fb0d340e250becdb48c9ad3562758caed7d79044
[unix-history] / usr / src / sys / net / radix.c
/*
* Copyright (c) 1988, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* %sccs.include.redist.c%
*
* @(#)radix.c 8.2.2.1 (Berkeley) %G%
*/
/*
* Routines to build and maintain radix trees for routing lookups.
*/
#ifndef _RADIX_H_
#include <sys/param.h>
#ifdef KERNEL
#include <sys/systm.h>
#include <sys/malloc.h>
#define M_DONTWAIT M_NOWAIT
#include <sys/domain.h>
#else
#include <stdlib.h>
#endif
#include <sys/syslog.h>
#include <net/radix.h>
#endif
int max_keylen;
struct radix_node_head *mask_rnhead;
static char *rn_zeros, *rn_ones;
#define rn_masktop (mask_rnhead->rnh_treetop)
#undef Bcmp
#define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
/*
* The data structure for the keys is a radix tree with one way
* branching removed. The index rn_b at an internal node n represents a bit
* position to be tested. The tree is arranged so that all descendants
* of a node n have keys whose bits all agree up to position rn_b - 1.
* (We say the index of n is rn_b.)
*
* There is at least one descendant which has a one bit at position rn_b,
* and at least one with a zero there.
*
* A route is determined by a pair of key and mask. We require that the
* bit-wise logical and of the key and mask to be the key.
* We define the index of a route to associated with the mask to be
* the first bit number in the mask where 0 occurs (with bit number 0
* representing the highest order bit).
*
* We say a mask is normal if every bit is 0, past the index of the mask.
* If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
* and m is a normal mask, then the route applies to every descendant of n.
* If the index(m) < rn_b, this implies the trailing last few bits of k
* before bit b are all 0, (and hence consequently true of every descendant
* of n), so the route applies to all descendants of the node as well.
* This version of the code assumes that all masks are normal,
* and consequently the only thing that needs to be stored about a mask
* is its length. This version also permits mapped, and fixed length
* elements to be entered into the tree.
*/
struct radix_node *
rn_search(v_arg, top)
void *v_arg;
struct radix_node *top;
{
register struct radix_node *x;
register caddr_t v;
for (x = top, v = v_arg; x->rn_b >= 0;) {
if (x->rn_bmask & v[x->rn_off])
x = x->rn_r;
else
x = x->rn_l;
}
return (x);
};
static char search_bits[] = {0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1};
struct radix_node *
rn_search_unmapped(v_arg, head)
void *v_arg;
struct radix_node_head *head;
{
register struct radix_node *x = head->rnh_treetop;
register char *v;
register int index;
for (v = v_arg; x->rn_b >= 0;) {
index = x->rn_b + head->rnh_offset;
if (search_bits[index & 7] & v[index >> 3])
x = x->rn_r;
else
x = x->rn_l;
}
return (x);
};
/*
* This routine is used elsewhere in the kernel concerning
* best matches for interfaces and is no longer used in the
* radix code.
*
*/
int
rn_refines(m_arg, n_arg)
void *m_arg, *n_arg;
{
register caddr_t m = m_arg, n = n_arg;
register caddr_t lim, lim2 = lim = n + *(u_char *)n;
int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
int masks_are_equal = 1;
if (longer > 0)
lim -= longer;
while (n < lim) {
if (*n & ~(*m))
return 0;
if (*n++ != *m++)
masks_are_equal = 0;
}
while (n < lim2)
if (*n++)
return 0;
if (masks_are_equal && (longer < 0))
for (lim2 = m - longer; m < lim2; )
if (*m++)
return 1;
return (!masks_are_equal);
}
/* Begin bits.c */
static int low_bits[] = {1, 3, 7, 15, 31, 63, 127, 255};
static int mask_bits[] = {1, 2, 4, 8, 16, 32, 64, 128};
struct radix_node *
rn_lookup(v_arg, m_arg, head)
void *v_arg, *m_arg;
