BSD 4_3_Net_2 development
[unix-history] / usr / src / lib / libg++ / g++-include / gen / Plex.hP
// This may look like C code, but it is really -*- C++ -*-
/*
Copyright (C) 1988 Free Software Foundation
written by Doug Lea (dl@rocky.oswego.edu)
based on code by Marc Shapiro (shapiro@sor.inria.fr)
This file is part of GNU CC.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY. No author or distributor
accepts responsibility to anyone for the consequences of using it
or for whether it serves any particular purpose or works at all,
unless he says so in writing. Refer to the GNU CC General Public
License for full details.
Everyone is granted permission to copy, modify and redistribute
GNU CC, but only under the conditions described in the
GNU CC General Public License. A copy of this license is
supposed to have been given to you along with GNU CC so you
can know your rights and responsibilities. It should be in a
file named COPYING. Among other things, the copyright notice
and this notice must be preserved on all copies.
*/
#ifndef _<T>Plex_h
#ifdef __GNUG__
#pragma once
#pragma interface
#endif
#define _<T>Plex_h 1
#include <std.h>
#include <Pix.h>
#include "<T>.defs.h"
// Plexes are made out of <T>IChunks
#include <stddef.h>
class <T>IChunk
{
//public: // kludge until C++ `protected' policies settled
protected:
<T>* data; // data, from client
int base; // lowest possible index
int low; // lowest valid index
int fence; // highest valid index + 1
int top; // highest possible index + 1
<T>IChunk* nxt; // circular links
<T>IChunk* prv;
public:
// constructors
<T>IChunk(<T>* d, // ptr to array of elements
int base_idx, // initial indices
int low_idx,
int fence_idx,
int top_idx);
virtual ~<T>IChunk();
// status reports
int size() const; // number of slots
virtual int empty() const ;
virtual int full() const ;
int can_grow_high () const ; // there is space to add data
int can_grow_low () const;
int base_index() const; // lowest possible index;
int low_index() const; // lowest actual index;
virtual int first_index() const; // lowest valid index or fence if none
virtual int last_index() const; // highest valid index or low-1 if none
int fence_index() const; // highest actual index + 1
int top_index() const; // highest possible index + 1
// indexing conversion
int possible_index(int i) const; // i between base and top
int actual_index(int i) const; // i between low and fence
virtual int valid_index(int i) const; // i not deleted (mainly for mchunks)
int possible_pointer(const <T>* p) const; // same for ptr
int actual_pointer(const <T>* p) const;
virtual int valid_pointer(const <T>* p) const;
<T>* pointer_to(int i) const ; // pointer to data indexed by i
// caution: i is not checked for validity
int index_of(const <T>* p) const; // index of data pointed to by p
// caution: p is not checked for validity
virtual int succ(int idx) const; // next valid index or fence if none
virtual int pred(int idx) const; // previous index or low - 1 if none
virtual <T>* first_pointer() const; // pointer to first valid pos or 0
virtual <T>* last_pointer() const; // pointer to first valid pos or 0
virtual <T>* succ(<T>* p) const; // next pointer or 0
virtual <T>* pred(<T>* p) const; // previous pointer or 0
// modification
virtual <T>* grow_high (); // return spot to add an element
virtual <T>* grow_low ();
virtual void shrink_high (); // logically delete top index
virtual void shrink_low ();
virtual void clear(int lo); // reset to empty ch with base = lo
virtual void cleardown(int hi); // reset to empty ch with top = hi
void re_index(int lo); // re-index so lo is new low
// chunk traversal
<T>IChunk* next() const;
<T>IChunk* prev() const;
void link_to_prev(<T>IChunk* prev);
void link_to_next(<T>IChunk* next);
void unlink();
// state checks
<T>* invalidate(); // mark self as invalid; return data
// for possible deletion
virtual int OK() const; // representation invariant
volatile void error(const char*) const;
volatile void empty_error() const;
volatile void full_error() const;
volatile void index_error() const;
};
// <T>Plex is a partly `abstract' class: few of the virtuals
// are implemented at the Plex level, only in the subclasses
class <T>Plex
{
protected:
<T>IChunk* hd; // a chunk holding the data
int lo; // lowest index
int fnc; // highest index + 1
int csize; // size of the chunk
void invalidate(); // mark so OK() is false
void del_chunk(<T>IChunk*); // delete a chunk
<T>IChunk* tl() const; // last chunk;
int one_chunk() const; // true if hd == tl()
public:
// constructors, etc.
