BSD 4_4_Lite1 release
[unix-history] / usr / src / sys / kern / kern_synch.c
index 9271372..1c2a578 100644 (file)
@@ -1,55 +1,89 @@
 /*-
 /*-
- * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
- * Copyright (c) 1991 The Regents of the University of California.
- * All rights reserved.
+ * Copyright (c) 1982, 1986, 1990, 1991, 1993
+ *     The Regents of the University of California.  All rights reserved.
+ * (c) UNIX System Laboratories, Inc.
+ * All or some portions of this file are derived from material licensed
+ * to the University of California by American Telephone and Telegraph
+ * Co. or Unix System Laboratories, Inc. and are reproduced herein with
+ * the permission of UNIX System Laboratories, Inc.
  *
  *
- * %sccs.include.redist.c%
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ *    must display the following acknowledgement:
+ *     This product includes software developed by the University of
+ *     California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ *    may be used to endorse or promote products derived from this software
+ *    without specific prior written permission.
  *
  *
- *     @(#)kern_synch.c        7.23 (Berkeley) %G%
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ *     @(#)kern_synch.c        8.6 (Berkeley) 1/21/94
  */
 
  */
 
-#include "param.h"
-#include "systm.h"
-#include "proc.h"
-#include "kernel.h"
-#include "buf.h"
-#include "signalvar.h"
-#include "resourcevar.h"
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/proc.h>
+#include <sys/kernel.h>
+#include <sys/buf.h>
+#include <sys/signalvar.h>
+#include <sys/resourcevar.h>
+#include <sys/vmmeter.h>
 #ifdef KTRACE
 #ifdef KTRACE
-#include "ktrace.h"
+#include <sys/ktrace.h>
 #endif
 
 #endif
 
-#include "machine/cpu.h"
+#include <machine/cpu.h>
 
 
-u_char curpri;                 /* usrpri of curproc */
+u_char curpriority;            /* usrpri of curproc */
 int    lbolt;                  /* once a second sleep address */
 
 /*
  * Force switch among equal priority processes every 100ms.
  */
 int    lbolt;                  /* once a second sleep address */
 
 /*
  * Force switch among equal priority processes every 100ms.
  */
-roundrobin()
+/* ARGSUSED */
+void
+roundrobin(arg)
+       void *arg;
 {
 
        need_resched();
 {
 
        need_resched();
-       timeout(roundrobin, (caddr_t)0, hz / 10);
+       timeout(roundrobin, NULL, hz / 10);
 }
 
 /*
 }
 
 /*
- * constants for digital decay and forget
- *     90% of (p_cpu) usage in 5*loadav time
+ * Constants for digital decay and forget:
+ *     90% of (p_estcpu) usage in 5 * loadav time
  *     95% of (p_pctcpu) usage in 60 seconds (load insensitive)
  *          Note that, as ps(1) mentions, this can let percentages
  *          total over 100% (I've seen 137.9% for 3 processes).
  *
  *     95% of (p_pctcpu) usage in 60 seconds (load insensitive)
  *          Note that, as ps(1) mentions, this can let percentages
  *          total over 100% (I've seen 137.9% for 3 processes).
  *
- * Note that hardclock updates p_cpu and p_cpticks independently.
+ * Note that hardclock updates p_estcpu and p_cpticks independently.
  *
  *
- * We wish to decay away 90% of p_cpu in (5 * loadavg) seconds.
+ * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
  * That is, the system wants to compute a value of decay such
  * that the following for loop:
  *     for (i = 0; i < (5 * loadavg); i++)
  * That is, the system wants to compute a value of decay such
  * that the following for loop:
  *     for (i = 0; i < (5 * loadavg); i++)
- *             p_cpu *= decay;
+ *             p_estcpu *= decay;
  * will compute
  * will compute
- *     p_cpu *= 0.1;
+ *     p_estcpu *= 0.1;
  * for all values of loadavg:
  *
  * Mathematically this loop can be expressed by saying:
  * for all values of loadavg:
  *
  * Mathematically this loop can be expressed by saying:
@@ -120,9 +154,12 @@ fixpt_t    ccpu = 0.95122942450071400909 * FSCALE;         /* exp(-1/20) */
 #define        CCPU_SHIFT      11
 