struct radix_node_head *head;
{
register struct radix_node *x;
caddr_t netmask = 0;
#define x1(a,n) ( a > ((1 << (n + 1)) - 1) ? n+1 : n)
#define x2(a,n) (( a > ((1 << (2 + n)) - 1)) ? x1(a,n+2) : x1(a,n))
#define x4(a,n) (( a > ((1 << (4 + n)) - 1)) ? x2(a,n+4) : x2(a,n))
#define x8(a,n) (( a > ((1 << (8 + n)) - 1)) ? x4(a,n+8) : x4(a,n))
#define x16(a,n) ((a > (((1 << n) - 1)+(65535 << n))) ? x8(a,n+16) : x8(a,n))
if (m_arg) {
if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
return (0);
netmask = x->rn_key;
}
x = rn_match(v_arg, head);
if (x && netmask) {
while (x && x->rn_mask != netmask)
x = x->rn_dupedkey;
}
return x;
}
static
rn_satsifies_leaf(trial, leaf, skip)
char *trial;
register struct radix_node *leaf;
int skip;
{
register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
char *cplim;
int length = min(*(u_char *)cp, *(u_char *)cp2);
if (cp3 == 0)
cp3 = rn_ones;
else
length = min(length, *(u_char *)cp3);
cplim = cp + length; cp3 += skip; cp2 += skip;
for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
if ((*cp ^ *cp2) & *cp3)
return 0;
return 1;
}
int
rn_mapped_bits_matched(t_a, r_a, rnh, masklen)
void *t_a; /* Under scrutiny, assumed mapped */
void *r_a; /* being compared to, not mapped */
struct radix_node_head *rnh; /* has offset for ref, map for trial */
int masklen; /* only need this many bits to match*/
{
register struct radix_index_table *table = rnh->rnh_table;
int matched = 0, k, l;
u_char *trial = t_a; /* Under scrutiny, assumed mapped */
u_char *ref = r_a; /* being compared to, not mapped */
#ifdef utterly_straightforward_way_of_doing_this
for (; table->limit; table++) {
for (; matched < table->limit; matched++) {
if (matched >= masklen - 1)
return (matched);
k = matched + table->offset;
l = matched + rnh->rnh_offset;
/* is bit l of ref == bit k of trial */
if (((ref[l >> 3] >> (7 - (l & 7))) ^
(trial[k >> 3] >> (7 - (k & 7)))) & 1)
return (matched);
}
}
#else
int test_info, trial_bits, ref_bits, limit, sum_bits, delta;
for (; table->limit; table++) {
limit = MIN(masklen, table->limit);
while (matched < limit) {
k = matched + table->offset;
l = matched + rnh->rnh_offset;
trial_bits = 7 - (k & 7);
ref_bits = 7 - (l & 7);
delta = MIN(MIN(trial_bits, ref_bits), limit - matched);
sum_bits = trial_bits + ref_bits;
test_info = ((int)ref[k >> 3]) << ref_bits;
test_info ^= ((int)trial[l >> 3]) << trial_bits;
test_info &= low_bits[sum_bits];
test_info &= ~low_bits[sum_bits - delta];
if (test_info != 0) {
int count, mask = mask_bits[sum_bits];
for (count = delta; count >= 0; count--) {
if (mask & test_info)
return (matched);
matched++; mask >>= 1;
}
printf("Bits_matched: should never get here!");
}
matched += delta;
if (matched >= masklen)
return (matched);
}
}
#endif
return (matched);
}
#if defined(IPPROTO_IP) && defined(IPVERSION) /* #include <netinet/i{n,p}.h>" */
int ip_mapped_bits_matched
(void *t_a, void *r_a, struct radix_node_head *rnh, int masklen)
{
struct ip *trial = t_a;
struct sockaddr_in *ref = r_a;
u_long bits = trial->sin_addr.s_addr ^ ip->ip_dst.s_adddr;
if (bits == 0) return (32); /* expected case !*/
bits = ntohl(bits);
bits = x16(bits, 0);
return bits;
}
#endif
rn_mapped_set_mask(index, rn, rnh)
int index;
register struct radix_node *rn;
register struct radix_node_head *rnh;
{
register struct radix_index_table *table;
for (table = rnh->rnh_table; table->limit && index < table->limit;)
table++;
if (table->limit) {
index += table->offset;
rn->rn_bmask = mask_bits[7 - (index & 7)];
rn->rn_off = (index >> 3);
}
}
rn_unmapped_bits_matched(t_a, r_a, rnh, masklen)
void *t_a; /* Under scrutiny, assumed mapped */
void *r_a; /* being compared to, not mapped */
