << 9));
/*
* Initialise the controller, with one command and one response
* packet.
*/
udaddr->udaip = 0;
if (udadumpwait(udaddr, UDA_STEP1))
return (EFAULT);
udaddr->udasa = UDA_ERR;
if (udadumpwait(udaddr, UDA_STEP2))
return (EFAULT);
udaddr->udasa = (int)&ud_ubaddr->uda1_ca.ca_rspdsc;
if (udadumpwait(udaddr, UDA_STEP3))
return (EFAULT);
udaddr->udasa = ((int)&ud_ubaddr->uda1_ca.ca_rspdsc) >> 16;
if (udadumpwait(udaddr, UDA_STEP4))
return (EFAULT);
uda_softc[ui->ui_ctlr].sc_micro = udaddr->udasa & 0xff;
udaddr->udasa = UDA_GO;
/*
* Set up the command and response descriptor, then set the
* controller characteristics and bring the drive on line.
* Note that all uninitialised locations in uda1_cmd are zero.
*/
ud->uda1_ca.ca_rspdsc = (long)&ud_ubaddr->uda1_rsp.mscp_cmdref;
ud->uda1_ca.ca_cmddsc = (long)&ud_ubaddr->uda1_cmd.mscp_cmdref;
/* ud->uda1_cmd.mscp_sccc.sccc_ctlrflags = 0; */
/* ud->uda1_cmd.mscp_sccc.sccc_version = 0; */
if (udadumpcmd(M_OP_SETCTLRC, ud, ui))
return (EFAULT);
ud->uda1_cmd.mscp_unit = ui->ui_slave;
if (udadumpcmd(M_OP_ONLINE, ud, ui))
return (EFAULT);
pp = phys(struct partition *,
&udalabel[unit].d_partitions[udapart(dev)]);
maxsz = pp->p_size;
blkoff = pp->p_offset;
/*
* Dump all of physical memory, or as much as will fit in the
* space provided.
*/
start = 0;
num = maxfree;
if (dumplo < 0)
return (EINVAL);
if (dumplo + num >= maxsz)
num = maxsz - dumplo;
blkoff += dumplo;
/*
* Write out memory, DBSIZE pages at a time.
* N.B.: this code depends on the fact that the sector
* size == the page size.
*/
while (num > 0) {
blk = num > DBSIZE ? DBSIZE : num;
io = uba->uba_map;
/*
* Map in the pages to write, leaving an invalid entry
* at the end to guard against wild Unibus transfers.
* Then do the write.
*/
for (i = 0; i < blk; i++)
*(int *) io++ = UBAMR_MRV | (btop(start) + i);
*(int *) io = 0;
ud->uda1_cmd.mscp_unit = ui->ui_slave;
ud->uda1_cmd.mscp_seq.seq_lbn = btop(start) + blkoff;
ud->uda1_cmd.mscp_seq.seq_bytecount = blk << PGSHIFT;
if (udadumpcmd(M_OP_WRITE, ud, ui))
return (EIO);
start += blk << PGSHIFT;
num -= blk;
}
return (0); /* made it! */
}
/*
* Wait for some of the bits in `bits' to come on. If the error bit
* comes on, or ten seconds pass without response, return true (error).
*/
udadumpwait(udaddr, bits)
register struct udadevice *udaddr;
register int bits;
{
register int timo = todr() + 1000;
while ((udaddr->udasa & bits) == 0) {
if (udaddr->udasa & UDA_ERR) {
printf("udasa=%b\ndump ", udaddr->udasa, udasr_bits);
return (1);
}
if (todr() >= timo) {
printf("timeout\ndump ");
return (1);
}
}
return (0);
}
/*
* Feed a command to the UDA50, wait for its response, and return
* true iff something went wrong.
*/
udadumpcmd(op, ud, ui)
int op;
register struct uda1 *ud;
struct uba_device *ui;
{
register struct udadevice *udaddr;
register int n;
#define mp (&ud->uda1_rsp)
udaddr = (struct udadevice *) ui->ui_physaddr;
ud->uda1_cmd.mscp_opcode = op;
ud->uda1_cmd.mscp_msglen = MSCP_MSGLEN;
ud->uda1_rsp.mscp_msglen = MSCP_MSGLEN;
ud->uda1_ca.ca_rspdsc |= MSCP_OWN | MSCP_INT;
ud->uda1_ca.ca_cmddsc |= MSCP_OWN | MSCP_INT;
if (udaddr->udasa & UDA_ERR) {
printf("udasa=%b\ndump ", udaddr->udasa, udasr_bits);
return (1);
}
n = udaddr->udaip;
n = todr() + 1000;
for (;;) {
if (todr() > n) {
printf("timeout\ndump ");
return (1);
}
if (ud->uda1_ca.ca_cmdint)
ud->uda1_ca.ca_cmdint = 0;
if (ud->uda1_ca.ca_rspint == 0)
continue;
ud->uda1_ca.ca_rspint = 0;
if (mp->mscp_opcode == (op | M_OP_END))
break;
printf("\n");
switch (MSCP_MSGTYPE(mp->mscp_msgtc)) {
case MSCPT_SEQ:
printf("sequential");
break;
case MSCPT_DATAGRAM:
mscp_decodeerror("uda", ui->ui_ctlr, mp);
printf("datagram");
break;
case MSCPT_CREDITS:
printf("credits");
break;
case MSCPT_MAINTENANCE:
printf("maintenance");
break;
default:
printf("unknown (type 0x%x)",
MSCP_MSGTYPE(mp->mscp_msgtc));
break;
}
printf(" ignored\ndump ");
ud->uda1_ca.ca_rspdsc |= MSCP_OWN | MSCP_INT;
}
if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) {
printf("error: op 0x%x => 0x%x status 0x%x\ndump ", op,
mp->mscp_opcode, mp->mscp_status);
return (1);
}
return (0);
#undef mp
}
/*
* Return the size of a partition, if known, or -1 if not.