 /*
 #define        CCPU_SHIFT      11
 
 /*
- * Recompute process priorities, once a second
+ * Recompute process priorities, every hz ticks.
  */
  */
-schedcpu()
+/* ARGSUSED */
+void
+schedcpu(arg)
+       void *arg;
 {
        register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
        register struct proc *p;
 {
        register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
        register struct proc *p;
@@ -130,13 +167,13 @@ schedcpu()
        register unsigned int newcpu;
 
        wakeup((caddr_t)&lbolt);
        register unsigned int newcpu;
 
        wakeup((caddr_t)&lbolt);
-       for (p = allproc; p != NULL; p = p->p_nxt) {
+       for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
                /*
                 * Increment time in/out of memory and sleep time
                 * (if sleeping).  We ignore overflow; with 16-bit int's
                 * (remember them?) overflow takes 45 days.
                 */
                /*
                 * Increment time in/out of memory and sleep time
                 * (if sleeping).  We ignore overflow; with 16-bit int's
                 * (remember them?) overflow takes 45 days.
                 */
-               p->p_time++;
+               p->p_swtime++;
                if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
                        p->p_slptime++;
                p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
                if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
                        p->p_slptime++;
                p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
@@ -146,6 +183,7 @@ schedcpu()
                 */
                if (p->p_slptime > 1)
                        continue;
                 */
                if (p->p_slptime > 1)
                        continue;
+               s = splstatclock();     /* prevent state changes */
                /*
                 * p_pctcpu is only for ps.
                 */
                /*
                 * p_pctcpu is only for ps.
                 */
@@ -159,58 +197,63 @@ schedcpu()
                        (p->p_cpticks * FSCALE / hz)) >> FSHIFT;
 #endif
                p->p_cpticks = 0;
                        (p->p_cpticks * FSCALE / hz)) >> FSHIFT;
 #endif
                p->p_cpticks = 0;
-               newcpu = (u_int) decay_cpu(loadfac, p->p_cpu) + p->p_nice;
-               p->p_cpu = min(newcpu, UCHAR_MAX);
-               setpri(p);
-               s = splhigh();  /* prevent state changes */
-               if (p->p_pri >= PUSER) {
+               newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
+               p->p_estcpu = min(newcpu, UCHAR_MAX);
+               resetpriority(p);
+               if (p->p_priority >= PUSER) {
 #define        PPQ     (128 / NQS)             /* priorities per queue */
                        if ((p != curproc) &&
                            p->p_stat == SRUN &&
 #define        PPQ     (128 / NQS)             /* priorities per queue */
                        if ((p != curproc) &&
                            p->p_stat == SRUN &&
-                           (p->p_flag & SLOAD) &&
-                           (p->p_pri / PPQ) != (p->p_usrpri / PPQ)) {
+                           (p->p_flag & P_INMEM) &&
+                           (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
                                remrq(p);
                                remrq(p);
-                               p->p_pri = p->p_usrpri;
-                               setrq(p);
+                               p->p_priority = p->p_usrpri;
+                               setrunqueue(p);
                        } else
                        } else
-                               p->p_pri = p->p_usrpri;
+                               p->p_priority = p->p_usrpri;
                }
                splx(s);
        }
        vmmeter();
        if (bclnlist != NULL)
                wakeup((caddr_t)pageproc);
                }
                splx(s);
        }
        vmmeter();
        if (bclnlist != NULL)
                wakeup((caddr_t)pageproc);
-       timeout(schedcpu, (caddr_t)0, hz);
+       timeout(schedcpu, (void *)0, hz);
 }
 