struct radix_node_head *rnh; /* has offset for ref, map for trial */
int masklen; /* only need this many bits to match*/
{
register u_char *cp1, *cp2, *limit;
int offset = rnh->rnh_offset >> 3;/* XXX: off must be n * 8 */
int matched, test_info;
u_char *trial = t_a; /* Under scrutiny, assumed mapped */
u_char *ref = r_a; /* being compared to, not mapped */
cp1 = trial + offset;
limit = cp1 + ((masklen + 7) >> 3);
for (cp2 = ref + offset; cp1 < limit;)
if (*cp1++ != *cp2++) {
test_info = cp1[-1] ^ cp2[-1];
matched = (cp1 - trial - offset) << 3;
for (; test_info; matched--)
test_info >>= 1;
if (matched > masklen)
matched = masklen;
return (matched);
}
return (masklen);
}
rn_unmapped_set_mask(index, rn, rnh)
int index;
register struct radix_node *rn;
register struct radix_node_head *rnh;
{
index += rnh->rnh_offset;
rn->rn_bmask = mask_bits[7 - (index & 7)];
rn->rn_off = (index >> 3);
}
/* End bits.c */
struct radix_node *
rn_match(v_arg, head)
void *v_arg;
struct radix_node_head *head;
{
register char *cp = (char *)(v_arg);
register struct radix_node *m, *t = head->rnh_treetop;
struct radix_node *saved_t, *top = t;
int bits_matched, rn_b;
/*
* Open code rn_search(v, top) to avoid overhead of extra
* subroutine call.
*/
while (t->rn_b >= 0)
if (t->rn_bmask & cp[t->rn_off])
t = t->rn_r;
else
t = t->rn_l;
bits_matched = (*head->rnh_bits_matched)
(v_arg, t->rn_key, head, -1 - t->rn_b);
rn_b = -1 - bits_matched; /* XXX: compatability */
/*
* Check this node, and any other duped keys.
* We want to match the most specific possible mask, so
* duplicates are sorted longest mask to shortest.
*/
if (t->rn_mask)
vlen = *(u_char *)t->rn_mask;
for (saved_t = t; t; t = t->rn_dupedkey)
/* if (bits_matched >= mask_index) */
if (rn_b <= t->rn_b) {
/*
* This extra grot is in case we are explicitly asked
* to look up the default. Ugh!
*/
if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
t = t->rn_dupedkey;
return (t);
}
/* start searching up the tree */
t = saved_t;
do {
t = t->rn_p;
for (m = t->rn_mklist; m; m = m->rn_mklist)
/* if (bits_matched >= mask_index) */
if (rn_b <= m->rn_b)
return (m);
} while (t != top);
return 0;
};
#ifdef RN_DEBUG
int rn_nodenum;
struct radix_node *rn_clist;
int rn_saveinfo;
int rn_debug = 1;
#endif
struct radix_node *
rn_newpair1(v, b, nodes, rnh)
void *v;
int b;
struct radix_node nodes[2];
struct radix_node_head *rnh;
{
register struct radix_node *tt = nodes, *t = tt + 1;
if (rnh == 0)
panic("rn_newpair1");
t->rn_b = b; t->rn_l = tt;
(*rnh->rnh_set_mask)(b, t, rnh);
tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
tt->rn_flags = t->rn_flags = RNF_ACTIVE;
#ifdef RN_DEBUG
tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
#endif
return t;
}
#define DEFAULT(a, b) (a > 0 ? a : b)
#define VLEN(v, h) ((DEFAULT(h->rnh_addrsize, *(u_char *)v) << 3) - h->rnh_offset)
struct radix_node *
rn_insert(v_arg, head, dupentry, nodes)
void *v_arg;
register struct radix_node_head *head;
int *dupentry;
struct radix_node nodes[2];
{
caddr_t v = (caddr_t)v_arg, cp = (head->rnh_offset >> 3) + v;
register struct radix_node *t = rn_search_unmapped(v, head);
register struct radix_node *p, *x;
int b, vlen = VLEN(v, head);
/*
* Find first bit at which v and t->rn_key differ
*/
b = rn_unmapped_bits_matched(v, t->rn_key, head, vlen);
if (b == vlen) {
*dupentry = 1;
return t;
}
/*
* Find appropriate node after which to insert new key
*/
p = t;
do {
x = p;
p = x->rn_p;
} while (b <= p->rn_b);
#ifdef RN_DEBUG
if (rn_debug)
log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
#endif
t = rn_newpair1(v, b, nodes, head);
/*
* If we went to the left during the matching process,
* the spliced-in node will still be on the left.
