Initial commit of OpenSPARC T2 architecture model.
[OpenSPARC-T2-SAM] / sam-t2 / devtools / v8plus / html / swig / Ocaml.html
CommitLineData
920dae64
AT
1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html>
3<head>
4 <title>SWIG and Ocaml</title>
5<link rel="stylesheet" type="text/css" href="style.css">
6</head>
7 <body bgcolor="#ffffff">
8 <a name="n1"></a>
9<H1><a name="Ocaml"></a>22 SWIG and Ocaml</H1>
10<!-- INDEX -->
11<div class="sectiontoc">
12<ul>
13<li><a href="#Ocaml_nn2">Preliminaries</a>
14<ul>
15<li><a href="#Ocaml_nn3">Running SWIG</a>
16<li><a href="#Ocaml_nn4">Compiling the code</a>
17<li><a href="#Ocaml_nn5">The camlp4 module</a>
18<li><a href="#Ocaml_nn6">Using your module</a>
19<li><a href="#Ocaml_nn7">Compilation problems and compiling with C++</a>
20</ul>
21<li><a href="#Ocaml_nn8">The low-level Ocaml/C interface</a>
22<ul>
23<li><a href="#Ocaml_nn9">The generated module</a>
24<li><a href="#Ocaml_nn10">Enums</a>
25<ul>
26<li><a href="#Ocaml_nn11">Enum typing in Ocaml</a>
27</ul>
28<li><a href="#Ocaml_nn12">Arrays</a>
29<ul>
30<li><a href="#Ocaml_nn13">Simple types of bounded arrays</a>
31<li><a href="#Ocaml_nn14">Complex and unbounded arrays</a>
32<li><a href="#Ocaml_nn15">Using an object</a>
33<li><a href="#Ocaml_nn16">Example typemap for a function taking float * and int</a>
34</ul>
35<li><a href="#Ocaml_nn17">C++ Classes</a>
36<ul>
37<li><a href="#Ocaml_nn18">STL vector and string Example</a>
38<li><a href="#Ocaml_nn19">C++ Class Example</a>
39<li><a href="#Ocaml_nn20">Compiling the example</a>
40<li><a href="#Ocaml_nn21">Sample Session</a>
41</ul>
42<li><a href="#Ocaml_nn22">Director Classes</a>
43<ul>
44<li><a href="#Ocaml_nn23">Director Introduction</a>
45<li><a href="#Ocaml_nn24">Overriding Methods in Ocaml</a>
46<li><a href="#Ocaml_nn25">Director Usage Example</a>
47<li><a href="#Ocaml_nn26">Creating director objects</a>
48<li><a href="#Ocaml_nn27">Typemaps for directors, <tt>directorin, directorout, directorargout</tt></a>
49<li><a href="#Ocaml_nn28"><tt>directorin</tt> typemap</a>
50<li><a href="#Ocaml_nn29"><tt>directorout</tt> typemap</a>
51<li><a href="#Ocaml_nn30"><tt>directorargout</tt> typemap</a>
52</ul>
53<li><a href="#Ocaml_nn31">Exceptions</a>
54</ul>
55</ul>
56</div>
57<!-- INDEX -->
58
59
60
61<p>
62 This chapter describes SWIG's
63support of Ocaml. Ocaml is a relatively recent addition to the ML family,
64and is a recent addition to SWIG. It's the second compiled, typed
65language to be added. Ocaml has widely acknowledged benefits for engineers,
66mostly derived from a sophistocated type system, compile-time checking
67which eliminates several classes of common programming errors, and good
68native performance. While all of this is wonderful, there are well-written
69C and C++ libraries that Ocaml users will want to take advantage of as
70part of their arsenal (such as SSL and gdbm), as well as their own mature
71C and C++ code. SWIG allows this code to be used in a natural, type-safe
72way with Ocaml, by providing the necessary, but repetetive glue code
73which creates and uses Ocaml values to communicate with C and C++ code.
74 In addition, SWIG also produces the needed Ocaml source that binds
75variants, functions, classes, etc.
76</p>
77
78<p>
79If you're not familiar with the Objective Caml language, you can visit
80<a href="http://www.ocaml.org/">The Ocaml Website</a>.
81</p>
82
83<H2><a name="Ocaml_nn2"></a>22.1 Preliminaries</H2>
84
85
86<p>
87 SWIG 1.3 works with Ocaml 3.04 and above. Given the choice,
88 you should use the latest stable release. The SWIG Ocaml module has
89been tested on Linux (x86,PPC,Sparc) and Cygwin on Windows. The
90best way to determine whether your system will work is to compile the
91examples and test-suite which come with SWIG. You can do this by running
92<tt>make check</tt> from the SWIG root directory after installing SWIG.
