Initial commit of OpenSPARC T2 design and verification files.
[OpenSPARC-T2-DV] / design / sys / iop / mcu / rtl / mcu_mbist_ctl.v
// ========== Copyright Header Begin ==========================================
//
// OpenSPARC T2 Processor File: mcu_mbist_ctl.v
// Copyright (C) 1995-2007 Sun Microsystems, Inc. All Rights Reserved
// 4150 Network Circle, Santa Clara, California 95054, U.S.A.
//
// * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; version 2 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// For the avoidance of doubt, and except that if any non-GPL license
// choice is available it will apply instead, Sun elects to use only
// the General Public License version 2 (GPLv2) at this time for any
// software where a choice of GPL license versions is made
// available with the language indicating that GPLv2 or any later version
// may be used, or where a choice of which version of the GPL is applied is
// otherwise unspecified.
//
// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
// CA 95054 USA or visit www.sun.com if you need additional information or
// have any questions.
//
// ========== Copyright Header End ============================================
module mcu_mbist_ctl (
mcu_mbist_run,
mcu_mbist_addr,
mcu_mbist_sel_bank0or1,
mcu_mbist_sel_hiorlo_72bits,
mcu_mbist_wdata,
mcu_mbist_wdqrf00_wr_en,
mcu_mbist_wdqrf00_rd_en,
mcu_mbist_wdqrf01_wr_en,
mcu_mbist_wdqrf01_rd_en,
mcu_mbist_wdqrf10_wr_en,
mcu_mbist_wdqrf10_rd_en,
mcu_mbist_wdqrf11_wr_en,
mcu_mbist_wdqrf11_rd_en,
scan_out,
mcu_mbist_done,
mcu_mbist_fail,
l2clk,
scan_in,
tcu_pce_ov,
tcu_aclk,
tcu_bclk,
tcu_scan_en,
mcu_mbist_start,
mcu_mbist_bisi_mode,
mcu_mbist_user_mode,
read_data);
wire pce_ov;
wire siclk;
wire soclk;
wire se;
wire l1clk;
wire config_reg_scanin;
wire config_reg_scanout;
wire [7:0] config_in;
wire [7:0] config_out;
wire start_transition;
wire reset_engine;
wire mbist_user_loop_mode;
wire mbist_done;
wire run;
wire bisi;
wire user_mode;
wire user_data_mode;
wire user_addr_mode;
wire user_loop_mode;
wire ten_n_mode;
wire mbist_user_data_mode;
wire mbist_user_addr_mode;
wire mbist_ten_n_mode;
wire user_data_reg_scanin;
wire user_data_reg_scanout;
wire [7:0] user_data_in;
wire [7:0] user_data_out;
wire user_start_addr_reg_scanin;
wire user_start_addr_reg_scanout;
wire [4:0] user_start_addr_in;
wire [4:0] user_start_addr;
wire user_stop_addr_reg_scanin;
wire user_stop_addr_reg_scanout;
wire [4:0] user_stop_addr_in;
wire [4:0] user_stop_addr;
wire user_incr_addr_reg_scanin;
wire user_incr_addr_reg_scanout;
wire [4:0] user_incr_addr_in;
wire [4:0] user_incr_addr;
wire user_array_sel_reg_scanin;
wire user_array_sel_reg_scanout;
wire [1:0] user_array_sel_in;
wire [1:0] user_array_sel;
wire user_bisi_wr_reg_scanin;
wire user_bisi_wr_reg_scanout;
wire user_bisi_wr_mode_in;
wire user_bisi_wr_mode;
wire user_bisi_rd_reg_scanin;
wire user_bisi_rd_reg_scanout;
wire user_bisi_rd_mode_in;
wire user_bisi_rd_mode;
wire mbist_user_bisi_wr_mode;
wire mbist_user_bisi_wr_rd_mode;
wire start_transition_reg_scanin;
wire start_transition_reg_scanout;
wire start_transition_piped;
wire run_reg_scanin;
wire run_reg_scanout;
wire counter_reg_scanin;
wire counter_reg_scanout;
wire [3:0] counter_in;
wire [3:0] counter_out;
wire cycle16;
wire run_piped16;
wire msb;
wire addr_reg_scanin;
wire addr_reg_scanout;
wire [4:0] mbist_address;
wire wdata_reg_scanin;
wire wdata_reg_scanout;
wire [7:0] mbist_wdata;
wire wdqrf00_wr_rd_reg_scanin;
wire wdqrf00_wr_rd_reg_scanout;
wire mbist_wdqrf00_wr_en;
wire mbist_wdqrf00_rd_en;
wire wdqrf01_wr_rd_reg_scanin;
wire wdqrf01_wr_rd_reg_scanout;
wire mbist_wdqrf01_wr_en;
wire mbist_wdqrf01_rd_en;
wire wdqrf10_wr_rd_reg_scanin;
wire wdqrf10_wr_rd_reg_scanout;
wire mbist_wdqrf10_wr_en;
wire mbist_wdqrf10_rd_en;
wire wdqrf11_wr_rd_reg_scanin;
wire wdqrf11_wr_rd_reg_scanout;
wire mbist_wdqrf11_wr_en;
wire mbist_wdqrf11_rd_en;
wire done_reg_scanin;
wire done_reg_scanout;
wire mbist_fail_reg_scanin;
wire mbist_fail_reg_scanout;
wire fail;
wire read_data_reg_scanin;
wire read_data_reg_scanout;
wire [71:0] read_data_pipe;
wire control_reg_scanin;
wire control_reg_scanout;
wire [18:0] control_in;
wire [18:0] control_out;
wire bisi_wr_rd;
wire [1:0] array_sel;
wire [1:0] data_control;
wire address_mix;
wire [3:0] march_element;
wire [4:0] array_address;
wire upaddress_march;
wire [2:0] read_write_control;
wire five_cycle_march;
wire one_cycle_march;
wire increment_addr;
wire [4:0] start_addr;
wire [4:0] next_array_address;
wire next_upaddr_march;
wire next_downaddr_march;
wire [4:0] stop_addr;
wire [5:0] overflow_addr;
wire [4:0] incr_addr;
wire overflow;
wire [5:0] compare_addr;
wire [4:0] add;
wire [4:0] adj_address;
wire increment_march_elem;
wire [1:0] next_array_sel;