*/
if (p->rn_l == x)
p->rn_l = t;
else
p->rn_r = t;
t->rn_p = p;
/*
* If the first bit of the input string that didn't match
* was set, put the new leaf to the right of the new node.
*/
if (cp[b >> 3] & search_bits[b & 7]) {
t->rn_r = nodes; t->rn_l = x;
} else
t->rn_r = x;
x->rn_p = t;
#ifdef RN_DEBUG
if (rn_debug)
log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
#endif
return (nodes);
}
/*
* Here mostly for compatability's sake with
* the previous networking code, which expects to find masks.
*/
struct radix_node *
rn_masksubr(n_arg, v_arg, skip, head, len_p)
void *n_arg, *v_arg;
int skip, *len_p;
struct radix_node_head *head;
{
caddr_t netmask = (caddr_t)n_arg, v = v_arg;
register struct radix_node *x = rn_masktop;
register caddr_t cp, cplim;
register int b = 0, mlen, j;
int maskduplicated, m0, isnormal;
struct radix_node *saved_x;
static int last_zeroed = 0;
struct radix_node *saved_x;
if (head == 0)
head = mask_rnhead;
if (netmask == 0) {
if (*len_p)
*len_p = VLEN(v, head);
return 0;
}
if (m0 < last_zeroed)
Bzero(addmask_key + m0, last_zeroed - m0);
*addmask_key = last_zeroed = mlen;
x = rn_search(addmask_key, rn_masktop);
if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
x = 0;
if (x || search)
return (x);
if (skip > 0)
for (j = skip << 3; j > ((unsigned)x->rn_b);)
x = x->rn_r;
x = rn_search(netmask, x);
mlen = *(u_char *)netmask;
if ((skip > mlen) ||
Bcmp(netmask + skip, x->rn_key + skip, mlen - skip) == 0)
goto found;
R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
if ((saved_x = x) == 0)
return (0);
saved_x = x;
Bzero(x, max_keylen + 2 * sizeof (*x));
if (skip > 1)
Bcopy(rn_ones, cp + 1, skip - 1);
maskduplicated = 0;
x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
mlen = rn_unmapped_bits_matched(cp, rn_ones, head, mlen << 3);
if (maskduplicated) {
printf("rn_addmask1: impossible dup");
Free(saved_x);
} else {
x->rn_b = -1 - mlen;
}
b += (cp - netmask) << 3;
found:
if (len_p)
*len_p = (-1 - x->rn_b) - head->rnh_offset;
return (x);
}
static int /* XXX: arbitrary ordering for non-contiguous masks */
rn_lexobetter(m_arg, n_arg)
void *m_arg, *n_arg;
{
register u_char *mp = m_arg, *np = n_arg, *lim;
if (*mp > *np)
return 1; /* not really, but need to check longer one first */
if (*mp == *np)
for (lim = mp + *mp; mp < lim;)
if (*mp++ > *np++)
return 1;
return 0;
}
static struct radix_mask *
rn_new_radix_mask(tt, next)
register struct radix_node *tt;
register struct radix_mask *next;
{
register struct radix_mask *m;
MKGet(m);
if (m == 0) {
log(LOG_ERR, "Mask for route not entered\n");
return (0);
}
Bzero(m, sizeof *m);
m->rm_b = tt->rn_b;
m->rm_flags = tt->rn_flags;
if (tt->rn_flags & RNF_NORMAL)
m->rm_leaf = tt;
else
m->rm_mask = tt->rn_mask;
m->rm_mklist = next;
tt->rn_mklist = m;
return m;
}
struct radix_node *
rn_addroute(v_arg, n_arg, head, treenodes)
void *v_arg, *n_arg;
struct radix_node_head *head;
struct radix_node treenodes[2];
{
caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
register struct radix_node *m, *us = treenodes;
struct radix_node *t, *tt, *x, *base, *top = head->rnh_treetop;
struct radix_node *s /*sibling*/, *p /*parent*/, **mp;
short b = 0, b_leaf;
int masklen, masklen_leaf, mlen, keyduplicated = 0;
/*
* This version assumes contiguous masks and only cares about
* the index of the mask, if present.