 /*
  * Recalculate the priority of a process after it has slept for a while.
 }
 
 /*
  * Recalculate the priority of a process after it has slept for a while.
- * For all load averages >= 1 and max p_cpu of 255, sleeping for at least
- * six times the loadfactor will decay p_cpu to zero.
+ * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
+ * least six times the loadfactor will decay p_estcpu to zero.
  */
  */
+void
 updatepri(p)
        register struct proc *p;
 {
 updatepri(p)
        register struct proc *p;
 {
-       register unsigned int newcpu = p->p_cpu;
+       register unsigned int newcpu = p->p_estcpu;
        register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
 
        if (p->p_slptime > 5 * loadfac)
        register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
 
        if (p->p_slptime > 5 * loadfac)
-               p->p_cpu = 0;
+               p->p_estcpu = 0;
        else {
                p->p_slptime--; /* the first time was done in schedcpu */
                while (newcpu && --p->p_slptime)
                        newcpu = (int) decay_cpu(loadfac, newcpu);
        else {
                p->p_slptime--; /* the first time was done in schedcpu */
                while (newcpu && --p->p_slptime)
                        newcpu = (int) decay_cpu(loadfac, newcpu);
-               p->p_cpu = min(newcpu, UCHAR_MAX);
+               p->p_estcpu = min(newcpu, UCHAR_MAX);
        }
        }
-       setpri(p);
+       resetpriority(p);
 }
 
 }
 
-#define SQSIZE 0100    /* Must be power of 2 */
-#define HASH(x)        (( (int) x >> 5) & (SQSIZE-1))
+/*
+ * We're only looking at 7 bits of the address; everything is
+ * aligned to 4, lots of things are aligned to greater powers
+ * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
+ */
+#define TABLESIZE      128
+#define LOOKUP(x)      (((int)(x) >> 8) & (TABLESIZE - 1))
 struct slpque {
        struct proc *sq_head;
        struct proc **sq_tailp;
 struct slpque {
        struct proc *sq_head;
        struct proc **sq_tailp;
-} slpque[SQSIZE];
+} slpque[TABLESIZE];
 
 /*
  * During autoconfiguration or after a panic, a sleep will simply
 
 /*
  * During autoconfiguration or after a panic, a sleep will simply
@@ -224,30 +267,28 @@ struct slpque {
 int safepri;
 
 /*
 int safepri;
 
 /*
- * General sleep call.
- * Suspends current process until a wakeup is made on chan.
- * The process will then be made runnable with priority pri.
- * Sleeps at most timo/hz seconds (0 means no timeout).
- * If pri includes PCATCH flag, signals are checked
- * before and after sleeping, else signals are not checked.
- * Returns 0 if awakened, EWOULDBLOCK if the timeout expires.
- * If PCATCH is set and a signal needs to be delivered,
- * ERESTART is returned if the current system call should be restarted
- * if possible, and EINTR is returned if the system call should
- * be interrupted by the signal (return EINTR).
+ * General sleep call.  Suspends the current process until a wakeup is
+ * performed on the specified identifier.  The process will then be made
+ * runnable with the specified priority.  Sleeps at most timo/hz seconds
+ * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
+ * before and after sleeping, else signals are not checked.  Returns 0 if
+ * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
+ * signal needs to be delivered, ERESTART is returned if the current system
+ * call should be restarted if possible, and EINTR is returned if the system
+ * call should be interrupted by the signal (return EINTR).
  */
  */
-tsleep(chan, pri, wmesg, timo)
-       void *chan;
-       int pri;
+int
+tsleep(ident, priority, wmesg, timo)
+       void *ident;
+       int priority, timo;
        char *wmesg;
        char *wmesg;
-       int timo;
 {
        register struct proc *p = curproc;
        register struct slpque *qp;
        register s;
 {
        register struct proc *p = curproc;
        register struct slpque *qp;
        register s;
-       int sig, catch = pri & PCATCH;
+       int sig, catch = priority & PCATCH;
        extern int cold;
        extern int cold;
-       int endtsleep();
+       void endtsleep __P((void *));
 
 #ifdef KTRACE
        if (KTRPOINT(p, KTR_CSW))
 