wire [1:0] next_data_control;
wire next_address_mix;
wire [3:0] next_march_element;
wire array_write;
wire array_read;
wire true_data;
wire [7:0] data_pattern;
wire done_counter_reg_scanin;
wire done_counter_reg_scanout;
wire [2:0] done_counter_in;
wire [2:0] done_counter_out;
wire wdqrf00_sel;
wire wdqrf01_sel;
wire wdqrf10_sel;
wire wdqrf11_sel;
wire sel_bank0or1;
wire sel_hiorlo_72bits;
wire data_pipe_reg1_scanin;
wire data_pipe_reg1_scanout;
wire [7:0] data_pipe_reg1_in;
wire [7:0] data_pipe_out1;
wire data_pipe_reg2_scanin;
wire data_pipe_reg2_scanout;
wire [7:0] data_pipe_reg2_in;
wire [7:0] data_pipe_out2;
wire data_pipe_reg3_scanin;
wire data_pipe_reg3_scanout;
wire [7:0] data_pipe_reg3_in;
wire [7:0] data_pipe_out3;
wire data_pipe_reg4_scanin;
wire data_pipe_reg4_scanout;
wire [7:0] data_pipe_reg4_in;
wire [7:0] data_pipe_out4;
wire [7:0] mbist_piped_wdata;
wire ren_pipe_reg1_scanin;
wire ren_pipe_reg1_scanout;
wire ren_pipe_reg1_in;
wire ren_pipe_out1;
wire ren_pipe_reg2_scanin;
wire ren_pipe_reg2_scanout;
wire ren_pipe_reg2_in;
wire ren_pipe_out2;
wire ren_pipe_reg3_scanin;
wire ren_pipe_reg3_scanout;
wire ren_pipe_reg3_in;
wire ren_pipe_out3;
wire ren_pipe_reg4_scanin;
wire ren_pipe_reg4_scanout;
wire ren_pipe_reg4_in;
wire ren_pipe_out4;
wire ren_pipe_reg5_scanin;
wire ren_pipe_reg5_scanout;
wire ren_pipe_reg5_in;
wire ren_pipe_out5;
wire mbist_piped_ren;
wire sel_pipe_reg1_scanin;
wire sel_pipe_reg1_scanout;
wire [1:0] sel_pipe_reg1_in;
wire [1:0] sel_pipe_out1;
wire sel_pipe_reg2_scanin;
wire sel_pipe_reg2_scanout;
wire [1:0] sel_pipe_reg2_in;
wire [1:0] sel_pipe_out2;
wire sel_pipe_reg3_scanin;
wire sel_pipe_reg3_scanout;
wire [1:0] sel_pipe_reg3_in;
wire [1:0] sel_pipe_out3;
wire sel_pipe_reg4_scanin;
wire sel_pipe_reg4_scanout;
wire [1:0] sel_pipe_reg4_in;
wire [1:0] sel_pipe_out4;
wire sel_pipe_reg5_scanin;
wire sel_pipe_reg5_scanout;
wire [1:0] sel_pipe_reg5_in;
wire [1:0] sel_pipe_out5;
wire piped_sel_hiorlo_72bits;
wire piped_sel_bank0or1;
wire wdqrf00_sel_piped;
wire wdqrf01_sel_piped;
wire wdqrf10_sel_piped;
wire wdqrf11_sel_piped;
wire fail_reg_scanin;
wire fail_reg_scanout;
wire [3:0] fail_reg_in;
wire [3:0] fail_reg_out;
wire qual_sio_wdqrf11_fail;
wire qual_sio_wdqrf10_fail;
wire qual_sio_wdqrf01_fail;
wire qual_sio_wdqrf00_fail;
wire fail_detect;
wire spares_scanin;
wire spares_scanout;
// /////////////////////////////////////////////////////////////////////////////
// Outputs
// /////////////////////////////////////////////////////////////////////////////
output mcu_mbist_run;
output [4:0] mcu_mbist_addr;
//Select the 144 bits from wdqrf00 and 01 (when 0) OR wdqrf10 and 11 (when 1)
output mcu_mbist_sel_bank0or1;
//Select the 72 bits from wdqrf00 over 01 OR wdqrf10 over 11 (when 0)
//Assumed wdqrf00 and wdqrf10 provide the lower 72 bits!
output mcu_mbist_sel_hiorlo_72bits;
output [7:0] mcu_mbist_wdata;
output mcu_mbist_wdqrf00_wr_en;
output mcu_mbist_wdqrf00_rd_en;
output mcu_mbist_wdqrf01_wr_en;
output mcu_mbist_wdqrf01_rd_en;
output mcu_mbist_wdqrf10_wr_en;
output mcu_mbist_wdqrf10_rd_en;
output mcu_mbist_wdqrf11_wr_en;
output mcu_mbist_wdqrf11_rd_en;
output scan_out;
output mcu_mbist_done;
output mcu_mbist_fail;
// /////////////////////////////////////////////////////////////////////////////
// Inputs
// /////////////////////////////////////////////////////////////////////////////
input l2clk;
input scan_in;
input tcu_pce_ov; // scan signals
input tcu_aclk;
input tcu_bclk;
input tcu_scan_en;
input mcu_mbist_start;
input mcu_mbist_bisi_mode;
input mcu_mbist_user_mode;
input [71:0] read_data;
// /////////////////////////////////////////////////////////////////////////////
// Scan Renames
// /////////////////////////////////////////////////////////////////////////////
assign pce_ov = tcu_pce_ov;
assign siclk = tcu_aclk;
assign soclk = tcu_bclk;
assign se = tcu_scan_en;
////////////////////////////////////////////////////////////////////////////////
// Clock header
mcu_mbist_ctl_l1clkhdr_ctl_macro clkgen (
.l2clk (l2clk ),
.l1en (1'b1 ),
.stop (1'b0 ),
.l1clk (l1clk ),
.pce_ov(pce_ov),
.se(se)
);
// /////////////////////////////////////////////////////////////////////////////
//
// MBIST Config Register
//
// /////////////////////////////////////////////////////////////////////////////
//
// A low to high transition on mbist_start will reset and start the engine.
// mbist_start must remain active high for the duration of MBIST.
// If mbist_start deasserts the engine will stop but not reset.
// Once MBIST has completed mbist_done will assert and the fail status
// signals will be valid.
// To run MBIST again the mbist_start signal must transition low then high.
//
// Loop on Address will disable the address mix function.
