Added `-binary` CLI flag to NEDsim for loading a.out format programs.
[screensavers] / hacks / NEDsim / simulator.c
/* (c) 2021 Aaron Taylor <ataylor at subgeniuskitty dot com> */
/* See LICENSE.txt file for copyright and license details. */
/* -------------------------------------------------------------------------- */
/* NED1 Simulator */
/* -------------------------------------------------------------------------- */
// TODO: Make a bunch of functions private in this file.
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <stdlib.h>
#include <stdbool.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <time.h>
#include <termios.h>
#include <signal.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include "a.out.h"
#include "simulator.h"
uint32_t
generate_binary_psw(struct NEDstate * state)
{
uint32_t psw = 0;
if (state->active_thread->psw->zero) psw |= 0b1;
if (state->active_thread->psw->negative) psw |= 0b10;
return psw;
}
void
ram_w_byte(struct NEDstate * state, uint32_t address, uint8_t data)
{
state->ram[address-RAM_BASE_ADDRESS] = data;
}
uint8_t
ram_r_byte(struct NEDstate * state, uint32_t address)
{
return state->ram[address-RAM_BASE_ADDRESS];
}
/* For now, with only a terminal for IO, we pick off IO requests when accessing RAM. */
void
ram_w_word(struct NEDstate * state, uint32_t address, uint32_t data)
{
if (address >= RAM_BASE_ADDRESS) {
for (int i=3; i>=0; i--) {
uint8_t tmp_byte = ((data >> (8*(3-i))) & 0xff);
ram_w_byte(state,address+i,tmp_byte);
}
}
}
uint32_t
ram_r_word(struct NEDstate * state, uint32_t address)
{
if (address == 0x0) { /* Zero register */
return 0b0;
} else if (address == 0x4) { /* 0x80000000 register */
return 0x80000000;
} else if (address == 0x8) { /* PC register */
return state->active_thread->pc;
} else if (address == 0xC) { /* PSW register */
return generate_binary_psw(state);
} else if (address >= RAM_BASE_ADDRESS) { /* RAM */
uint32_t word = 0;
for (int i=0; i<4; i++) word |= (ram_r_byte(state,address+i)) << (8*(3-i));
return word;
}
return 0b0;
}
uint32_t
fetch_instruction_word(struct NEDstate * state)
{
uint32_t word = ram_r_word(state, state->active_thread->pc);
state->active_thread->pc += BPW;
return word;
}
void
stack_w(struct NEDthread * thread, uint32_t value, uint8_t offset)
{
thread->stack[thread->sp - (offset + 1)] = value;
}
uint32_t
stack_r(struct NEDthread * thread, uint8_t offset)
{
return thread->stack[thread->sp - (offset + 1)];
}
void
stack_push(struct NEDthread * thread, uint32_t value)
{
thread->stack[thread->sp++] = value;
}
uint32_t
stack_pop(struct NEDthread * thread)
{
return thread->stack[--thread->sp];
}
void
set_psw_flags(uint32_t word, struct NEDstate * state)
{
if (word == 0) {
state->active_thread->psw->zero = true;
} else {
state->active_thread->psw->zero = false;
}
if (word & 0x80000000) {
state->active_thread->psw->negative = true;
} else {
state->active_thread->psw->negative = false;
}
}
void
ned_instruction_and(struct NEDstate * state)
{
uint32_t operand1 = stack_pop(state->active_thread);
uint32_t operand2 = stack_pop(state->active_thread);
stack_push(state->active_thread, (operand1 & operand2));
set_psw_flags(stack_r(state->active_thread,0), state);
}
void
ned_instruction_or(struct NEDstate * state)
{
uint32_t operand1 = stack_pop(state->active_thread);
uint32_t operand2 = stack_pop(state->active_thread);
stack_push(state->active_thread, (operand1 | operand2));