 #ifdef KTRACE
        if (KTRPOINT(p, KTR_CSW))
@@ -266,21 +307,21 @@ tsleep(chan, pri, wmesg, timo)
                return (0);
        }
 #ifdef DIAGNOSTIC
                return (0);
        }
 #ifdef DIAGNOSTIC
-       if (chan == NULL || p->p_stat != SRUN || p->p_rlink)
+       if (ident == NULL || p->p_stat != SRUN || p->p_back)
                panic("tsleep");
 #endif
                panic("tsleep");
 #endif
-       p->p_wchan = chan;
+       p->p_wchan = ident;
        p->p_wmesg = wmesg;
        p->p_slptime = 0;
        p->p_wmesg = wmesg;
        p->p_slptime = 0;
-       p->p_pri = pri & PRIMASK;
-       qp = &slpque[HASH(chan)];
+       p->p_priority = priority & PRIMASK;
+       qp = &slpque[LOOKUP(ident)];
        if (qp->sq_head == 0)
                qp->sq_head = p;
        else
                *qp->sq_tailp = p;
        if (qp->sq_head == 0)
                qp->sq_head = p;
        else
                *qp->sq_tailp = p;
-       *(qp->sq_tailp = &p->p_link) = 0;
+       *(qp->sq_tailp = &p->p_forw) = 0;
        if (timo)
        if (timo)
-               timeout(endtsleep, (caddr_t)p, timo);
+               timeout(endtsleep, (void *)p, timo);
        /*
         * We put ourselves on the sleep queue and start our timeout
         * before calling CURSIG, as we could stop there, and a wakeup
        /*
         * We put ourselves on the sleep queue and start our timeout
         * before calling CURSIG, as we could stop there, and a wakeup
@@ -291,7 +332,7 @@ tsleep(chan, pri, wmesg, timo)
         * stopped, p->p_wchan will be 0 upon return from CURSIG.
         */
        if (catch) {
         * stopped, p->p_wchan will be 0 upon return from CURSIG.
         */
        if (catch) {
-               p->p_flag |= SSINTR;
+               p->p_flag |= P_SINTR;
                if (sig = CURSIG(p)) {
                        if (p->p_wchan)
                                unsleep(p);
                if (sig = CURSIG(p)) {
                        if (p->p_wchan)
                                unsleep(p);
@@ -306,13 +347,13 @@ tsleep(chan, pri, wmesg, timo)
                sig = 0;
        p->p_stat = SSLEEP;
        p->p_stats->p_ru.ru_nvcsw++;
                sig = 0;
        p->p_stat = SSLEEP;
        p->p_stats->p_ru.ru_nvcsw++;
-       swtch();
+       mi_switch();
 resume:
 resume:
-       curpri = p->p_usrpri;
+       curpriority = p->p_usrpri;
        splx(s);
        splx(s);
-       p->p_flag &= ~SSINTR;
-       if (p->p_flag & STIMO) {
-               p->p_flag &= ~STIMO;
+       p->p_flag &= ~P_SINTR;
+       if (p->p_flag & P_TIMEOUT) {
+               p->p_flag &= ~P_TIMEOUT;
                if (sig == 0) {
 #ifdef KTRACE
                        if (KTRPOINT(p, KTR_CSW))
                if (sig == 0) {
 #ifdef KTRACE
                        if (KTRPOINT(p, KTR_CSW))
@@ -321,7 +362,7 @@ resume:
                        return (EWOULDBLOCK);
                }
        } else if (timo)
                        return (EWOULDBLOCK);
                }
        } else if (timo)
-               untimeout(endtsleep, (caddr_t)p);
+               untimeout(endtsleep, (void *)p);
        if (catch && (sig != 0 || (sig = CURSIG(p)))) {
 #ifdef KTRACE
                if (KTRPOINT(p, KTR_CSW))
        if (catch && (sig != 0 || (sig = CURSIG(p)))) {
 #ifdef KTRACE
                if (KTRPOINT(p, KTR_CSW))
@@ -344,17 +385,21 @@ resume:
  * set timeout flag and undo the sleep.  If proc
  * is stopped, just unsleep so it will remain stopped.
  */
  * set timeout flag and undo the sleep.  If proc
  * is stopped, just unsleep so it will remain stopped.
  */
-endtsleep(p)
-       register struct proc *p;
+void
+endtsleep(arg)
+       void *arg;
 {
 {
-       int s = splhigh();
+       register struct proc *p;
+       int s;
 