*/
(void) rn_masksubr(v_arg, n_arg, (head->rnh_offset >> 3), head, &masklen);
masklen_leaf = -1 - masklen;
base = tt = rn_insert(v, head, &keyduplicated, treenodes);
t = p = tt->rn_p;
/*
* Deal with duplicated keys: attach node to previous instance
* We sort the nodes so that the longest mask comes first.
*/
if (keyduplicated) {
/*
* Examine each node and continue past any where the
* mask length is greater than the new one;
* since we are storing -1 - masklength, the sense
* of the test is reversed.
*/
for (; tt && (tt->rn_b <= masklen_leaf);
x = tt, tt = tt->rn_dupedkey)
if (tt->rn_mask == netmask)
return (0); /* mask is also duplicated */
if (tt == base) {
/* link in at head of list */
us->rn_dupedkey = tt;
us->rn_p = p;
if (p->rn_l == tt)
p->rn_l = us; else p->rn_r = us;
base = us;
} else {
us->rn_dupedkey = x->rn_dupedkey;
x->rn_dupedkey = us;
}
#ifdef RN_DEBUG
t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
#endif
us->rn_key = (caddr_t) v;
us->rn_flags = RNF_ACTIVE;
}
us->rn_b = masklen_leaf;
us->rn_mask = netmask;
/*
* Annotate tree about masks.
*/
if (*mp = m = rn_new_radix_mask(x, 0))
mp = &m->rm_mklist;
}
}
} else if (s->rn_mklist) {
/*
* Skip over masks whose index is > that of new node
*/
for (mp = &(s->rn_mklist); m = *mp; mp = &m->rn_mklist)
if (m->rn_b >= b_leaf)
break;
p->rn_mklist = m; *mp = 0;
}
on2:
/* Add new route to highest possible ancestor's list */
if ((netmask == 0) || (masklen > p->rn_b ))
return us; /* can't lift at all */
do {
x = t;
t = t->rn_p;
} while (masklen <= t->rn_b && x != top);
/*
* Search through routes associated with node to
* insert new route according to index.
* Need same criteria as when sorting dupedkeys to avoid
* double loop on deletion.
*/
for (mp = &x->rn_mklist; m = *mp; mp = &m->rn_mklist) {
if (m->rn_b > masklen_leaf)
continue;
if (m->rn_b < masklen_leaf)
break;
if (m->rn_b == masklen_leaf) {
printf("rn_addroute: impossible duplicate mask\n");
return us;
}
}
*mp = us;
us->rn_mklist = m;
return us;
}
struct radix_node *
rn_delete(v_arg, n_arg, head)
void *v_arg, *n_arg;
struct radix_node_head *head;
{
register struct radix_node *t, *p, *x, *tt;
struct radix_node *m, *saved_m, **mp;
struct radix_node *dupedkey, *base, *top = head->rnh_treetop;
int b, head_off = head->rnh_offset >> 3, masklen, masklen_leaf;
int vlen = VLEN(v_arg, head) >> 3;
caddr_t v = v_arg;
base = tt = rn_search_unmapped(v_arg, head);
if (tt == 0 || Bcmp(v + head_off, tt->rn_key + head_off, vlen))
return (0);
p = t = tt->rn_p;
(void) rn_masksubr(v_arg, n_arg, head_off, head, &masklen);
masklen_leaf = -1 - masklen;
while (tt->rn_b != masklen_leaf)
if ((tt = tt->rn_dupedkey) == 0)
return (0);
}
/*
* Delete our route from mask lists.
*/
if (tt->rn_mask == 0 || masklen > t->rn_b)
goto on1; /* Wasn't lifted at all */
do {
x = p;
p = p->rn_p;
} while (masklen <= p->rn_b && x != top);
for (mp = &x->rn_mklist; m = *mp; mp = &m->rn_mklist)
if (m == tt) {
*mp = tt->rn_mklist;
break;
}
if (m == 0) {
log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
if (tt->rn_flags & RNF_NORMAL)
return (0); /* Dangling ref to us */
}
on1:
/*
* Eliminate us from tree
*/
if (tt->rn_flags & RNF_ROOT)
return (0);
#ifdef RN_DEBUG
/* Get us out of the creation list */
for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
if (t) t->rn_ybro = tt->rn_ybro;
#endif
if (dupedkey = saved_tt->rn_dupedkey) {
if (tt == base) {
x = dupedkey; x->rn_p = t;
if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
} else {
for (x = base; x && x->rn_dupedkey != tt;)
x = x->rn_dupedkey;
if (x) x->rn_dupedkey = tt->rn_dupedkey;
else log(LOG_ERR, "rn_delete: couldn't find us\n");
}
x = tt + 1;
if (x->rn_flags & RNF_ACTIVE) {
/* Find inactive node to clober among this chain. */
for (t = base; t; t = x->rn_dupedkey)
if ((t[1].rn_flags & RNF_ACTIVE) == 0)
break;
if (t == 0) {
printf("rn_delete: lost inactive node");
return (0);
}
t++;
goto clobber;
}
goto out;
}
if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
p = t->rn_p;
if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
x->rn_p = p;
/*
* Demote routes attached to us.