set_psw_flags(stack_r(state->active_thread,0), state);
}
void
ned_instruction_not(struct NEDstate * state)
{
stack_push(state->active_thread, ~stack_pop(state->active_thread));
set_psw_flags(stack_r(state->active_thread,0), state);
}
void
ned_instruction_xor(struct NEDstate * state)
{
uint32_t operand1 = stack_pop(state->active_thread);
uint32_t operand2 = stack_pop(state->active_thread);
stack_push(state->active_thread, (operand1 ^ operand2));
set_psw_flags(stack_r(state->active_thread,0), state);
}
void
ned_instruction_add(struct NEDstate * state)
{
uint32_t operand1 = stack_pop(state->active_thread);
uint32_t operand2 = stack_pop(state->active_thread);
stack_push(state->active_thread, (operand1 + operand2));
set_psw_flags(stack_r(state->active_thread,0), state);
}
void
ned_instruction_shift(struct NEDstate * state)
{
/* TODO: Bounds check: Either all inputs are valid OR shift_by < 32. */
/* I guess this also depends if I'm shifting-and-dropping, or barrel-shifting. */
/* How should I pad for a right shift if I shift-and-drop? Sign extend? */
uint32_t shift_by = stack_pop(state->active_thread);
uint32_t word = stack_pop(state->active_thread);
if (shift_by & 0x80000000) {
stack_push(state->active_thread, (word << (shift_by & 0x7fffffff)));
} else {
stack_push(state->active_thread, (word >> shift_by));
}
set_psw_flags(stack_r(state->active_thread,0), state);
}
void
ned_instruction_test(struct NEDstate * state)
{
uint32_t word = stack_pop(state->active_thread);
set_psw_flags(word, state);
}
void
ned_instruction_jmp(struct NEDstate * state)
{
state->active_thread->pc = stack_pop(state->active_thread);
// The SC is caught and reset by the main loop since the PC changed.
}
void
ned_instruction_swap(struct NEDstate * state)
{
uint32_t temp1 = stack_pop(state->active_thread);
uint32_t temp2 = stack_pop(state->active_thread);
stack_push(state->active_thread, temp1);
stack_push(state->active_thread, temp2);
set_psw_flags(stack_r(state->active_thread,0), state);
}
void
ned_instruction_brz(struct NEDstate * state)
{
uint32_t new_pc = stack_pop(state->active_thread);
uint32_t test_word = stack_pop(state->active_thread);
if (test_word == 0) {
state->active_thread->pc = new_pc;
// The SC is caught and reset by the main loop since the PC changed.
}
}
void
ned_instruction_load(struct NEDstate * state)
{
uint32_t address = stack_pop(state->active_thread);
stack_push(state->active_thread, ram_r_word(state, address));
set_psw_flags(stack_r(state->active_thread,0), state);
}
void
ned_instruction_store(struct NEDstate * state)
{
uint32_t address = stack_pop(state->active_thread);
uint32_t data = stack_pop(state->active_thread);
ram_w_word(state, address, data);
}
void
ned_instruction_halt(struct NEDstate * state)
{
printf("Halting.\n");
state->halted = true;
}
void
execute_syllable(struct NEDstate * state, enum syllables syllable)
{
if (syllable & 0b100000) { /* Check the first bit of the syllable. 1 means IM_x. */
stack_push(state->active_thread, (uint32_t)(syllable & 0b11111));
} else if (syllable & 0b10000) { /* 1 in 2nd bit means LDSP+x or STSP+x instruction. */
if (syllable & 0b1000) { /* LDSP+x */
stack_push(state->active_thread,stack_r(state->active_thread,(syllable & 0b111)));
set_psw_flags(stack_r(state->active_thread,0), state);
} else { /* STSP+x */
stack_w(state->active_thread,stack_pop(state->active_thread),(syllable & 0b111));
}
} else {
switch (syllable) {