//
// /////////////////////////////////////////////////////////////////////////////
mcu_mbist_ctl_msff_ctl_macro__width_8 config_reg (
.scan_in(config_reg_scanin),
.scan_out(config_reg_scanout),
.din ( config_in[7:0] ),
.dout ( config_out[7:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign config_in[0] = mcu_mbist_start;
assign config_in[1] = config_out[0];
assign start_transition = config_out[0] & ~config_out[1];
assign reset_engine = start_transition | (mbist_user_loop_mode & mbist_done);
// assign run = config_out[1] & (mbist_user_loop_mode | ~mbist_done);
assign run = config_out[0] & config_out[1]; // 9/19/05 run to follow start only!
assign config_in[2] = start_transition ? mcu_mbist_bisi_mode: config_out[2];
assign bisi = config_out[2];
assign config_in[3] = start_transition ? mcu_mbist_user_mode: config_out[3];
assign user_mode = config_out[3];
assign config_in[4] = config_out[4];
assign user_data_mode = config_out[4];
assign config_in[5] = config_out[5];
assign user_addr_mode = config_out[5];
assign config_in[6] = config_out[6];
assign user_loop_mode = config_out[6];
assign config_in[7] = config_out[7];
assign ten_n_mode = config_out[7];
assign mbist_user_data_mode = user_mode & user_data_mode;
assign mbist_user_addr_mode = user_mode & user_addr_mode;
assign mbist_user_loop_mode = user_mode & user_loop_mode;
assign mbist_ten_n_mode = user_mode & ten_n_mode;
mcu_mbist_ctl_msff_ctl_macro__width_8 user_data_reg (
.scan_in(user_data_reg_scanin),
.scan_out(user_data_reg_scanout),
.din ( user_data_in[7:0] ),
.dout ( user_data_out[7:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign user_data_in[7:0] = user_data_out[7:0];
// Defining User start, stop, and increment addresses.
mcu_mbist_ctl_msff_ctl_macro__width_5 user_start_addr_reg (
.scan_in(user_start_addr_reg_scanin),
.scan_out(user_start_addr_reg_scanout),
.din ( user_start_addr_in[4:0] ),
.dout ( user_start_addr[4:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign user_start_addr_in[4:0] = user_start_addr[4:0];
mcu_mbist_ctl_msff_ctl_macro__width_5 user_stop_addr_reg (
.scan_in(user_stop_addr_reg_scanin),
.scan_out(user_stop_addr_reg_scanout),
.din ( user_stop_addr_in[4:0] ),
.dout ( user_stop_addr[4:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign user_stop_addr_in[4:0] = user_stop_addr[4:0];
mcu_mbist_ctl_msff_ctl_macro__width_5 user_incr_addr_reg (
.scan_in(user_incr_addr_reg_scanin),
.scan_out(user_incr_addr_reg_scanout),
.din ( user_incr_addr_in[4:0] ),
.dout ( user_incr_addr[4:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign user_incr_addr_in[4:0] = user_incr_addr[4:0];
// Defining User array_sel.
mcu_mbist_ctl_msff_ctl_macro__width_2 user_array_sel_reg (
.scan_in(user_array_sel_reg_scanin),
.scan_out(user_array_sel_reg_scanout),
.din ( user_array_sel_in[1:0] ),
.dout ( user_array_sel[1:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign user_array_sel_in[1:0] = user_array_sel[1:0];
// Defining user_bisi write and read registers
mcu_mbist_ctl_msff_ctl_macro__width_1 user_bisi_wr_reg (
.scan_in(user_bisi_wr_reg_scanin),
.scan_out(user_bisi_wr_reg_scanout),
.din ( user_bisi_wr_mode_in ),
.dout ( user_bisi_wr_mode ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign user_bisi_wr_mode_in = user_bisi_wr_mode;
mcu_mbist_ctl_msff_ctl_macro__width_1 user_bisi_rd_reg (
.scan_in(user_bisi_rd_reg_scanin),
.scan_out(user_bisi_rd_reg_scanout),
.din ( user_bisi_rd_mode_in ),
.dout ( user_bisi_rd_mode ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign user_bisi_rd_mode_in = user_bisi_rd_mode;
assign mbist_user_bisi_wr_mode = user_mode & bisi & user_bisi_wr_mode & ~user_bisi_rd_mode;
// assign mbist_user_bisi_rd_mode = user_mode & bisi & user_bisi_rd_mode & ~user_bisi_wr_mode;
assign mbist_user_bisi_wr_rd_mode = user_mode & bisi &
((user_bisi_wr_mode & user_bisi_rd_mode) |
(~user_bisi_wr_mode & ~user_bisi_rd_mode));
////////////////////////////////////////////////////////////////////////////////
// Piping start_transition
////////////////////////////////////////////////////////////////////////////////
mcu_mbist_ctl_msff_ctl_macro__width_1 start_transition_reg (
.scan_in(start_transition_reg_scanin),
.scan_out(start_transition_reg_scanout),
.din ( start_transition ),
.dout ( start_transition_piped ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
////////////////////////////////////////////////////////////////////////////////
// Staging run for 16 cycles for mbist engines supporting async FIFO's
////////////////////////////////////////////////////////////////////////////////
mcu_mbist_ctl_msff_ctl_macro__width_1 run_reg (
.scan_in(run_reg_scanin),
.scan_out(run_reg_scanout),
.din ( run ),
.dout ( mcu_mbist_run ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk) );
mcu_mbist_ctl_msff_ctl_macro__width_4 counter_reg (
.scan_in(counter_reg_scanin),
.scan_out(counter_reg_scanout),
.din ( counter_in[3:0] ),
.dout ( counter_out[3:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign cycle16 = (&counter_out[3:0] == 1'b1);
assign counter_in[3:0] = reset_engine ? 4'b0:
run & ~cycle16 ? counter_out[3:0] + 4'b0001:
counter_out[3:0];
assign run_piped16 = config_out[0] & cycle16 & ~msb; // As soon as run goes low, mbist operation is done!