 
+       p = (struct proc *)arg;
+       s = splhigh();
        if (p->p_wchan) {
                if (p->p_stat == SSLEEP)
        if (p->p_wchan) {
                if (p->p_stat == SSLEEP)
-                       setrun(p);
+                       setrunnable(p);
                else
                        unsleep(p);
                else
                        unsleep(p);
-               p->p_flag |= STIMO;
+               p->p_flag |= P_TIMEOUT;
        }
        splx(s);
 }
        }
        splx(s);
 }
@@ -362,9 +407,10 @@ endtsleep(p)
 /*
  * Short-term, non-interruptable sleep.
  */
 /*
  * Short-term, non-interruptable sleep.
  */
-sleep(chan, pri)
-       void *chan;
-       int pri;
+void
+sleep(ident, priority)
+       void *ident;
+       int priority;
 {
        register struct proc *p = curproc;
        register struct slpque *qp;
 {
        register struct proc *p = curproc;
        register struct slpque *qp;
@@ -372,9 +418,9 @@ sleep(chan, pri)
        extern int cold;
 
 #ifdef DIAGNOSTIC
        extern int cold;
 
 #ifdef DIAGNOSTIC
-       if (pri > PZERO) {
-               printf("sleep called with pri %d > PZERO, wchan: %x\n",
-                   pri, chan);
+       if (priority > PZERO) {
+               printf("sleep called with priority %d > PZERO, wchan: %x\n",
+                   priority, ident);
                panic("old sleep");
        }
 #endif
                panic("old sleep");
        }
 #endif
@@ -391,37 +437,38 @@ sleep(chan, pri)
                return;
        }
 #ifdef DIAGNOSTIC
                return;
        }
 #ifdef DIAGNOSTIC
-       if (chan == NULL || p->p_stat != SRUN || p->p_rlink)
+       if (ident == NULL || p->p_stat != SRUN || p->p_back)
                panic("sleep");
 #endif
                panic("sleep");
 #endif
-       p->p_wchan = chan;
+       p->p_wchan = ident;
        p->p_wmesg = NULL;
        p->p_slptime = 0;
        p->p_wmesg = NULL;
        p->p_slptime = 0;
-       p->p_pri = pri;
-       qp = &slpque[HASH(chan)];
+       p->p_priority = priority;
+       qp = &slpque[LOOKUP(ident)];
        if (qp->sq_head == 0)
                qp->sq_head = p;
        else
                *qp->sq_tailp = p;
        if (qp->sq_head == 0)
                qp->sq_head = p;
        else
                *qp->sq_tailp = p;
-       *(qp->sq_tailp = &p->p_link) = 0;
+       *(qp->sq_tailp = &p->p_forw) = 0;
        p->p_stat = SSLEEP;
        p->p_stats->p_ru.ru_nvcsw++;
 #ifdef KTRACE
        if (KTRPOINT(p, KTR_CSW))
                ktrcsw(p->p_tracep, 1, 0);
 #endif
        p->p_stat = SSLEEP;
        p->p_stats->p_ru.ru_nvcsw++;
 #ifdef KTRACE
        if (KTRPOINT(p, KTR_CSW))
                ktrcsw(p->p_tracep, 1, 0);
 #endif
-       swtch();
+       mi_switch();
 #ifdef KTRACE
        if (KTRPOINT(p, KTR_CSW))
                ktrcsw(p->p_tracep, 0, 0);
 #endif
 #ifdef KTRACE
        if (KTRPOINT(p, KTR_CSW))
                ktrcsw(p->p_tracep, 0, 0);
 #endif
-       curpri = p->p_usrpri;
+       curpriority = p->p_usrpri;
        splx(s);
 }
 
