sun merge
[unix-history] / usr / src / sys / kern / kern_clock.c
index a4e4384..6769872 100644 (file)
-/*     kern_clock.c    4.30    81/12/19        */
+/*     kern_clock.c    4.48    82/12/17        */
+
+#include "../machine/reg.h"
+#include "../machine/psl.h"
 
 #include "../h/param.h"
 #include "../h/systm.h"
 #include "../h/dk.h"
 #include "../h/callout.h"
 
 #include "../h/param.h"
 #include "../h/systm.h"
 #include "../h/dk.h"
 #include "../h/callout.h"
-#include "../h/seg.h"
 #include "../h/dir.h"
 #include "../h/user.h"
 #include "../h/dir.h"
 #include "../h/user.h"
+#include "../h/kernel.h"
 #include "../h/proc.h"
 #include "../h/proc.h"
-#include "../h/reg.h"
-#include "../h/psl.h"
 #include "../h/vm.h"
 #include "../h/vm.h"
-#include "../h/buf.h"
 #include "../h/text.h"
 #include "../h/text.h"
-#include "../h/vlimit.h"
-#include "../h/mtpr.h"
-#include "../h/clock.h"
-#include "../h/cpu.h"
-#include "../h/protosw.h"
+#ifdef MUSH
+#include "../h/quota.h"
+#include "../h/share.h"
+#endif
 
 
-#include "bk.h"
-#include "dh.h"
-#include "dz.h"
+#ifdef vax
+#include "../vax/mtpr.h"
+#endif
 
 
+#
 /*
 /*
- * Hardclock is called straight from
- * the real time clock interrupt.
- * We limit the work we do at real clock interrupt time to:
- *     reloading clock
- *     decrementing time to callouts
- *     recording cpu time usage
- *     modifying priority of current process
- *     arrange for soft clock interrupt
- *     kernel pc profiling
- *
- * At software (softclock) interrupt time we:
- *     implement callouts
- *     maintain date
- *     lightning bolt wakeup (every second)
- *     alarm clock signals
- *     jab the scheduler
+ * Clock handling routines.
  *
  *
- * On the vax softclock interrupts are implemented by
- * software interrupts.  Note that we may have multiple softclock
- * interrupts compressed into one (due to excessive interrupt load),
- * but that hardclock interrupts should never be lost.
+ * This code is written for a machine with only one interval timer,
+ * and does timing and resource utilization estimation statistically
+ * based on the state of the machine hz times a second.  A machine
+ * with proper clocks (running separately in user state, system state,
+ * interrupt state and idle state) as well as a time-of-day clock
+ * would allow a non-approximate implementation.
  */
  */
-#ifdef KPROF
-int    kcounts[20000];
-#endif
 
 /*
 
 /*
- * Protoslow is like lbolt, but for slow protocol timeouts, counting
- * up to (hz/PR_SLOWHZ), then causing a pfslowtimo().
- * Protofast is like lbolt, but for fast protocol timeouts, counting
- * up to (hz/PR_FASTHZ), then causing a pffasttimo().
+ * TODO:
+ *     * Keep more accurate statistics by simulating good interval timers.
+ *     * Use the time-of-day clock on the VAX to keep more accurate time
+ *       than is possible by repeated use of the interval timer.
+ *     * Allocate more timeout table slots when table overflows.
  */
  */
-int    protoslow;
-int    protofast;
 
 
+/* bump a timeval by a small number of usec's */
+#define        bumptime(tp, usec) \
+       (tp)->tv_usec += usec; \
+       if ((tp)->tv_usec >= 1000000) { \
+               (tp)->tv_usec -= 1000000; \
+               (tp)->tv_sec++; \
+       }
+
+/*
+ * The (single) hardware interval timer.
+ * We update the events relating to real time, and then
+ * make a gross assumption: that the system has been in the
+ * state it is in (user state, kernel state, interrupt state,
+ * or idle state) for the entire last time interval, and
+ * update statistics accordingly.
+ */
 /*ARGSUSED*/
 /*ARGSUSED*/
+#ifdef vax
 hardclock(pc, ps)
        caddr_t pc;
 hardclock(pc, ps)
        caddr_t pc;
+       int ps;
+{
+#endif
+#ifdef sun
+hardclock(regs)
+       struct regs regs;
 {
 {
+       int ps = regs.r_sr;
+       caddr_t pc = (caddr_t)regs.r_pc;
+#endif
        register struct callout *p1;
        register struct callout *p1;
-       register struct proc *pp;
+       register struct proc *p;
        register int s, cpstate;
 
        register int s, cpstate;
 