////////////////////////////////////////////////////////////////////////////////
//
// Creating the flop boundary around the mbist controller
//
////////////////////////////////////////////////////////////////////////////////
mcu_mbist_ctl_msff_ctl_macro__width_5 addr_reg (
.scan_in(addr_reg_scanin),
.scan_out(addr_reg_scanout),
.din ( mbist_address[4:0] ),
.dout ( mcu_mbist_addr[4:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_8 wdata_reg (
.scan_in(wdata_reg_scanin),
.scan_out(wdata_reg_scanout),
.din ( mbist_wdata[7:0] ),
.dout ( mcu_mbist_wdata[7:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_2 wdqrf00_wr_rd_reg (
.scan_in(wdqrf00_wr_rd_reg_scanin),
.scan_out(wdqrf00_wr_rd_reg_scanout),
.din ( {mbist_wdqrf00_wr_en, mbist_wdqrf00_rd_en} ),
.dout ( {mcu_mbist_wdqrf00_wr_en, mcu_mbist_wdqrf00_rd_en} ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_2 wdqrf01_wr_rd_reg (
.scan_in(wdqrf01_wr_rd_reg_scanin),
.scan_out(wdqrf01_wr_rd_reg_scanout),
.din ( {mbist_wdqrf01_wr_en, mbist_wdqrf01_rd_en} ),
.dout ( {mcu_mbist_wdqrf01_wr_en, mcu_mbist_wdqrf01_rd_en} ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_2 wdqrf10_wr_rd_reg (
.scan_in(wdqrf10_wr_rd_reg_scanin),
.scan_out(wdqrf10_wr_rd_reg_scanout),
.din ( {mbist_wdqrf10_wr_en, mbist_wdqrf10_rd_en} ),
.dout ( {mcu_mbist_wdqrf10_wr_en, mcu_mbist_wdqrf10_rd_en} ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_2 wdqrf11_wr_rd_reg (
.scan_in(wdqrf11_wr_rd_reg_scanin),
.scan_out(wdqrf11_wr_rd_reg_scanout),
.din ( {mbist_wdqrf11_wr_en, mbist_wdqrf11_rd_en} ),
.dout ( {mcu_mbist_wdqrf11_wr_en, mcu_mbist_wdqrf11_rd_en} ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_1 done_reg (
.scan_in(done_reg_scanin),
.scan_out(done_reg_scanout),
.din ( mbist_done ),
.dout ( mcu_mbist_done ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk) );
mcu_mbist_ctl_msff_ctl_macro__width_1 mbist_fail_reg (
.scan_in(mbist_fail_reg_scanin),
.scan_out(mbist_fail_reg_scanout),
.din ( fail ),
.dout ( mcu_mbist_fail ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk) );
//
mcu_mbist_ctl_msff_ctl_macro__width_72 read_data_reg (
.scan_in(read_data_reg_scanin),
.scan_out(read_data_reg_scanout),
.din ( read_data[71:0] ),
.dout ( read_data_pipe[71:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
// /////////////////////////////////////////////////////////////////////////////
//
// MBIST Control Register
//
// /////////////////////////////////////////////////////////////////////////////
// Remove Address mix disable before delivery
// /////////////////////////////////////////////////////////////////////////////
mcu_mbist_ctl_msff_ctl_macro__width_19 control_reg (
.scan_in(control_reg_scanin),
.scan_out(control_reg_scanout),
.din ( control_in[18:0] ),
.dout ( control_out[18:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign msb = control_out[18];
assign bisi_wr_rd = (bisi & ~user_mode) | mbist_user_bisi_wr_rd_mode ? control_out[17] : 1'b1;
assign array_sel[1:0] = user_mode ? user_array_sel[1:0] : control_out[16:15];
assign data_control[1:0] = control_out[14:13];
assign address_mix = (bisi | mbist_user_addr_mode) ? 1'b0: control_out[12];
assign march_element[3:0] = control_out[11:8];
assign array_address[4:0] = upaddress_march ? control_out[7:3] : ~control_out[7:3];
assign read_write_control[2:0] = ~five_cycle_march ? {2'b11, control_out[0]} :
control_out[2:0];
assign control_in[2:0] = reset_engine ? 3'b0:
~run_piped16 ? control_out[2:0]:
(five_cycle_march && (read_write_control[2:0] == 3'b100)) ? 3'b000:
(one_cycle_march && (read_write_control[2:0] == 3'b110)) ? 3'b000:
control_out[2:0] + 3'b001;
assign increment_addr = (five_cycle_march && (read_write_control[2:0] == 3'b100)) ||
(one_cycle_march && (read_write_control[2:0] == 3'b110)) ||
(read_write_control[2:0] == 3'b111);
// start_transition_piped was added to have the correct start_addr at the start
// of mbist during user_addr_mode
assign control_in[7:3] = start_transition_piped || reset_engine ? start_addr[4:0]:
~run_piped16 || ~increment_addr ? control_out[7:3]:
next_array_address[4:0];
assign next_array_address[4:0] = next_upaddr_march ? start_addr[4:0]:
next_downaddr_march ? ~stop_addr[4:0]:
(overflow_addr[4:0]); // array_addr + incr_addr
assign start_addr[4:0] = mbist_user_addr_mode ? user_start_addr[4:0] : 5'b00000;
assign stop_addr[4:0] = mbist_user_addr_mode ? user_stop_addr[4:0] : 5'b11111;
assign incr_addr[4:0] = mbist_user_addr_mode ? user_incr_addr[4:0] : 5'b00001;
assign overflow_addr[5:0] = {1'b0,control_out[7:3]} + {1'b0,incr_addr[4:0]};
assign overflow = compare_addr[5:0] < overflow_addr[5:0];
assign compare_addr[5:0] = upaddress_march ? {1'b0, stop_addr[4:0]} :
{1'b0, ~start_addr[4:0]};
assign next_upaddr_march = ( (march_element[3:0] == 4'h0) || (march_element[3:0] == 4'h1) ||
(march_element[3:0] == 4'h6) || (march_element[3:0] == 4'h5) ||
(march_element[3:0] == 4'h8) ) && overflow;
assign next_downaddr_march = ( (march_element[3:0] == 4'h2) || (march_element[3:0] == 4'h7) ||
(march_element[3:0] == 4'h3) || (march_element[3:0] == 4'h4) ) &&
overflow;
assign add[4:0] = five_cycle_march && ( (read_write_control[2:0] == 3'h1) ||
(read_write_control[2:0] == 3'h3)) ?
adj_address[4:0]: array_address[4:0];
assign adj_address[4:0] = { array_address[4:2], ~array_address[1], array_address[0] }; // In case it is 2 blks of 16 rows!
assign mbist_address[4:0] = address_mix ? {add[0],add[4],add[3],add[2],add[1]}:
add[4:0];
// Definition of the rest of the control register
assign increment_march_elem = increment_addr && overflow;
assign control_in[18:8] = reset_engine ? 11'b0:
~run_piped16 ? control_out[18:8]:
{msb, bisi_wr_rd, next_array_sel[1:0], next_data_control[1:0], next_address_mix, next_march_element[3:0]}
+ {10'b0, increment_march_elem};
assign next_array_sel[1:0] = user_mode ? 2'b11: control_out[16:15];
assign next_data_control[1:0] = (bisi || (mbist_user_data_mode && (data_control[1:0] == 2'b00))) ? 2'b11:
data_control[1:0];
assign next_address_mix = bisi | mbist_user_addr_mode ? 1'b1 : address_mix;
// Modified next_march_element to remove a possible long path.