*/
if (t->rn_mklist) {
if (x->rn_b >= 0) {
for (mp = &x->rn_mklist; m = *mp;)
mp = &m->rn_mklist;
*mp = t->rn_mklist;
}
}
/*
* We may be holding an active internal node in the tree.
*/
x = tt + 1;
if (t != x) {
clobber:
#ifndef RN_DEBUG
*t = *x;
#else
b = t->rn_info; *t = *x; t->rn_info = b;
#endif
t->rn_l->rn_p = t; t->rn_r->rn_p = t;
p = x->rn_p;
if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
}
out:
tt->rn_flags &= ~RNF_ACTIVE;
tt[1].rn_flags &= ~RNF_ACTIVE;
return (tt);
}
int
rn_walktree(h, f, w)
struct radix_node_head *h;
register int (*f)();
void *w;
{
int error;
struct radix_node *base, *next;
register struct radix_node *rn = h->rnh_treetop;
/*
* This gets complicated because we may delete the node
* while applying the function f to it, so we need to calculate
* the successor node in advance.
*/
/* First time through node, go left */
while (rn->rn_b >= 0)
rn = rn->rn_l;
for (;;) {
base = rn;
/* If at right child go back up, otherwise, go right */
while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
rn = rn->rn_p;
/* Find the next *leaf* since next node might vanish, too */
for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
rn = rn->rn_l;
next = rn;
/* Process leaves */
while (rn = base) {
base = rn->rn_dupedkey;
if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
return (error);
}
rn = next;
if (rn->rn_flags & RNF_ROOT)
return (0);
}
/* NOTREACHED */
}
int
rn_inithead(head, off)
void **head;
int off;
{
register struct radix_node_head *rnh;
register struct radix_node *t, *tt, *ttt;
if (*head)
return (1);
R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
if (rnh == 0)
return (0);
Bzero(rnh, sizeof (*rnh));
*head = rnh;
rnh->rnh_offset = off;
t = rn_newpair1(rn_zeros, 0, rnh->rnh_nodes, rnh);
ttt = rnh->rnh_nodes + 2;
t->rn_r = ttt;
t->rn_p = t;
tt = t->rn_l;
tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
tt->rn_b = -1;
*ttt = *tt;
ttt->rn_key = rn_ones;
rnh->rnh_treetop = t;
rnh->rnh_addaddr = rn_addroute;
rnh->rnh_deladdr = rn_delete;
rnh->rnh_matchaddr = rn_match;
rnh->rnh_lookup = rn_lookup;
rnh->rnh_walktree = rn_walktree;
rnh->rnh_bits_matched = rn_unmapped_bits_matched;
rnh->rnh_set_mask = rn_unmapped_set_mask;
return (1);
}
void
rn_init()
{
char *cp, *cplim;
#ifdef KERNEL
struct domain *dom;
for (dom = domains; dom; dom = dom->dom_next)
if (dom->dom_maxrtkey > max_keylen)
max_keylen = dom->dom_maxrtkey;
#endif
if (max_keylen == 0) {
log(LOG_ERR,
"rn_init: radix functions require max_keylen be set\n");
return;
}
R_Malloc(rn_zeros, char *, 3 * max_keylen);
if (rn_zeros == NULL)
panic("rn_init");
Bzero(rn_zeros, 2 * max_keylen);
rn_ones = cp = rn_zeros + max_keylen;
while (cp < cplim)
*cp++ = -1;
if (rn_inithead((void **)&mask_rnhead, 0) == 0)
panic("rn_init 2");
}