+#ifdef sun
+       if (USERMODE(ps))               /* aston needs ar0 */
+               u.u_ar0 = &regs.r_r0;
+#endif
        /*
        /*
-        * reprime clock
-        */
-       clkreld();
-
-       /*
-        * update callout times
+        * Update real-time timeout queue.
+        * At front of queue are some number of events which are ``due''.
+        * The time to these is <= 0 and if negative represents the
+        * number of ticks which have passed since it was supposed to happen.
+        * The rest of the q elements (times > 0) are events yet to happen,
+        * where the time for each is given as a delta from the previous.
+        * Decrementing just the first of these serves to decrement the time
+        * to all events.
         */
        for (p1 = calltodo.c_next; p1 && p1->c_time <= 0; p1 = p1->c_next)
         */
        for (p1 = calltodo.c_next; p1 && p1->c_time <= 0; p1 = p1->c_next)
-               ;
+               --p1->c_time;
        if (p1)
        if (p1)
-               p1->c_time--;
+               --p1->c_time;
 
        /*
 
        /*
-        * Maintain iostat and per-process cpu statistics
+        * If the cpu is currently scheduled to a process, then
+        * charge it with resource utilization for a tick, updating
+        * statistics which run in (user+system) virtual time,
+        * such as the cpu time limit and profiling timers.
+        * This assumes that the current process has been running
+        * the entire last tick.
         */
        if (!noproc) {
                s = u.u_procp->p_rssize;
         */
        if (!noproc) {
                s = u.u_procp->p_rssize;
-               u.u_vm.vm_idsrss += s;
+               u.u_ru.ru_idrss += s; u.u_ru.ru_isrss += 0;     /* XXX */
                if (u.u_procp->p_textp) {
                        register int xrss = u.u_procp->p_textp->x_rssize;
 
                        s += xrss;
                if (u.u_procp->p_textp) {
                        register int xrss = u.u_procp->p_textp->x_rssize;
 