93 The Ocaml module has been tested using the system's dynamic linking (the
94usual -lxxx against libxxx.so, as well as with Gerd Stolpmann's
95<a
96 href="http://www.ocaml-programming.de/packages/documentation/dl/">Dl package
97</a>. The ocaml_dynamic and ocaml_dynamic_cpp targets in the
98file Examples/Makefile illustrate how to compile and link SWIG modules that
99will be loaded dynamically. This has only been tested on Linux so far.
100</p>
101
102<H3><a name="Ocaml_nn3"></a>22.1.1 Running SWIG</H3>
103
104
105<p>
106 The basics of getting a SWIG Ocaml module up and running
107 can be seen from one of SWIG's example Makefiles, but is also described
108 here. To build an Ocaml module, run SWIG using the <tt>-ocaml</tt>
109option.
110</p>
111
112<div class="code">
113 <pre>
114%swig -ocaml example.i
115 </pre>
116</div>
117
118<p> This will produce 3 files. The file <tt>example_wrap.c</tt> contains
119all of the C code needed to build an Ocaml module. To build the module,
120you will compile the file <tt>example_wrap.c</tt> with <tt>ocamlc</tt> or
121<tt>ocamlopt</tt> to create the needed .o file. You will need to compile
122the resulting .ml and .mli files as well, and do the final link with -custom
123(not needed for native link). </p>
124
125<H3><a name="Ocaml_nn4"></a>22.1.2 Compiling the code</H3>
126
127
128<p>
129The O'Caml SWIG module now requires you to compile a module (<tt>Swig</tt>)
130separately. In addition to aggregating common SWIG functionality, the Swig
131module contains the data structure that represents C/C++ values. This allows
132easier data sharing between modules if two or more are combined, because
133the type of each SWIG'ed module's c_obj is derived from Swig.c_obj_t. This
134also allows SWIG to acquire new conversions painlessly, as well as giving
135the user more freedom with respect to custom typing.
136
137 Use <tt>ocamlc</tt> or <tt>ocamlopt</tt> to compile your
138 SWIG interface like:
139</p>
140
141<div class="code">
142 <pre>
143% swig -ocaml -co swig.mli ; swig -ocaml co swig.ml
144% ocamlc -c swig.mli ; ocamlc -c swig.ml
145% ocamlc -c -ccopt "-I/usr/include/foo" example_wrap.c
146% ocamlc -c example.mli
147% ocamlc -c example.ml
148 </pre>
149</div>
150
151<p> <tt>ocamlc</tt> is aware of .c files and knows how to handle them. Unfortunately,
152 it does not know about .cxx, .cc, or .cpp files, so when SWIG is invoked
153 in C++ mode, you must: </p>
154
155<div class="code">
156 <pre>
157% cp example_wrap.cxx example_wrap.cxx.c<br>% ocamlc -c ... -ccopt -xc++ example_wrap.cxx.c<br>% ...<br>
158 </pre>
159</div>
160
161<H3><a name="Ocaml_nn5"></a>22.1.3 The camlp4 module</H3>
162
163
164<p>
165The camlp4 module (swigp4.ml -&gt; swigp4.cmo) contains a simple rewriter which
166makes C++ code blend more seamlessly with objective caml code. It's use is
167optional, but encouraged. The source file is included in the Lib/ocaml
168directory of the SWIG source distribution. You can checkout this file with
169<tt>"swig -ocaml -co swigp4.ml"</tt>. You should compile the file with
170<tt>"ocamlc -I `camlp4 -where` -pp 'camlp4o pa_extend.cmo q_MLast.cmo' -c swigp4.ml"</tt>
171</p>
172
173<p>
174The basic principle of the module is to recognize certain non-caml expressions
175and convert them for use with C++ code as interfaced by SWIG. The camlp4
176module is written to work with generated SWIG interfaces, and probably isn't
177great to use with anything else.