// Incorporated ten_n_mode!
assign next_march_element[3:0] = ( bisi ||
(mbist_ten_n_mode && (march_element[3:0] == 4'b0101)) ||
((march_element[3:0] == 4'b1000) && (read_write_control[2:0] == 3'b100)) )
&& overflow ? 4'b1111: march_element[3:0];
assign array_write = ~run_piped16 ? 1'b0:
five_cycle_march ? (read_write_control[2:0] == 3'h0) ||
(read_write_control[2:0] == 3'h1) ||
(read_write_control[2:0] == 3'h4):
(~five_cycle_march & ~one_cycle_march) ? read_write_control[0]:
( ((march_element[3:0] == 4'h0) & (~bisi || ~bisi_wr_rd || mbist_user_bisi_wr_mode)) || (march_element[3:0] == 4'h7));
assign array_read = ~array_write && run_piped16; // && ~initialize;
// assign mbist_done = msb;
assign mbist_wdata[7:0] = true_data ? data_pattern[7:0]: ~data_pattern[7:0];
assign five_cycle_march = (march_element[3:0] == 4'h6) || (march_element[3:0] == 4'h8);
assign one_cycle_march = (march_element[3:0] == 4'h0) || (march_element[3:0] == 4'h5) ||
(march_element[3:0] == 4'h7);
assign upaddress_march = (march_element[3:0] == 4'h0) || (march_element[3:0] == 4'h1) ||
(march_element[3:0] == 4'h2) || (march_element[3:0] == 4'h6) ||
(march_element[3:0] == 4'h7);
// assign true_data = read_write_control[1] ^ ~march_element[0];
assign true_data = (five_cycle_march && (march_element[3:0] == 4'h6)) ?
((read_write_control[2:0] == 3'h0) || (read_write_control[2:0] == 3'h2)):
(five_cycle_march && (march_element[3:0] == 4'h8)) ?
((read_write_control[2:0] == 3'h1) ||
(read_write_control[2:0] == 3'h3) || (read_write_control[2:0] == 3'h4)):
one_cycle_march ? (march_element[3:0] == 4'h7):
~(read_write_control[0] ^ march_element[0]);
assign data_pattern[7:0] = (bisi & mbist_user_data_mode) ? ~user_data_out[7:0]:
mbist_user_data_mode ? user_data_out[7:0]:
bisi ? 8'hFF: // true_data function will invert to 8'h00
(data_control[1:0] == 2'h0) ? 8'hAA:
(data_control[1:0] == 2'h1) ? 8'h99:
(data_control[1:0] == 2'h2) ? 8'hCC:
8'h00;
/////////////////////////////////////////////////////////////////////////
// Creating the mbist_done signal
/////////////////////////////////////////////////////////////////////////
// Delaying mbist_done 8 clock signals after msb going high, to provide
// a generic solution for done going high after the last fail has come back!
mcu_mbist_ctl_msff_ctl_macro__width_3 done_counter_reg (
.scan_in(done_counter_reg_scanin),
.scan_out(done_counter_reg_scanout),
.din ( done_counter_in[2:0] ),
.dout ( done_counter_out[2:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
// config_out[1] is AND'ed to force mbist_done low 2 cycles after mbist_start
// goes low.
assign mbist_done = (&done_counter_out[2:0] == 1'b1) & config_out[1];
assign done_counter_in[2:0] = reset_engine ? 3'b000:
msb & ~mbist_done & config_out[1] ? done_counter_out[2:0] + 3'b001:
done_counter_out[2:0];
// /////////////////////////////////////////////////////////////////////////////
// Memory Select Definitions
// /////////////////////////////////////////////////////////////////////////////
assign wdqrf00_sel = ~array_sel[1] & ~array_sel[0];
assign wdqrf01_sel = ~array_sel[1] & array_sel[0];
assign wdqrf10_sel = array_sel[1] & ~array_sel[0];
assign wdqrf11_sel = array_sel[1] & array_sel[0];
assign sel_bank0or1 = array_sel[1]; // 1: wdqrf10 or 11
assign sel_hiorlo_72bits = array_sel[0]; // 1: wdqrf01 or 11
assign mbist_wdqrf00_rd_en = wdqrf00_sel && array_read;
assign mbist_wdqrf00_wr_en = wdqrf00_sel && array_write;
assign mbist_wdqrf01_rd_en = wdqrf01_sel && array_read;
assign mbist_wdqrf01_wr_en = wdqrf01_sel && array_write;
assign mbist_wdqrf10_rd_en = wdqrf10_sel && array_read;
assign mbist_wdqrf10_wr_en = wdqrf10_sel && array_write;
assign mbist_wdqrf11_rd_en = wdqrf11_sel && array_read;
assign mbist_wdqrf11_wr_en = wdqrf11_sel && array_write;
// /////////////////////////////////////////////////////////////////////////////
// Pipeline for wdata, read_en, and select lines
// /////////////////////////////////////////////////////////////////////////////
// 3 stages to account for memory + flop after 1st output mux and flop on
// read_data in mbist engine.
// 5/27/05: Added one more stage to account for additional memory input muxing
// in RTL.