*/
udasize(dev)
dev_t dev;
{
register int unit = udaunit(dev);
register struct uba_device *ui;
register struct size *st;
if (unit >= NRA || (ui = udadinfo[unit]) == NULL ||
ui->ui_alive == 0 || (ui->ui_flags & UNIT_ONLINE) == 0 ||
ra_info[unit].ra_state != OPEN)
return (-1);
return ((int)udalabel[unit].d_partitions[udapart(dev)].p_size);
}
#ifdef COMPAT_42
/*
* Tables mapping unlabelled drives.
*/
struct size {
daddr_t nblocks;
daddr_t blkoff;
} ra25_sizes[8] = {
15884, 0, /* A=blk 0 thru 15883 */
10032, 15884, /* B=blk 15884 thru 49323 */
-1, 0, /* C=blk 0 thru end */
0, 0, /* D=blk 340670 thru 356553 */
0, 0, /* E=blk 356554 thru 412489 */
0, 0, /* F=blk 412490 thru end */
-1, 25916, /* G=blk 49324 thru 131403 */
0, 0, /* H=blk 131404 thru end */
}, rx50_sizes[8] = {
800, 0, /* A=blk 0 thru 799 */
0, 0,
-1, 0, /* C=blk 0 thru end */
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
}, rd52_sizes[8] = {
15884, 0, /* A=blk 0 thru 15883 */
9766, 15884, /* B=blk 15884 thru 25649 */
-1, 0, /* C=blk 0 thru end */
0, 0, /* D=unused */
0, 0, /* E=unused */
0, 0, /* F=unused */
-1, 25650, /* G=blk 25650 thru end */
0, 0, /* H=unused */
}, rd53_sizes[8] = {
15884, 0, /* A=blk 0 thru 15883 */
33440, 15884, /* B=blk 15884 thru 49323 */
-1, 0, /* C=blk 0 thru end */
0, 0, /* D=unused */
33440, 0, /* E=blk 0 thru 33439 */
-1, 33440, /* F=blk 33440 thru end */
-1, 49324, /* G=blk 49324 thru end */
-1, 15884, /* H=blk 15884 thru end */
}, ra60_sizes[8] = {
15884, 0, /* A=sectors 0 thru 15883 */
33440, 15884, /* B=sectors 15884 thru 49323 */
400176, 0, /* C=sectors 0 thru 400175 */
82080, 49324, /* 4.2 G => D=sectors 49324 thru 131403 */
268772, 131404, /* 4.2 H => E=sectors 131404 thru 400175 */
350852, 49324, /* F=sectors 49324 thru 400175 */
157570, 242606, /* UCB G => G=sectors 242606 thru 400175 */
193282, 49324, /* UCB H => H=sectors 49324 thru 242605 */
}, ra80_sizes[8] = {
15884, 0, /* A=sectors 0 thru 15883 */
33440, 15884, /* B=sectors 15884 thru 49323 */
242606, 0, /* C=sectors 0 thru 242605 */
0, 0, /* D=unused */
193282, 49324, /* UCB H => E=sectors 49324 thru 242605 */
82080, 49324, /* 4.2 G => F=sectors 49324 thru 131403 */
192696, 49910, /* G=sectors 49910 thru 242605 */
111202, 131404, /* 4.2 H => H=sectors 131404 thru 242605 */
}, ra81_sizes[8] ={
/*
* These are the new standard partition sizes for ra81's.
* An RA_COMPAT system is compiled with D, E, and F corresponding
* to the 4.2 partitions for G, H, and F respectively.