 /*
  * Remove a process from its wait queue
  */
        splx(s);
 }
 
 /*
  * Remove a process from its wait queue
  */
+void
 unsleep(p)
        register struct proc *p;
 {
 unsleep(p)
        register struct proc *p;
 {
@@ -431,11 +478,11 @@ unsleep(p)
 
        s = splhigh();
        if (p->p_wchan) {
 
        s = splhigh();
        if (p->p_wchan) {
-               hp = &(qp = &slpque[HASH(p->p_wchan)])->sq_head;
+               hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
                while (*hp != p)
                while (*hp != p)
-                       hp = &(*hp)->p_link;
-               *hp = p->p_link;
-               if (qp->sq_tailp == &p->p_link)
+                       hp = &(*hp)->p_forw;
+               *hp = p->p_forw;
+               if (qp->sq_tailp == &p->p_forw)
                        qp->sq_tailp = hp;
                p->p_wchan = 0;
        }
                        qp->sq_tailp = hp;
                p->p_wchan = 0;
        }
@@ -443,42 +490,43 @@ unsleep(p)
 }
 
 /*
 }
 
 /*
- * Wakeup on "chan"; set all processes
- * sleeping on chan to run state.
+ * Make all processes sleeping on the specified identifier runnable.
  */
  */
-wakeup(chan)
-       register void *chan;
+void
+wakeup(ident)
+       register void *ident;
 {
        register struct slpque *qp;
        register struct proc *p, **q;
        int s;
 
        s = splhigh();
 {
        register struct slpque *qp;
        register struct proc *p, **q;
        int s;
 
        s = splhigh();
-       qp = &slpque[HASH(chan)];
+       qp = &slpque[LOOKUP(ident)];
 restart:
        for (q = &qp->sq_head; p = *q; ) {
 #ifdef DIAGNOSTIC
 restart:
        for (q = &qp->sq_head; p = *q; ) {
 #ifdef DIAGNOSTIC
-               if (p->p_rlink || p->p_stat != SSLEEP && p->p_stat != SSTOP)
+               if (p->p_back || p->p_stat != SSLEEP && p->p_stat != SSTOP)
                        panic("wakeup");
 #endif
                        panic("wakeup");
 #endif
-               if (p->p_wchan == chan) {
+               if (p->p_wchan == ident) {
                        p->p_wchan = 0;
                        p->p_wchan = 0;
-                       *q = p->p_link;
-                       if (qp->sq_tailp == &p->p_link)
+                       *q = p->p_forw;
+                       if (qp->sq_tailp == &p->p_forw)
                                qp->sq_tailp = q;
                        if (p->p_stat == SSLEEP) {
                                qp->sq_tailp = q;
                        if (p->p_stat == SSLEEP) {
-                               /* OPTIMIZED INLINE EXPANSION OF setrun(p) */
+                               /* OPTIMIZED EXPANSION OF setrunnable(p); */
                                if (p->p_slptime > 1)
                                        updatepri(p);
                                p->p_slptime = 0;
                                p->p_stat = SRUN;
                                if (p->p_slptime > 1)
                                        updatepri(p);
                                p->p_slptime = 0;
                                p->p_stat = SRUN;
-                               if (p->p_flag & SLOAD)
-                                       setrq(p);
+                               if (p->p_flag & P_INMEM)
+                                       setrunqueue(p);
                                /*
                                /*
-                                * Since curpri is a usrpri,
-                                * p->p_pri is always better than curpri.
+                                * Since curpriority is a user priority,
+                                * p->p_priority is always better than
+                                * curpriority.
                                 */
                                 */
-                               if ((p->p_flag&SLOAD) == 0)
+                               if ((p->p_flag & P_INMEM) == 0)
                                        wakeup((caddr_t)&proc0);
                                else
                                        need_resched();
                                        wakeup((caddr_t)&proc0);
                                else
                                        need_resched();
@@ -486,11 +534,68 @@ restart:
                                goto restart;
                        }
                } else
                                goto restart;
                        }
                } else
-                       q = &p->p_link;
+                       q = &p->p_forw;
        }
        splx(s);
 }
 