mcu_mbist_ctl_msff_ctl_macro__width_8 data_pipe_reg1 (
.scan_in(data_pipe_reg1_scanin),
.scan_out(data_pipe_reg1_scanout),
.din ( data_pipe_reg1_in[7:0] ),
.dout ( data_pipe_out1[7:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_8 data_pipe_reg2 (
.scan_in(data_pipe_reg2_scanin),
.scan_out(data_pipe_reg2_scanout),
.din ( data_pipe_reg2_in[7:0] ),
.dout ( data_pipe_out2[7:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_8 data_pipe_reg3 (
.scan_in(data_pipe_reg3_scanin),
.scan_out(data_pipe_reg3_scanout),
.din ( data_pipe_reg3_in[7:0] ),
.dout ( data_pipe_out3[7:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_8 data_pipe_reg4 (
.scan_in(data_pipe_reg4_scanin),
.scan_out(data_pipe_reg4_scanout),
.din ( data_pipe_reg4_in[7:0] ),
.dout ( data_pipe_out4[7:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign data_pipe_reg1_in[7:0] = reset_engine ? 8'h00: mcu_mbist_wdata[7:0];
assign data_pipe_reg2_in[7:0] = reset_engine ? 8'h00: data_pipe_out1[7:0];
assign data_pipe_reg3_in[7:0] = reset_engine ? 8'h00: data_pipe_out2[7:0];
assign data_pipe_reg4_in[7:0] = reset_engine ? 8'h00: data_pipe_out3[7:0];
assign mbist_piped_wdata[7:0] = data_pipe_out4[7:0];
// 4 stages to account from array_read
mcu_mbist_ctl_msff_ctl_macro__width_1 ren_pipe_reg1 (
.scan_in(ren_pipe_reg1_scanin),
.scan_out(ren_pipe_reg1_scanout),
.din ( ren_pipe_reg1_in ),
.dout ( ren_pipe_out1 ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_1 ren_pipe_reg2 (
.scan_in(ren_pipe_reg2_scanin),
.scan_out(ren_pipe_reg2_scanout),
.din ( ren_pipe_reg2_in ),
.dout ( ren_pipe_out2 ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_1 ren_pipe_reg3 (
.scan_in(ren_pipe_reg3_scanin),
.scan_out(ren_pipe_reg3_scanout),
.din ( ren_pipe_reg3_in ),
.dout ( ren_pipe_out3 ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_1 ren_pipe_reg4 (
.scan_in(ren_pipe_reg4_scanin),
.scan_out(ren_pipe_reg4_scanout),
.din ( ren_pipe_reg4_in ),
.dout ( ren_pipe_out4 ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_1 ren_pipe_reg5 (
.scan_in(ren_pipe_reg5_scanin),
.scan_out(ren_pipe_reg5_scanout),
.din ( ren_pipe_reg5_in ),
.dout ( ren_pipe_out5 ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign ren_pipe_reg1_in = reset_engine ? 1'b0: array_read;
assign ren_pipe_reg2_in = reset_engine ? 1'b0: ren_pipe_out1;
assign ren_pipe_reg3_in = reset_engine ? 1'b0: ren_pipe_out2;
assign ren_pipe_reg4_in = reset_engine ? 1'b0: ren_pipe_out3;
assign ren_pipe_reg5_in = reset_engine ? 1'b0: ren_pipe_out4;
assign mbist_piped_ren = ren_pipe_out5;
// sel_hiorlo_72bits and sel_bank0or1
mcu_mbist_ctl_msff_ctl_macro__width_2 sel_pipe_reg1 (
.scan_in(sel_pipe_reg1_scanin),
.scan_out(sel_pipe_reg1_scanout),
.din ( sel_pipe_reg1_in[1:0] ),
.dout ( sel_pipe_out1[1:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_2 sel_pipe_reg2 (
.scan_in(sel_pipe_reg2_scanin),
.scan_out(sel_pipe_reg2_scanout),
.din ( sel_pipe_reg2_in[1:0] ),
.dout ( sel_pipe_out2[1:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_2 sel_pipe_reg3 (
.scan_in(sel_pipe_reg3_scanin),
.scan_out(sel_pipe_reg3_scanout),
.din ( sel_pipe_reg3_in[1:0] ),
.dout ( sel_pipe_out3[1:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_2 sel_pipe_reg4 (
.scan_in(sel_pipe_reg4_scanin),
.scan_out(sel_pipe_reg4_scanout),
.din ( sel_pipe_reg4_in[1:0] ),
.dout ( sel_pipe_out4[1:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
mcu_mbist_ctl_msff_ctl_macro__width_2 sel_pipe_reg5 (
.scan_in(sel_pipe_reg5_scanin),
.scan_out(sel_pipe_reg5_scanout),
.din ( sel_pipe_reg5_in[1:0] ),
.dout ( sel_pipe_out5[1:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign sel_pipe_reg1_in[1:0] = reset_engine ? 2'h0: {sel_bank0or1, sel_hiorlo_72bits};
assign sel_pipe_reg2_in[1:0] = reset_engine ? 2'h0: sel_pipe_out1[1:0];
assign sel_pipe_reg3_in[1:0] = reset_engine ? 2'h0: sel_pipe_out2[1:0];
assign sel_pipe_reg4_in[1:0] = reset_engine ? 2'h0: sel_pipe_out3[1:0];
assign sel_pipe_reg5_in[1:0] = reset_engine ? 2'h0: sel_pipe_out4[1:0];
assign mcu_mbist_sel_hiorlo_72bits = sel_pipe_out3[0]; // After mux for bank0 or 1, there is a flop
assign mcu_mbist_sel_bank0or1 = sel_pipe_out3[1]; // therefore, one more stage for hiorlo_72bits!
assign piped_sel_hiorlo_72bits = sel_pipe_out5[0];
assign piped_sel_bank0or1 = sel_pipe_out5[1];
assign wdqrf00_sel_piped = ~piped_sel_bank0or1 & ~piped_sel_hiorlo_72bits;
assign wdqrf01_sel_piped = ~piped_sel_bank0or1 & piped_sel_hiorlo_72bits;
assign wdqrf10_sel_piped = piped_sel_bank0or1 & ~piped_sel_hiorlo_72bits;
assign wdqrf11_sel_piped = piped_sel_bank0or1 & piped_sel_hiorlo_72bits;
// /////////////////////////////////////////////////////////////////////////////
// Shared Fail Detection
// /////////////////////////////////////////////////////////////////////////////
// Updated to meet these new features:
// 1.When mbist_done signal is asserted when it completes all the
// tests, it also need to assert static membist fail signal if
// there were any failures during the tests.