<T>Plex(); // no-op
virtual ~<T>Plex();
// Access functions
virtual <T>& operator [] (int idx) = 0; // access by index;
virtual <T>& operator () (Pix p) = 0; // access by Pix;
virtual <T>& high_element () = 0; // access high element
virtual <T>& low_element () = 0; // access low element
// read-only versions for const Plexes
virtual const <T>& operator [] (int idx) const = 0; // access by index;
virtual const <T>& operator () (Pix p) const = 0; // access by Pix;
virtual const <T>& high_element () const = 0; // access high element
virtual const <T>& low_element () const = 0; // access low element
// Index functions
virtual int valid (int idx) const = 0; // idx is an OK index
virtual int low() const = 0; // lowest index or fence if none
virtual int high() const = 0; // highest index or low-1 if none
int ecnef() const; // low limit index (low-1)
int fence() const; // high limit index (high+1)
virtual void prev(int& idx) const= 0; // set idx to preceding index
// caution: pred may be out of bounds
virtual void next(int& idx) const = 0; // set to next index
// caution: succ may be out of bounds
virtual Pix first() const = 0; // Pix to low element or 0
virtual Pix last() const = 0; // Pix to high element or 0
virtual void prev(Pix& pix) const = 0; // preceding pix or 0
virtual void next(Pix& pix) const = 0; // next pix or 0
virtual int owns(Pix p) const = 0; // p is an OK Pix
// index<->Pix
virtual int Pix_to_index(Pix p) const = 0; // get index via Pix
virtual Pix index_to_Pix(int idx) const = 0; // Pix via index
// Growth
virtual int add_high(const <T&> elem) =0;// add new element at high end
// return new high
virtual int add_low(const <T&> elem) = 0; // add new low element,
// return new low
// Shrinkage
virtual int del_high() = 0; // remove the element at high end
// return new high
virtual int del_low() = 0; // delete low element, return new lo
// caution: del_low/high
// does not necessarily
// immediately call <T>::~<T>
// operations on multiple elements
virtual void fill(const <T&> x); // set all elements = x
virtual void fill(const <T&> x, int from, int to); // fill from to to
virtual void clear() = 0; // reset to zero-sized Plex
virtual int reset_low(int newlow); // change low index,return old
virtual void reverse(); // reverse in-place
virtual void append(const <T>Plex& a); // concatenate a copy
virtual void prepend(const <T>Plex& a); // prepend a copy
// status
virtual int can_add_high() const = 0;
virtual int can_add_low() const = 0;
int length () const; // number of slots
int empty () const; // is the plex empty?
virtual int full() const = 0; // it it full?