case AND: ned_instruction_and(state); break;
case OR: ned_instruction_or(state); break;
case NOT: ned_instruction_not(state); break;
case XOR: ned_instruction_xor(state); break;
case ADD: ned_instruction_add(state); break;
case MVSTCK: /* Intentionally blank */ break;
case SHIFT: ned_instruction_shift(state); break;
case CMPSWP: /* Intentionally blank */ break;
case TEST: ned_instruction_test(state); break;
case JMP: ned_instruction_jmp(state); break;
case SWAP: ned_instruction_swap(state); break;
case BRZ: ned_instruction_brz(state); break;
case LOAD: ned_instruction_load(state); break;
case STORE: ned_instruction_store(state); break;
case NOP: /* Intentionally blank */ break;
case HALT: ned_instruction_halt(state); break;
default:
printf("ERROR: Attempted to execute illegal syllable: 0o%o\n", syllable);
state->halted = true;
break;
}
}
}
uint8_t
extract_syllable_from_word(uint32_t word, uint8_t index)
{
uint32_t mask = 0b111111 << 6*(4-index);
return (word & mask) >> 6*(4-index);
}
void
parse_aout_file(FILE * input, struct exec * aout_exec, uint8_t * text_segment,
struct nlist ** symbol_table, uint32_t * symbol_count)
{
uint32_t read_count = 0;
/* Read in and check the a.out header. */
for (uint32_t i=0; i<8; i++) {
switch (i) {
case 0: read_count = fread(&(aout_exec->a_midmag), 4, 1, input); break;
case 1: read_count = fread(&(aout_exec->a_text), 4, 1, input); break;
case 2: read_count = fread(&(aout_exec->a_data), 4, 1, input); break;
case 3: read_count = fread(&(aout_exec->a_bss), 4, 1, input); break;
case 4: read_count = fread(&(aout_exec->a_syms), 4, 1, input); break;
case 5: read_count = fread(&(aout_exec->a_entry), 4, 1, input); break;
case 6: read_count = fread(&(aout_exec->a_trsize), 4, 1, input); break;
case 7: read_count = fread(&(aout_exec->a_drsize), 4, 1, input); break;
}
if (read_count != 1) {
fprintf(stderr, "ERROR: Invalid a.out header.\n");
exit(EXIT_FAILURE);
}
}
if (N_BADMAG(*aout_exec)) {
fprintf(stderr, "ERROR: Invalid magic number in a.out header.\n");
exit(EXIT_FAILURE);
} else if (N_GETMID(*aout_exec) != MID_NED) {
fprintf(stderr, "ERROR: Executable not intended for NED Machine ID.\n");
exit(EXIT_FAILURE);
}
/* Read in the text segment. */
uint32_t text_segment_size = (N_DATOFF(*aout_exec) - N_TXTOFF(*aout_exec));
read_count = fread(text_segment, 1, text_segment_size, input);
if (read_count != text_segment_size) {
fprintf(stderr, "ERROR: Failed to read entire text segment.\n");
exit(EXIT_FAILURE);
}
/* Correct the byte order. */
for (uint32_t i=0; i < (text_segment_size / 4); i++) {
uint8_t temp_word[4];
for (uint8_t j=0; j<4; j++) temp_word[j] = text_segment[((i*4)+j)];
for (uint8_t j=0; j<4; j++) text_segment[((i*4)+j)] = temp_word[(3-j)];
}
/* Read in the symbol table. */
*symbol_count = ((N_STROFF(*aout_exec) - N_SYMOFF(*aout_exec)) / 20); /* 20 bytes per symbol. */
*symbol_table = malloc((*symbol_count) * sizeof(struct nlist));
for (uint32_t i=0; i < *symbol_count; i++) {
for (uint32_t j=0; j<5; j++) {
switch (j) {
case 0: read_count = fread(&((*symbol_table)[i].n_un.n_strx), 4, 1, input); break;
case 1: read_count = fread(&((*symbol_table)[i].n_type), 4, 1, input); break;
case 2: read_count = fread(&((*symbol_table)[i].n_other), 4, 1, input); break;
case 3: read_count = fread(&((*symbol_table)[i].n_desc), 4, 1, input); break;
case 4: read_count = fread(&((*symbol_table)[i].n_value), 4, 1, input); break;
}
if (read_count != 1) {