// 2.The mbist_fail signal won't be sticky bit from membist
// engine. The TCU will make it sticky fail bit as needed.
mcu_mbist_ctl_msff_ctl_macro__width_4 fail_reg (
.scan_in(fail_reg_scanin),
.scan_out(fail_reg_scanout),
.din ( fail_reg_in[3:0] ),
.dout ( fail_reg_out[3:0] ),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign fail_reg_in[3:0] = reset_engine ? 4'b0: {qual_sio_wdqrf11_fail,qual_sio_wdqrf10_fail,qual_sio_wdqrf01_fail,qual_sio_wdqrf00_fail} | fail_reg_out[3:0];
assign qual_sio_wdqrf00_fail = fail_detect && wdqrf00_sel_piped;
assign qual_sio_wdqrf01_fail = fail_detect && wdqrf01_sel_piped;
assign qual_sio_wdqrf10_fail = fail_detect && wdqrf10_sel_piped;
assign qual_sio_wdqrf11_fail = fail_detect && wdqrf11_sel_piped;
assign fail = mbist_done ? |fail_reg_out[3:0]:
qual_sio_wdqrf00_fail | qual_sio_wdqrf01_fail |
qual_sio_wdqrf10_fail | qual_sio_wdqrf11_fail;
assign fail_detect = (({9{mbist_piped_wdata[7:0]}} != read_data_pipe[71:0]) && mbist_piped_ren);
supply0 vss; // <- port for ground
supply1 vdd; // <- port for power
// /////////////////////////////////////////////////////////////////////////////
// spare gates
mcu_mbist_ctl_spare_ctl_macro__num_2 spares (
.scan_in(spares_scanin),
.scan_out(spares_scanout),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk)
);
// fixscan start:
assign config_reg_scanin = scan_in ;
assign user_data_reg_scanin = config_reg_scanout ;
assign user_start_addr_reg_scanin = user_data_reg_scanout ;
assign user_stop_addr_reg_scanin = user_start_addr_reg_scanout;
assign user_incr_addr_reg_scanin = user_stop_addr_reg_scanout;
assign user_array_sel_reg_scanin = user_incr_addr_reg_scanout;
assign user_bisi_wr_reg_scanin = user_array_sel_reg_scanout;
assign user_bisi_rd_reg_scanin = user_bisi_wr_reg_scanout ;
assign start_transition_reg_scanin = user_bisi_rd_reg_scanout ;
assign run_reg_scanin = start_transition_reg_scanout;
assign counter_reg_scanin = run_reg_scanout ;
assign addr_reg_scanin = counter_reg_scanout ;
assign wdata_reg_scanin = addr_reg_scanout ;
assign wdqrf00_wr_rd_reg_scanin = wdata_reg_scanout ;
assign wdqrf01_wr_rd_reg_scanin = wdqrf00_wr_rd_reg_scanout;
assign wdqrf10_wr_rd_reg_scanin = wdqrf01_wr_rd_reg_scanout;
assign wdqrf11_wr_rd_reg_scanin = wdqrf10_wr_rd_reg_scanout;
assign done_reg_scanin = wdqrf11_wr_rd_reg_scanout;
assign mbist_fail_reg_scanin = done_reg_scanout ;
assign read_data_reg_scanin = mbist_fail_reg_scanout ;
assign control_reg_scanin = read_data_reg_scanout ;
assign done_counter_reg_scanin = control_reg_scanout ;
assign data_pipe_reg1_scanin = done_counter_reg_scanout ;
assign data_pipe_reg2_scanin = data_pipe_reg1_scanout ;
assign data_pipe_reg3_scanin = data_pipe_reg2_scanout ;
assign data_pipe_reg4_scanin = data_pipe_reg3_scanout ;
assign ren_pipe_reg1_scanin = data_pipe_reg4_scanout ;
assign ren_pipe_reg2_scanin = ren_pipe_reg1_scanout ;
assign ren_pipe_reg3_scanin = ren_pipe_reg2_scanout ;
assign ren_pipe_reg4_scanin = ren_pipe_reg3_scanout ;
assign ren_pipe_reg5_scanin = ren_pipe_reg4_scanout ;
assign sel_pipe_reg1_scanin = ren_pipe_reg5_scanout ;
assign sel_pipe_reg2_scanin = sel_pipe_reg1_scanout ;
assign sel_pipe_reg3_scanin = sel_pipe_reg2_scanout ;
assign sel_pipe_reg4_scanin = sel_pipe_reg3_scanout ;
assign sel_pipe_reg5_scanin = sel_pipe_reg4_scanout ;
assign fail_reg_scanin = sel_pipe_reg5_scanout ;
assign spares_scanin = fail_reg_scanout ;
assign scan_out = spares_scanout ;
// fixscan end:
endmodule
// /////////////////////////////////////////////////////////////////////////////
// any PARAMS parms go into naming of macro
module mcu_mbist_ctl_l1clkhdr_ctl_macro (
l2clk,
l1en,
pce_ov,
stop,
se,
l1clk);
input l2clk;
input l1en;
input pce_ov;
input stop;
input se;
output l1clk;
cl_sc1_l1hdr_8x c_0 (
.l2clk(l2clk),
.pce(l1en),
.l1clk(l1clk),
.se(se),
.pce_ov(pce_ov),
.stop(stop)
);
endmodule
// any PARAMS parms go into naming of macro
module mcu_mbist_ctl_msff_ctl_macro__width_8 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [7:0] fdin;
wire [6:0] so;
input [7:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [7:0] dout;
output scan_out;
assign fdin[7:0] = din[7:0];
dff #(8) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[7:0]),
.si({scan_in,so[6:0]}),
.so({so[6:0],scan_out}),
.q(dout[7:0])
);
endmodule
// any PARAMS parms go into naming of macro
module mcu_mbist_ctl_msff_ctl_macro__width_5 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [4:0] fdin;
wire [3:0] so;
input [4:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [4:0] dout;
output scan_out;
assign fdin[4:0] = din[4:0];
dff #(5) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[4:0]),
.si({scan_in,so[3:0]}),
.so({so[3:0],scan_out}),
.q(dout[4:0])
);
endmodule
// any PARAMS parms go into naming of macro
module mcu_mbist_ctl_msff_ctl_macro__width_2 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [1:0] fdin;
wire [0:0] so;
input [1:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [1:0] dout;
output scan_out;
assign fdin[1:0] = din[1:0];
dff #(2) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[1:0]),
.si({scan_in,so[0:0]}),
.so({so[0:0],scan_out}),
.q(dout[1:0])
);
endmodule
// any PARAMS parms go into naming of macro
module mcu_mbist_ctl_msff_ctl_macro__width_1 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [0:0] fdin;
input [0:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [0:0] dout;
output scan_out;
assign fdin[0:0] = din[0:0];
dff #(1) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[0:0]),