                        s += xrss;
-                       u.u_vm.vm_ixrss += xrss;
+                       u.u_ru.ru_ixrss += xrss;
                }
                }
-               if (s > u.u_vm.vm_maxrss)
-                       u.u_vm.vm_maxrss = s;
-               if ((u.u_vm.vm_utime+u.u_vm.vm_stime+1)/hz > u.u_limit[LIM_CPU]) {
+               if (s > u.u_ru.ru_maxrss)
+                       u.u_ru.ru_maxrss = s;
+               if ((u.u_ru.ru_utime.tv_sec+u.u_ru.ru_stime.tv_sec+1) >
+                   u.u_rlimit[RLIMIT_CPU].rlim_cur) {
                        psignal(u.u_procp, SIGXCPU);
                        psignal(u.u_procp, SIGXCPU);
-                       if (u.u_limit[LIM_CPU] < INFINITY - 5)
-                               u.u_limit[LIM_CPU] += 5;
+                       if (u.u_rlimit[RLIMIT_CPU].rlim_cur <
+                           u.u_rlimit[RLIMIT_CPU].rlim_max)
+                               u.u_rlimit[RLIMIT_CPU].rlim_cur += 5;
                }
                }
+               if (timerisset(&u.u_timer[ITIMER_PROF].it_value) &&
+                   itimerdecr(&u.u_timer[ITIMER_PROF], tick) == 0)
+                       psignal(u.u_procp, SIGPROF);
        }
        }
+
        /*
        /*
-        * Update iostat information.
+        * Charge the time out based on the mode the cpu is in.
+        * Here again we fudge for the lack of proper interval timers
+        * assuming that the current state has been around at least
+        * one tick.
         */
        if (USERMODE(ps)) {
         */
        if (USERMODE(ps)) {
-               u.u_vm.vm_utime++;
-               if(u.u_procp->p_nice > NZERO)
+               /*
+                * CPU was in user state.  Increment
+                * user time counter, and process process-virtual time
+                * interval timer. 
+                */
+               bumptime(&u.u_ru.ru_utime, tick);
+               if (timerisset(&u.u_timer[ITIMER_VIRTUAL].it_value) &&
+                   itimerdecr(&u.u_timer[ITIMER_VIRTUAL], tick) == 0)
+                       psignal(u.u_procp, SIGVTALRM);
+               if (u.u_procp->p_nice > NZERO)
                        cpstate = CP_NICE;
                else
                        cpstate = CP_USER;
        } else {
                        cpstate = CP_NICE;
                else
                        cpstate = CP_USER;
        } else {
-#ifdef KPROF
-       int k = ((int)pc & 0x7fffffff) / 8;
-       if (k < 20000)
-               kcounts[k]++;
+               /*
+                * CPU was in system state.  If profiling kernel
+                * increment a counter.  If no process is running
+                * then this is a system tick if we were running
+                * at a non-zero IPL (in a driver).  If a process is running,
+                * then we charge it with system time even if we were
+                * at a non-zero IPL, since the system often runs
+                * this way during processing of system calls.
+                * This is approximate, but the lack of true interval
+                * timers makes doing anything else difficult.
+                */
+#ifdef GPROF
+               int k = pc - s_lowpc;
+               if (profiling < 2 && k < s_textsize)
+                       kcount[k / sizeof (*kcount)]++;
 #endif
                cpstate = CP_SYS;
 #endif
                cpstate = CP_SYS;
-               if (noproc)
-                       cpstate = CP_IDLE;
-               else
-                       u.u_vm.vm_stime++;
+               if (noproc) {
+                       if (BASEPRI(ps))
+                               cpstate = CP_IDLE;
+               } else {
+                       bumptime(&u.u_ru.ru_stime, tick);
+               }
        }
        }
+
+       /*
+        * We maintain statistics shown by user-level statistics
+        * programs:  the amount of time in each cpu state, and
+        * the amount of time each of DK_NDRIVE ``drives'' is busy.
+        */
        cp_time[cpstate]++;
        for (s = 0; s < DK_NDRIVE; s++)
                if (dk_busy&(1<<s))
                        dk_time[s]++;
        cp_time[cpstate]++;
        for (s = 0; s < DK_NDRIVE; s++)
                if (dk_busy&(1<<s))
                        dk_time[s]++;
+
        /*
        /*
-        * Adjust priority of current process.
+        * We adjust the priority of the current process.
+        * The priority of a process gets worse as it accumulates
+        * CPU time.  The cpu usage estimator (p_cpu) is increased here
+        * and the formula for computing priorities (in kern_synch.c)
+        * will compute a different value each time the p_cpu increases
+        * by 4.  The cpu usage estimator ramps up quite quickly when
+        * the process is running (linearly), and decays away exponentially,
+        * at a rate which is proportionally slower when the system is
+        * busy.  The basic principal is that the system will 90% forget
+        * that a process used a lot of CPU time in 5*loadav seconds.
+        * This causes the system to favor processes which haven't run
+        * much recently, and to round-robin among other processes.
         */
        if (!noproc) {
         */
        if (!noproc) {
-               pp = u.u_procp;
-               pp->p_cpticks++;
-               if(++pp->p_cpu == 0)
-                       pp->p_cpu--;
-               if(pp->p_cpu % 4 == 0) {
-                       (void) setpri(pp);
-                       if (pp->p_pri >= PUSER)
-                               pp->p_pri = pp->p_usrpri;
+               p = u.u_procp;
+               p->p_cpticks++;
+               if (++p->p_cpu == 0)
+                       p->p_cpu--;
+#ifdef MUSH
+               p->p_quota->q_cost += (p->p_nice > NZERO ?
+                   (shconsts.sc_tic * ((2*NZERO)-p->p_nice)) / NZERO :
+                   shconsts.sc_tic) * (((int)avenrun[0]+2)/3);
+#endif
+               if ((p->p_cpu&3) == 0) {
+                       (void) setpri(p);
+                       if (p->p_pri >= PUSER)
+                               p->p_pri = p->p_usrpri;
                }
        }
                }
        }
-       /*
-        * Time moves on.
-        */
-       ++lbolt;
 
        /*
 
        /*
-        * Time moves on for protocols.
-        */
-       --protoslow; --protofast;
-
-#if VAX780
-       /*
-        * On 780's, impelement a fast UBA watcher,
-        * to make sure uba's don't get stuck.
-        */
-       if (cpu == VAX_780 && panicstr == 0 && !BASEPRI(ps))
-               unhang();
-#endif
-       /*
-        * Schedule a software interrupt for the rest
-        * of clock activities.
+        * Increment the time-of-day, and schedule
+        * processing of the callouts at a very low cpu priority,
+        * so we don't keep the relatively high clock interrupt
+        * priority any longer than necessary.
         */
         */
+       bumptime(&time, tick);
        setsoftclock();
 }
 