int chunk_size() const; // report chunk size;
virtual int OK() const = 0; // representation invariant
volatile void error(const char* msg) const;
volatile void index_error() const;
volatile void empty_error() const;
volatile void full_error() const;
};
#if defined(__OPTIMIZE__) || defined(USE_LIBGXX_INLINES)
// <T>IChunk ops
inline int <T>IChunk:: size() const
{
return top - base;
}
inline int <T>IChunk:: base_index() const
{
return base;
}
inline int <T>IChunk:: low_index() const
{
return low;
}
inline int <T>IChunk:: fence_index() const
{
return fence;
}
inline int <T>IChunk:: top_index() const
{
return top;
}
inline <T>* <T>IChunk:: pointer_to(int i) const
{
return &(data[i-base]);
}
inline int <T>IChunk:: index_of(const <T>* p) const
{
return ((int)p - (int)data) / sizeof(<T>) + base;
}
inline int <T>IChunk:: possible_index(int i) const
{
return i >= base && i < top;
}
inline int <T>IChunk:: possible_pointer(const <T>* p) const
{
return p >= data && p < &(data[top-base]);
}
inline int <T>IChunk:: actual_index(int i) const
{
return i >= low && i < fence;
}
inline int <T>IChunk:: actual_pointer(const <T>* p) const
{
return p >= data && p < &(data[fence-base]);
}
inline int <T>IChunk:: can_grow_high () const
{
return fence < top;
}
inline int <T>IChunk:: can_grow_low () const
{
return base < low;
}
inline <T>* <T>IChunk:: invalidate()
{
<T>* p = data;
data = 0;
return p;
}
inline <T>IChunk* <T>IChunk::prev() const
{
return prv;
}
inline <T>IChunk* <T>IChunk::next() const
{
return nxt;
}
inline void <T>IChunk::link_to_prev(<T>IChunk* prev)
{
nxt = prev->nxt;
prv = prev;
nxt->prv = this;
prv->nxt = this;
}
inline void <T>IChunk::link_to_next(<T>IChunk* next)
{
prv = next->prv;
nxt = next;
nxt->prv = this;
prv->nxt = this;
}
inline void <T>IChunk::unlink()
{
<T>IChunk* n = nxt;
<T>IChunk* p = prv;
n->prv = p;
p->nxt = n;
prv = nxt = this;
}
inline int <T>IChunk:: empty() const
{
return low == fence;
}
inline int <T>IChunk:: full() const
{
return top - base == fence - low;
}
inline int <T>IChunk:: first_index() const
{
return (low == fence)? fence : low;
}
inline int <T>IChunk:: last_index() const
{
return (low == fence)? low - 1 : fence - 1;
}
inline int <T>IChunk:: succ(int i) const
{
return (i < low) ? low : i + 1;
}
inline int <T>IChunk:: pred(int i) const
{
return (i > fence) ? (fence - 1) : i - 1;
}
inline int <T>IChunk:: valid_index(int i) const
{
return i >= low && i < fence;
}
inline int <T>IChunk:: valid_pointer(const <T>* p) const
{
return p >= &(data[low - base]) && p < &(data[fence - base]);
}
inline <T>* <T>IChunk:: grow_high ()
{
if (!can_grow_high()) full_error();
return &(data[fence++ - base]);
}
inline <T>* <T>IChunk:: grow_low ()
{
if (!can_grow_low()) full_error();
return &(data[--low - base]);
}
inline void <T>IChunk:: shrink_high ()
{
if (empty()) empty_error();
--fence;
}
inline void <T>IChunk:: shrink_low ()
{
if (empty()) empty_error();
++low;
}
inline <T>* <T>IChunk::first_pointer() const
{
return (low == fence)? 0 : &(data[low - base]);
}
inline <T>* <T>IChunk::last_pointer() const
{
return (low == fence)? 0 : &(data[fence - base - 1]);
}
inline <T>* <T>IChunk::succ(<T>* p) const
{
return ((p+1) < &(data[low - base]) || (p+1) >= &(data[fence - base])) ?
0 : (p+1);
}
inline <T>* <T>IChunk::pred(<T>* p) const
{
return ((p-1) < &(data[low - base]) || (p-1) >= &(data[fence - base])) ?
0 : (p-1);
}
// generic Plex operations
inline <T>Plex::<T>Plex() {}
inline int <T>Plex::chunk_size() const
{
return csize;
}
inline int <T>Plex::ecnef () const
{
return lo - 1;
}
inline int <T>Plex::fence () const
{
return fnc;
}
inline int <T>Plex::length () const
{
return fnc - lo;
}
inline int <T>Plex::empty () const
{
return fnc == lo;
}
inline <T>IChunk* <T>Plex::tl() const
{
return hd->prev();
}
inline int <T>Plex::one_chunk() const
{
return hd == hd->prev();
}
#endif
#endif