.si(scan_in),
.so(scan_out),
.q(dout[0:0])
);
endmodule
// any PARAMS parms go into naming of macro
module mcu_mbist_ctl_msff_ctl_macro__width_4 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [3:0] fdin;
wire [2:0] so;
input [3:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [3:0] dout;
output scan_out;
assign fdin[3:0] = din[3:0];
dff #(4) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[3:0]),
.si({scan_in,so[2:0]}),
.so({so[2:0],scan_out}),
.q(dout[3:0])
);
endmodule
// any PARAMS parms go into naming of macro
module mcu_mbist_ctl_msff_ctl_macro__width_72 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [71:0] fdin;
wire [70:0] so;
input [71:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [71:0] dout;
output scan_out;
assign fdin[71:0] = din[71:0];
dff #(72) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[71:0]),
.si({scan_in,so[70:0]}),
.so({so[70:0],scan_out}),
.q(dout[71:0])
);
endmodule
// any PARAMS parms go into naming of macro
module mcu_mbist_ctl_msff_ctl_macro__width_19 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [18:0] fdin;
wire [17:0] so;
input [18:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [18:0] dout;
output scan_out;
assign fdin[18:0] = din[18:0];
dff #(19) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[18:0]),
.si({scan_in,so[17:0]}),
.so({so[17:0],scan_out}),
.q(dout[18:0])
);
endmodule
// any PARAMS parms go into naming of macro
module mcu_mbist_ctl_msff_ctl_macro__width_3 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [2:0] fdin;
wire [1:0] so;
input [2:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [2:0] dout;
output scan_out;
assign fdin[2:0] = din[2:0];
dff #(3) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[2:0]),
.si({scan_in,so[1:0]}),
.so({so[1:0],scan_out}),
.q(dout[2:0])
);
endmodule
// Description: Spare gate macro for control blocks
//
// Param num controls the number of times the macro is added
// flops=0 can be used to use only combination spare logic
module mcu_mbist_ctl_spare_ctl_macro__num_2 (
l1clk,
scan_in,
siclk,
soclk,
scan_out);
wire si_0;
wire so_0;
wire spare0_flop_unused;
wire spare0_buf_32x_unused;
wire spare0_nand3_8x_unused;
wire spare0_inv_8x_unused;
wire spare0_aoi22_4x_unused;
wire spare0_buf_8x_unused;
wire spare0_oai22_4x_unused;
wire spare0_inv_16x_unused;
wire spare0_nand2_16x_unused;
wire spare0_nor3_4x_unused;
wire spare0_nand2_8x_unused;
wire spare0_buf_16x_unused;
wire spare0_nor2_16x_unused;
wire spare0_inv_32x_unused;
wire si_1;
wire so_1;
wire spare1_flop_unused;
wire spare1_buf_32x_unused;
wire spare1_nand3_8x_unused;
wire spare1_inv_8x_unused;
wire spare1_aoi22_4x_unused;
wire spare1_buf_8x_unused;
wire spare1_oai22_4x_unused;
wire spare1_inv_16x_unused;
wire spare1_nand2_16x_unused;
wire spare1_nor3_4x_unused;
wire spare1_nand2_8x_unused;
wire spare1_buf_16x_unused;
wire spare1_nor2_16x_unused;
wire spare1_inv_32x_unused;
input l1clk;
input scan_in;
input siclk;
input soclk;
output scan_out;
cl_sc1_msff_8x spare0_flop (.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.si(si_0),
.so(so_0),
.d(1'b0),
.q(spare0_flop_unused));
assign si_0 = scan_in;
cl_u1_buf_32x spare0_buf_32x (.in(1'b1),
.out(spare0_buf_32x_unused));
cl_u1_nand3_8x spare0_nand3_8x (.in0(1'b1),
.in1(1'b1),
.in2(1'b1),
.out(spare0_nand3_8x_unused));
cl_u1_inv_8x spare0_inv_8x (.in(1'b1),
.out(spare0_inv_8x_unused));
cl_u1_aoi22_4x spare0_aoi22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare0_aoi22_4x_unused));
cl_u1_buf_8x spare0_buf_8x (.in(1'b1),
.out(spare0_buf_8x_unused));
cl_u1_oai22_4x spare0_oai22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare0_oai22_4x_unused));
cl_u1_inv_16x spare0_inv_16x (.in(1'b1),
.out(spare0_inv_16x_unused));
cl_u1_nand2_16x spare0_nand2_16x (.in0(1'b1),
.in1(1'b1),
.out(spare0_nand2_16x_unused));
cl_u1_nor3_4x spare0_nor3_4x (.in0(1'b0),
.in1(1'b0),
.in2(1'b0),
.out(spare0_nor3_4x_unused));
cl_u1_nand2_8x spare0_nand2_8x (.in0(1'b1),
.in1(1'b1),
.out(spare0_nand2_8x_unused));
cl_u1_buf_16x spare0_buf_16x (.in(1'b1),
.out(spare0_buf_16x_unused));
cl_u1_nor2_16x spare0_nor2_16x (.in0(1'b0),
.in1(1'b0),
.out(spare0_nor2_16x_unused));
cl_u1_inv_32x spare0_inv_32x (.in(1'b1),
.out(spare0_inv_32x_unused));
cl_sc1_msff_8x spare1_flop (.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.si(si_1),
.so(so_1),
.d(1'b0),
.q(spare1_flop_unused));
assign si_1 = so_0;
cl_u1_buf_32x spare1_buf_32x (.in(1'b1),
.out(spare1_buf_32x_unused));
cl_u1_nand3_8x spare1_nand3_8x (.in0(1'b1),
.in1(1'b1),
.in2(1'b1),
.out(spare1_nand3_8x_unused));
cl_u1_inv_8x spare1_inv_8x (.in(1'b1),
.out(spare1_inv_8x_unused));
cl_u1_aoi22_4x spare1_aoi22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare1_aoi22_4x_unused));
cl_u1_buf_8x spare1_buf_8x (.in(1'b1),
.out(spare1_buf_8x_unused));
cl_u1_oai22_4x spare1_oai22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare1_oai22_4x_unused));
cl_u1_inv_16x spare1_inv_16x (.in(1'b1),
.out(spare1_inv_16x_unused));
cl_u1_nand2_16x spare1_nand2_16x (.in0(1'b1),
.in1(1'b1),
.out(spare1_nand2_16x_unused));
cl_u1_nor3_4x spare1_nor3_4x (.in0(1'b0),
.in1(1'b0),
.in2(1'b0),
.out(spare1_nor3_4x_unused));
cl_u1_nand2_8x spare1_nand2_8x (.in0(1'b1),
.in1(1'b1),
.out(spare1_nand2_8x_unused));
cl_u1_buf_16x spare1_buf_16x (.in(1'b1),
.out(spare1_buf_16x_unused));
cl_u1_nor2_16x spare1_nor2_16x (.in0(1'b0),
.in1(1'b0),
.out(spare1_nor2_16x_unused));
cl_u1_inv_32x spare1_inv_32x (.in(1'b1),
.out(spare1_inv_32x_unused));
assign scan_out = so_1;
endmodule