 /*
        setsoftclock();
 }
 
 /*
- * The digital decay cpu usage priority assignment is scaled to run in
- * time as expanded by the 1 minute load average.  Each second we
- * multiply the the previous cpu usage estimate by
- *             nrscale*avenrun[0]
- * The following relates the load average to the period over which
- * cpu usage is 90% forgotten:
- *     loadav 1         5 seconds
- *     loadav 5        24 seconds
- *     loadav 10       47 seconds
- *     loadav 20       93 seconds
- * This is a great improvement on the previous algorithm which
- * decayed the priorities by a constant, and decayed away all knowledge
- * of previous activity in about 20 seconds.  Under heavy load,
- * the previous algorithm degenerated to round-robin with poor response
- * time when there was a high load average.
- */
-#undef ave
-#define        ave(a,b) ((int)(((int)(a*b))/(b+1)))
-int    nrscale = 2;
-double avenrun[];
-
-/*
- * Constant for decay filter for cpu usage field
- * in process table (used by ps au).
- */
-double ccpu = 0.95122942450071400909;          /* exp(-1/20) */
-
-/*
- * Software clock interrupt.
- * This routine runs at lower priority than device interrupts.
+ * Software priority level clock interrupt.
+ * Run periodic events from timeout queue.
  */
 /*ARGSUSED*/
  */
 /*ARGSUSED*/
+#ifdef vax
 softclock(pc, ps)
        caddr_t pc;
 softclock(pc, ps)
        caddr_t pc;
+       int ps;
 {
 {
-       register struct callout *p1;
-       register struct proc *pp;
-       register int a, s;
-       caddr_t arg;
-       int (*func)();
-
-       /*
-        * Perform callouts (but not after panic's!)
-        */
-       if (panicstr == 0) {
-               for (;;) {
-                       s = spl7();
-                       if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
-                               splx(s);
-                               break;
-                       }
-                       calltodo.c_next = p1->c_next;
-                       arg = p1->c_arg;
-                       func = p1->c_func;
-                       p1->c_next = callfree;
-                       callfree = p1;
-                       (void) splx(s);
-                       (*func)(arg);
-               }
-       }
-
-       /*
-        * Drain silos.
-        */
-#if NDH > 0
-       s = spl5(); dhtimer(); splx(s);
 #endif
 #endif
-#if NDZ > 0
-       s = spl5(); dztimer(); splx(s);
+#ifdef sun
+softclock()
+{
+       int ps = u.u_ar0[PS];
+       caddr_t pc = (caddr_t)u.u_ar0[PC];
 #endif
 
 #endif
 
-       /*
-        * If idling and processes are waiting to swap in,
-        * check on them.
-        */
-       if (noproc && runin) {
-               runin = 0;
-               wakeup((caddr_t)&runin);
-       }
-
-       /*
-        * Run paging daemon every 1/4 sec.
-        */
-       if (lbolt % (hz/4) == 0) {
-               vmpago();
-       }
-
-       /*
-        * Reschedule every 1/10 sec.
-        */
-       if (lbolt % (hz/10) == 0) {
-               runrun++;
-               aston();
-       }
-
-       /*
-        * Run network slow and fast timeouts.
-        */
-       if (protofast <= 0) {
-               protofast = hz / PR_FASTHZ;
-               pffasttimo();
-       }
-       if (protoslow <= 0) {
-               protoslow = hz / PR_SLOWHZ;
-               pfslowtimo();
-       }
-
-       /*
-        * Lightning bolt every second:
-        *      sleep timeouts
-        *      process priority recomputation
-        *      process %cpu averaging
-        *      virtual memory metering
-        *      kick swapper if processes want in
-        */
-       if (lbolt >= hz) {
-               /*
-                * This doesn't mean much on VAX since we run at
-                * software interrupt time... if hardclock()
-                * calls softclock() directly, it prevents
-                * this code from running when the priority
-                * was raised when the clock interrupt occurred.
-                */
-               if (BASEPRI(ps))
-                       return;
+       for (;;) {
+               register struct callout *p1;
+               register caddr_t arg;
+               register int (*func)();
+               register int a, s;
 