178</p>
179
180<p>
181Here are the main rewriting rules:
182</p>
183
184<table border="1" summary="Rewriting rules">
185<tr><th>Input</th><th>Rewritten to</th></tr>
186<tr><td>f'( ... ) as in<br> atoi'("0") or<br> _exit'(0)</td>
187<td>f(C_list [ ... ]) as in<br> atoi (C_list [ C_string "0" ]) or<br> _exit (C_list [ C_int 0 ])</td></tr>
188<tr><td>object -&gt; method ( ... )</td><td>(invoke object) "method" (C_list [ ... ])</td></tr>
189<tr><td>
190object <i>'binop</i> argument as in<br>
191a '+= b</td>
192<td>
193(invoke object) "+=" argument as in<br>
194(invoke a) "+=" b<td></tr>
195<tr><th colspan=2>Note that because camlp4 always recognizes &lt;&lt;
196and &gt;&gt;, they are replaced by lsl and lsr in operator names.
197<tr><td>
198<i>'unop</i> object as in<br>
199'! a
200</td><td>
201(invoke a) "!" C_void</td></tr>
202<tr><td>
203<b>Smart pointer access like this</b><br>
204object '-&gt; method ( args )<br>
205</td><td>
206(invoke (invoke object "-&gt;" C_void))
207</td></tr>
208<tr><td>
209<b>Invoke syntax</b><br>
210object . '( ... )
211</td><td>
212(invoke object) "()" (C_list [ ... ])
213</td></tr>
214<tr><td>
215<b>Array syntax</b><br>
216object '[ 10 ]
217</td><td>
218(invoke object) "[]" (C_int 10)
219</td></tr>
220<tr><td>
221<b>Assignment syntax</b><br>
222let a = '10 and b = '"foo" and c = '1.0 and d = 'true
223</td><td>
224let a = C_int 10 and b = C_string "foo" and c = C_double 1.0 and d = C_bool true
225</td></tr>
226<tr><td>
227<b>Cast syntax</b><br>
228let a = _atoi '("2") as int<br>
229let b = (getenv "PATH") to string<br>
230This works for int, string, float, bool
231</td><td>
232let a = get_int (_atoi (C_string "2"))<br>
233let b = C_string (getenv "PATH")
234</td></tr>
235</table>
236
237<H3><a name="Ocaml_nn6"></a>22.1.4 Using your module</H3>
238
239
240<p>
241You can test-drive your module by building a
242toplevel ocaml interpreter. Consult the ocaml manual for details.
243</p>
244
245<p>
246When linking any ocaml bytecode with your module, use the -custom
247 option to build your functions into the primitive list. This
248 option is not needed when you build native code.
249</p>
250
251<H3><a name="Ocaml_nn7"></a>22.1.5 Compilation problems and compiling with C++</H3>
252
253
254<p>
255As mentioned above, .cxx files need special
256handling to be compiled with <tt>ocamlc</tt>. Other than that, C code
257that uses <tt>class</tt> as a non-keyword, and C code that is too
258liberal with pointer types may not compile under the C++ compiler.
259Most code meant to be compiled as C++ will not have problems.
260</p>
261
262<H2><a name="Ocaml_nn8"></a>22.2 The low-level Ocaml/C interface</H2>
263
264
265<p>
266In order to provide access to overloaded functions, and
267provide sensible outputs from them, all C entites are represented as
268members of the c_obj type:
269</p>
270
271<p>
272In the code as seen by the typemap
273writer, there is a value, swig_result, that always contains the
274current return data. It is a list, and must be appended with the
275caml_list_append function, or with functions and macros provided by
276objective caml.<br>
277</p>
278
279<div class="code"><pre>
280type c_obj =
281 C_void
282 | C_bool of bool
283 | C_char of char
284 | C_uchar of char
285 | C_short of int
286 | C_ushort of int
287 | C_int of int
288 | C_uint of int32
289 | C_int32 of int32
290 | C_int64 of int64
291 | C_float of float
292 | C_double of float
293 | C_ptr of int64 * int64
294 | C_array of c_obj array
295 | C_list of c_obj list
296 | C_obj of (string -&gt; c_obj -&gt; c_obj)
297 | C_string of string
298 | C_enum of c_enum_t
299</pre></div>
300
301<p>
302 A few functions exist which generate and return these:
303</p>
304
305<ul>
306 <li>caml_ptr_val receives a c_obj and returns a void *. &nbsp;This
307 should be used for all pointer purposes.</li>
308 <li>caml_long_val receives a c_obj and returns a long. &nbsp;This
309 should be used for most integral purposes.<br>
310 </li>
311 <li>caml_val_ptr receives a void * and returns a c_obj.</li>
312 <li>caml_val_bool receives a C int and returns a c_obj representing
313 it's bool value.</li>
314 <li>caml_val_(u)?(char|short|int|long|float|double) receives an
315appropriate C value and returns a c_obj representing it.</li>
316 <li>caml_val_string receives a char * and returns a string value.</li>
317 <li>caml_val_string_len receives a char * and a length and returns
318 a string value.</li>
319 <li>caml_val_obj receives a void * and an object type and returns
320 a C_obj, which contains a closure giving method access.</li>
321
322</ul>
323
324<p>
325Because of this style, a typemap can return any kind of value it
326wants from a function. &nbsp;This enables out typemaps and inout typemaps
327to work well. &nbsp;The one thing to remember about outputting values
328is that you must append them to the return list with swig_result = caml_list_append(swig_result,v).