        }
        splx(s);
 }
 
+/*
+ * The machine independent parts of mi_switch().
+ * Must be called at splstatclock() or higher.
+ */
+void
+mi_switch()
+{
+       register struct proc *p = curproc;      /* XXX */
+       register struct rlimit *rlim;
+       register long s, u;
+       struct timeval tv;
+
+       /*
+        * Compute the amount of time during which the current
+        * process was running, and add that to its total so far.
+        */
+       microtime(&tv);
+       u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
+       s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
+       if (u < 0) {
+               u += 1000000;
+               s--;
+       } else if (u >= 1000000) {
+               u -= 1000000;
+               s++;
+       }
+       p->p_rtime.tv_usec = u;
+       p->p_rtime.tv_sec = s;
+
+       /*
+        * Check if the process exceeds its cpu resource allocation.
+        * If over max, kill it.  In any case, if it has run for more
+        * than 10 minutes, reduce priority to give others a chance.
+        */
+       rlim = &p->p_rlimit[RLIMIT_CPU];
+       if (s >= rlim->rlim_cur) {
+               if (s >= rlim->rlim_max)
+                       psignal(p, SIGKILL);
+               else {
+                       psignal(p, SIGXCPU);
+                       if (rlim->rlim_cur < rlim->rlim_max)
+                               rlim->rlim_cur += 5;
+               }
+       }
+       if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
+               p->p_nice = NZERO + 4;
+               resetpriority(p);
+       }
+
+       /*
+        * Pick a new current process and record its start time.
+        */
+       cnt.v_swtch++;
+       cpu_switch(p);
+       microtime(&runtime);
+}
+
 /*
  * Initialize the (doubly-linked) run queues
  * to be empty.
 /*
  * Initialize the (doubly-linked) run queues
  * to be empty.
@@ -508,21 +613,19 @@ rqinit()
  * placing it on the run queue if it is in memory,
  * and awakening the swapper if it isn't in memory.
  */
  * placing it on the run queue if it is in memory,
  * and awakening the swapper if it isn't in memory.
  */
-setrun(p)
+void
+setrunnable(p)
        register struct proc *p;
 {
        register int s;
 
        s = splhigh();
        switch (p->p_stat) {
        register struct proc *p;
 {
        register int s;
 
        s = splhigh();
        switch (p->p_stat) {
-
        case 0:
        case 0:
-       case SWAIT:
        case SRUN:
        case SZOMB:
        default:
        case SRUN:
        case SZOMB:
        default:
-               panic("setrun");
-
+               panic("setrunnable");
        case SSTOP:
        case SSLEEP:
                unsleep(p);             /* e.g. when sending signals */
        case SSTOP:
        case SSLEEP:
                unsleep(p);             /* e.g. when sending signals */
@@ -532,31 +635,32 @@ setrun(p)
                break;
        }
        p->p_stat = SRUN;
                break;
        }
        p->p_stat = SRUN;
-       if (p->p_flag & SLOAD)
-               setrq(p);
+       if (p->p_flag & P_INMEM)
+               setrunqueue(p);
        splx(s);
        if (p->p_slptime > 1)
                updatepri(p);
        p->p_slptime = 0;
        splx(s);
        if (p->p_slptime > 1)
                updatepri(p);
        p->p_slptime = 0;
-       if ((p->p_flag&SLOAD) == 0)
+       if ((p->p_flag & P_INMEM) == 0)
                wakeup((caddr_t)&proc0);
                wakeup((caddr_t)&proc0);
-       else if (p->p_pri < curpri)
+       else if (p->p_priority < curpriority)
                need_resched();
 }
 
 /*
                need_resched();
 }
 
 /*
- * Compute priority of process when running in user mode.
- * Arrange to reschedule if the resulting priority
- * is better than that of the current process.
+ * Compute the priority of a process when running in user mode.
+ * Arrange to reschedule if the resulting priority is better
+ * than that of the current process.
  */
  */
-setpri(p)
+void
+resetpriority(p)
        register struct proc *p;
 {
        register struct proc *p;
 {
-       register unsigned int newpri;
+       register unsigned int newpriority;
 
 
-       newpri = PUSER + p->p_cpu / 4 + 2 * p->p_nice;
-       newpri = min(newpri, MAXPRI);
-       p->p_usrpri = newpri;
-       if (newpri < curpri)
+       newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
+       newpriority = min(newpriority, MAXPRI);
+       p->p_usrpri = newpriority;
+       if (newpriority < curpriority)
                need_resched();
 }
                need_resched();
 }