*/
#ifndef UCBRA
15884, 0, /* A=sectors 0 thru 15883 */
66880, 16422, /* B=sectors 16422 thru 83301 */
891072, 0, /* C=sectors 0 thru 891071 */
#ifdef RA_COMPAT
82080, 49324, /* 4.2 G => D=sectors 49324 thru 131403 */
759668, 131404, /* 4.2 H => E=sectors 131404 thru 891071 */
478582, 412490, /* 4.2 F => F=sectors 412490 thru 891071 */
#else
15884, 375564, /* D=sectors 375564 thru 391447 */
307200, 391986, /* E=sectors 391986 thru 699185 */
191352, 699720, /* F=sectors 699720 thru 891071 */
#endif RA_COMPAT
515508, 375564, /* G=sectors 375564 thru 891071 */
291346, 83538, /* H=sectors 83538 thru 374883 */
/*
* These partitions correspond to the sizes used by sites at Berkeley,
* and by those sites that have received copies of the Berkeley driver
* with deltas 6.2 or greater (11/15/83).
*/
#else UCBRA
15884, 0, /* A=sectors 0 thru 15883 */
33440, 15884, /* B=sectors 15884 thru 49323 */
891072, 0, /* C=sectors 0 thru 891071 */
15884, 242606, /* D=sectors 242606 thru 258489 */
307200, 258490, /* E=sectors 258490 thru 565689 */
325382, 565690, /* F=sectors 565690 thru 891071 */
648466, 242606, /* G=sectors 242606 thru 891071 */
193282, 49324, /* H=sectors 49324 thru 242605 */
#endif UCBRA
};
/*
* Drive type index decoding table. `ut_name' is null iff the
* type is not known.
*/
struct udatypes {
char *ut_name; /* drive type name */
struct size *ut_sizes; /* partition tables */
int ut_nsectors, ut_ntracks, ut_ncylinders;
} udatypes[] = {
NULL, NULL,
0, 0, 0,
"ra80", ra80_sizes, /* 1 = ra80 */
31, 14, 559,
"rc25-removable", ra25_sizes, /* 2 = rc25-r */
42, 4, 302,
"rc25-fixed", ra25_sizes, /* 3 = rc25-f */
42, 4, 302,
"ra60", ra60_sizes, /* 4 = ra60 */
42, 4, 2382,
"ra81", ra81_sizes, /* 5 = ra81 */
51, 14, 1248,
NULL, NULL, /* 6 = ? */
0, 0, 0,
"rx50", rx50_sizes, /* 7 = rx50 */
10, 1, 80,
"rd52", rd52_sizes, /* 8 = rd52 */
18, 7, 480,
"rd53", rd53_sizes, /* 9 = rd53 */
18, 8, 963,
};
#define NTYPES (sizeof(udatypes) / sizeof(*udatypes))
udamaptype(unit, lp)
int unit;
register struct disklabel *lp;
{
register struct udatypes *ut;
register struct size *sz;
register struct partition *pp;
register char *p;
register int i;
register struct ra_info *ra = &ra_info[unit];
lp->d_secsize = 512;
lp->d_secperunit = ra->ra_dsize;
if ((u_long)ra->ra_type >= NTYPES) {
printf("ra%d: don't have a partition table for", unit);
mscp_printmedia(ra->ra_mediaid);
lp->d_nsectors = ra->ra_geom.rg_nsectors;
lp->d_ntracks = ra->ra_geom.rg_ntracks;
lp->d_ncylinders = ra->ra_geom.rg_ncyl;
printf(";\nusing (t,s,c)=(%d,%d,%d)\n", lp->d_nsectors,
lp->d_ntracks, lp->d_ncylinders);
lp->d_secpercyl = lp->d_nsectors * lp->d_ntracks;
lp->d_typename[0] = 'r';
lp->d_typename[1] = 'a';
lp->d_typename[2] = '?';
lp->d_typename[3] = '?';
lp->d_typename[4] = 0;
lp->d_npartitions = 1;
lp->d_partitions[0].p_offset = 0;
lp->d_partitions[0].p_size = lp->d_secperunit;
return (0);
}
ut = &udatypes[ra->ra_type];
p = ut->ut_name;
for (i = 0; i < sizeof(lp->d_typename) - 1 && *p; i++)
lp->d_typename[i] = *p++;
lp->d_typename[i] = 0;
sz = ut->ut_sizes;
/* GET nsectors, ntracks, ncylinders FROM SAVED GEOMETRY? */
lp->d_nsectors = ut->ut_nsectors;
lp->d_ntracks = ut->ut_ntracks;
lp->d_ncylinders = ut->ut_ncylinders;
lp->d_npartitions = 8;
lp->d_secpercyl = lp->d_nsectors * lp->d_ntracks;
for (pp = lp->d_partitions; pp < &lp->d_partitions[8]; pp++, sz++) {
pp->p_offset = sz->blkoff;
if ((pp->p_size = sz->nblocks) == (u_long)-1)
pp->p_size = ra->ra_dsize - sz->blkoff;
}
return (1);
}
#endif /* COMPAT_42 */
#endif /* NUDA > 0 */