 
-               /*
-                * If we didn't run a few times because of
-                * long blockage at high ipl, we don't
-                * really want to run this code several times,
-                * so squish out all multiples of hz here.
-                */
-               time += lbolt / hz;
-               lbolt %= hz;
-
-               /*
-                * Wakeup lightning bolt sleepers.
-                * Processes sleep on lbolt to wait
-                * for short amounts of time (e.g. 1 second).
-                */
-               wakeup((caddr_t)&lbolt);
-
-               /*
-                * Recompute process priority and process
-                * sleep() system calls as well as internal
-                * sleeps with timeouts (tsleep() kernel routine).
-                */
-               for (pp = proc; pp < procNPROC; pp++)
-               if (pp->p_stat && pp->p_stat!=SZOMB) {
-                       /*
-                        * Increase resident time, to max of 127 seconds
-                        * (it is kept in a character.)  For
-                        * loaded processes this is time in core; for
-                        * swapped processes, this is time on drum.
-                        */
-                       if (pp->p_time != 127)
-                               pp->p_time++;
-                       /*
-                        * If process has clock counting down, and it
-                        * expires, set it running (if this is a tsleep()),
-                        * or give it an SIGALRM (if the user process
-                        * is using alarm signals.
-                        */
-                       if (pp->p_clktim && --pp->p_clktim == 0)
-                               if (pp->p_flag & STIMO) {
-                                       s = spl6();
-                                       switch (pp->p_stat) {
-
-                                       case SSLEEP:
-                                               setrun(pp);
-                                               break;
-
-                                       case SSTOP:
-                                               unsleep(pp);
-                                               break;
-                                       }
-                                       pp->p_flag &= ~STIMO;
-                                       splx(s);
-                               } else
-                                       psignal(pp, SIGALRM);
-                       /*
-                        * If process is blocked, increment computed
-                        * time blocked.  This is used in swap scheduling.
-                        */
-                       if (pp->p_stat==SSLEEP || pp->p_stat==SSTOP)
-                               if (pp->p_slptime != 127)
-                                       pp->p_slptime++;
-                       /*
-                        * Update digital filter estimation of process
-                        * cpu utilization for loaded processes.
-                        */
-                       if (pp->p_flag&SLOAD)
-                               pp->p_pctcpu = ccpu * pp->p_pctcpu +
-                                   (1.0 - ccpu) * (pp->p_cpticks/(float)hz);
-                       /*
-                        * Recompute process priority.  The number p_cpu
-                        * is a weighted estimate of cpu time consumed.
-                        * A process which consumes cpu time has this
-                        * increase regularly.  We here decrease it by
-                        * a fraction based on load average giving a digital
-                        * decay filter which damps out in about 5 seconds
-                        * when seconds are measured in time expanded by the
-                        * load average.
-                        *
-                        * If a process is niced, then the nice directly
-                        * affects the new priority.  The final priority
-                        * is in the range 0 to 255, to fit in a character.
-                        */
-                       pp->p_cpticks = 0;
-                       a = ave((pp->p_cpu & 0377), avenrun[0]*nrscale) +
-                            pp->p_nice - NZERO;
-                       if (a < 0)
-                               a = 0;
-                       if (a > 255)
-                               a = 255;
-                       pp->p_cpu = a;
-                       (void) setpri(pp);
-                       /*
-                        * Now have computed new process priority
-                        * in p->p_usrpri.  Carefully change p->p_pri.
-                        * A process is on a run queue associated with
-                        * this priority, so we must block out process
-                        * state changes during the transition.
-                        */
-                       s = spl6();
-                       if (pp->p_pri >= PUSER) {
-                               if ((pp != u.u_procp || noproc) &&
-                                   pp->p_stat == SRUN &&
-                                   (pp->p_flag & SLOAD) &&
-                                   pp->p_pri != pp->p_usrpri) {
-                                       remrq(pp);
-                                       pp->p_pri = pp->p_usrpri;
-                                       setrq(pp);
-                               } else
-                                       pp->p_pri = pp->p_usrpri;
-                       }
+               s = spl7();
+               if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
                        splx(s);
                        splx(s);
+                       break;
                }
                }
-
-               /*
-                * Perform virtual memory metering.
-                */
-               vmmeter();
-
-               /*
-                * If the swap process is trying to bring
-                * a process in, have it look again to see
-                * if it is possible now.
-                */
-               if (runin!=0) {
-                       runin = 0;
-                       wakeup((caddr_t)&runin);
-               }
-
-               /*
-                * If there are pages that have been cleaned, 
-                * jolt the pageout daemon to process them.
-                * We do this here so that these pages will be
-                * freed if there is an abundance of memory and the
-                * daemon would not be awakened otherwise.
-                */
-               if (bclnlist != NULL)
-                       wakeup((caddr_t)&proc[2]);
-
-               /*
-                * If the trap occurred from usermode,
-                * then check to see if it has now been
-                * running more than 10 minutes of user time
-                * and should thus run with reduced priority
-                * to give other processes a chance.
-                */
-               if (USERMODE(ps)) {
-                       pp = u.u_procp;
-                       if (pp->p_uid && pp->p_nice == NZERO &&
-                           u.u_vm.vm_utime > 600 * hz)
-                               pp->p_nice = NZERO+4;
-                       (void) setpri(pp);
-                       pp->p_pri = pp->p_usrpri;
-               }
+               arg = p1->c_arg; func = p1->c_func; a = p1->c_time;
+               calltodo.c_next = p1->c_next;
+               p1->c_next = callfree;
+               callfree = p1;
+               splx(s);
+               (*func)(arg, a);
        }
        /*
         * If trapped user-mode, give it a profiling tick.
        }
        /*
         * If trapped user-mode, give it a profiling tick.
@@ -455,33 +269,17 @@ softclock(pc, ps)
 }
 