fprintf(stderr, "ERROR: Unable to read entire symbol table.\n");
exit(EXIT_FAILURE);
}
}
}
/* Read in the string table and update the symbol table entries with pointers to new strings. */
uint32_t string_table_size;
read_count = fread(&string_table_size, 4, 1, input);
if (read_count != 1) {
fprintf(stderr, "ERROR: Failed to read string table size.\n");
exit(EXIT_FAILURE);
}
for (uint32_t i=0; i < *symbol_count; i++) {
uint32_t len = 0;
if (i < ((*symbol_count)-1)) {
len = ((*symbol_table)[i+1].n_un.n_strx - (*symbol_table)[i].n_un.n_strx);
} else {
len = (string_table_size - (*symbol_table)[i].n_un.n_strx);
}
(*symbol_table)[i].n_un.n_name = malloc(len);
read_count = fread((*symbol_table)[i].n_un.n_name, 1, len, input);
if (read_count != len) {
fprintf(stderr, "ERROR: Failed to read a string from the string table.\n");
exit(EXIT_FAILURE);
}
}
}
struct NEDstate *
init_simulator(char * input_file)
{
struct NEDstate * state = malloc(sizeof(struct NEDstate));
state->hack = malloc(sizeof(struct NEDhack));
state->thread[0] = malloc(sizeof(struct NEDthread));
state->thread[0]->psw = malloc(sizeof(struct NEDpsw));
state->thread[0]->pc = 0;
state->thread[0]->sc = 0;
state->thread[0]->sp = 0;
state->thread[0]->psw->zero = false;
state->thread[0]->psw->negative = false;
state->thread[0]->pc = RAM_BASE_ADDRESS;
state->active_thread = state->thread[0];
state->halted = false;
state->hack->resume_word = false;
/* Load an initial image into memory. */
struct exec aout_exec;
struct nlist * symbol_table;
uint32_t symbol_count;
FILE * input = NULL;
if ((input = fopen(input_file, "r")) == NULL) {
fprintf(stderr, "ERROR: %s: %s\n", input_file, strerror(errno));
state->halted = true;
}
parse_aout_file(input, &aout_exec, state->ram, &symbol_table, &symbol_count);
fclose(input);
for (size_t i=0; i < symbol_count; i++) {
free(symbol_table[i].n_un.n_name);
}
free(symbol_table);
return state;
}
struct NEDstate *
run_simulator(struct NEDstate * state)
{
if (state->halted) return state;
/* Fetch instruction word. */
uint32_t iw;
if (state->hack->resume_word) {
iw = state->hack->iw;
} else {
iw = fetch_instruction_word(state);
}
/* Decode instruction word format and execute. */
if (iw & (0b1 << 31)) { /* Instruction word is type A. */
stack_push(state->active_thread, (iw << 1));
} else if ((iw & (0b11 << 30)) == 0) { /* Instruction word is type C. */
uint8_t syllable = extract_syllable_from_word(iw, state->active_thread->sc);
state->active_thread->sc++; // TODO: Should this be part of extract_syllable_from_word()? After all, incrementing the PC is done in fetch_instruction_word().
uint32_t pre_execution_pc = state->active_thread->pc; // TODO: This is so we can catch JMP/JSR/etc subroutines that need the SC to be reset to zero.
execute_syllable(state, syllable);
if (state->active_thread->pc != pre_execution_pc) {
// Jumped to a new address, so prepare to execute a new instruction word.
state->active_thread->sc = 0;
state->hack->resume_word = false;
} else if (state->active_thread->sc >= SPW) {
// Just executed the last syllable in this word, time to follow the PC to the next word.
state->active_thread->sc = 0;
state->hack->resume_word = false;
} else {
// More syllables remain to be executed in this instruction word.
state->hack->resume_word = true;
state->hack->iw = iw;
}
} else {
state->halted = true;
fprintf(stderr, "WARNING: Halting due to attempted execution of illegal instruction.\n");
}
return state;
}