 /*
 }
 
 /*
- * Timeout is called to arrange that
- * fun(arg) is called in tim/hz seconds.
- * An entry is linked into the callout
- * structure.  The time in each structure
- * entry is the number of hz's more
- * than the previous entry.
- * In this way, decrementing the
- * first entry has the effect of
- * updating all entries.
- *
- * The panic is there because there is nothing
- * intelligent to be done if an entry won't fit.
+ * Arrange that (*fun)(arg) is called in tim/hz seconds.
  */
 timeout(fun, arg, tim)
        int (*fun)();
        caddr_t arg;
  */
 timeout(fun, arg, tim)
        int (*fun)();
        caddr_t arg;
+       int tim;
 {
        register struct callout *p1, *p2, *pnew;
        register int t;
        int s;
 
 {
        register struct callout *p1, *p2, *pnew;
        register int t;
        int s;
 
-/* DEBUGGING CODE */
-       int ttrstrt();
-
-       if (fun == ttrstrt && arg == 0)
-               panic("timeout ttrstr arg");
-/* END DEBUGGING CODE */
        t = tim;
        s = spl7();
        pnew = callfree;
        t = tim;
        s = spl7();
        pnew = callfree;
@@ -491,7 +289,8 @@ timeout(fun, arg, tim)
        pnew->c_arg = arg;
        pnew->c_func = fun;
        for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
        pnew->c_arg = arg;
        pnew->c_func = fun;
        for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
-               t -= p2->c_time;
+               if (p2->c_time > 0)
+                       t -= p2->c_time;
        p1->c_next = pnew;
        pnew->c_next = p2;
        pnew->c_time = t;
        p1->c_next = pnew;
        pnew->c_next = p2;
        pnew->c_time = t;
@@ -499,3 +298,61 @@ timeout(fun, arg, tim)
                p2->c_time -= t;
        splx(s);
 }
                p2->c_time -= t;
        splx(s);
 }
+
+/*
+ * untimeout is called to remove a function timeout call
+ * from the callout structure.
+ */
+untimeout(fun, arg)
+       int (*fun)();
+       caddr_t arg;
+{
+       register struct callout *p1, *p2;
+       register int s;
+
+       s = spl7();
+       for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) {
+               if (p2->c_func == fun && p2->c_arg == arg) {
+                       if (p2->c_next && p2->c_time > 0)
+                               p2->c_next->c_time += p2->c_time;
+                       p1->c_next = p2->c_next;
+                       p2->c_next = callfree;
+                       callfree = p2;
+                       break;
+               }
+       }
+       splx(s);
+}
+
+/*
+ * Compute number of hz until specified time.
+ * Used to compute third argument to timeout() from an
+ * absolute time.
+ */
+hzto(tv)
+       struct timeval *tv;
+{
+       register long ticks;
+       register long sec;
+       int s = spl7();
+
+       /*
+        * If number of milliseconds will fit in 32 bit arithmetic,
+        * then compute number of milliseconds to time and scale to
+        * ticks.  Otherwise just compute number of hz in time, rounding
+        * times greater than representible to maximum value.
+        *
+        * Delta times less than 25 days can be computed ``exactly''.
+        * Maximum value for any timeout in 10ms ticks is 250 days.
+        */
+       sec = tv->tv_sec - time.tv_sec;
+       if (sec <= 0x7fffffff / 1000 - 1000)
+               ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
+                       (tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
+       else if (sec <= 0x7fffffff / hz)
+               ticks = sec * hz;
+       else
+               ticks = 0x7fffffff;
+       splx(s);
+       return (ticks);
+}