329</p>
330
331<p>
332&nbsp;This function will return a new list that has your element
333 appended. Upon return to caml space, the fnhelper function
334 beautifies the result. A list containing a single item degrades to
335 only that item (i.e. [ C_int 3 ] -&gt; C_int 3), and a list
336 containing more than one item is wrapped in C_list (i.e. [ C_char
337 'a' ; C_char 'b' -&gt; C_list [ C_char 'a' ; C_char b
338 ]). &nbsp;This is in order to make return values easier to handle
339 when functions have only one return value, such as constructors,
340 and operators. &nbsp;In addition, string, pointer, and object
341 values are interchangable with respect to caml_ptr_val, so you can
342 allocate memory as caml strings and still use the resulting
343 pointers for C purposes, even using them to construct simple objects
344 on. Note, though, that foreign C++ code does not respect the garbage
345 collector, although the SWIG interface does.</p>
346
347 <p>
348 The wild card type that you can use in lots of different ways is
349 C_obj. It allows you to wrap any type of thing you like as an
350 object using the same mechanism that the ocaml module
351 does. &nbsp;When evaluated in caml_ptr_val, the returned value is
352 the result of a call to the object's "&amp;" operator, taken as a pointer.
353 </p>
354 <p>
355 You should only construct values using objective caml, or using the
356 functions caml_val_* functions provided as static functions to a SWIG
357 ocaml module, as well as the caml_list_* functions. These functions
358 provide everything a typemap needs to produce values. In addition,
359 value items pass through directly, but you must make your own type
360 signature for a function that uses value in this way.
361 </p>
362
363<H3><a name="Ocaml_nn9"></a>22.2.1 The generated module</H3>
364
365
366<p>
367The SWIG <tt>%module</tt> directive specifies the name of the Ocaml
368module to be generated. If you specified `<tt>%module example</tt>',
369then your Ocaml code will be accessible in the module Example. The
370module name is always capitalized as is the ocaml convention. Note
371that you must not use any Ocaml keyword to name your module. Remember
372that the keywords are not the same as the C++ ones.
373</p>
374
375<p>
376You can introduce extra code into the output wherever you like with SWIG.
377These are the places you can introduce code:
378<table border="1" summary="Extra code sections">
379<tr><td>"header"</td><td>This code is inserted near the beginning of the
380C wrapper file, before any function definitions.</td></tr>
381<tr><td>"wrapper"</td><td>This code is inserted in the function definition
382section.</td></tr>
383<tr><td>"runtime"</td><td>This code is inserted near the end of the C wrapper
384file.</td></tr>
385<tr><td>"mli"</td><td>This code is inserted into the caml interface file.
386Special signatures should be inserted here.
387</td></tr>
388<tr><td>"ml"</td><td>This code is inserted in the caml code defining the
389interface to your C code. Special caml code, as well as any initialization
390which should run when the module is loaded may be inserted here.
391</td></tr>
392<tr><td>"classtemplate"</td><td>The "classtemplate" place is special because
393it describes the output SWIG will generate for class definitions.
394</td></tr>
395</table>
396
397<H3><a name="Ocaml_nn10"></a>22.2.2 Enums</H3>
398
399
400<p>
401SWIG will wrap enumerations as polymorphic variants in the output
402Ocaml code, as above in C_enum.&nbsp; In order to support all
403C++-style uses of enums, the function int_to_enum and enum_to_int are
404provided for ocaml code to produce and consume these values as
405integers. &nbsp;Other than that, correct uses of enums will not have
406a problem. &nbsp;Since enum labels may overlap between enums, the
407enum_to_int and int_to_enum functions take an enum type label as an
408argument. Example:
409</p>
410
411<div class="code"><pre>
412%module enum_test
413%{
414enum c_enum_type { a = 1, b, c = 4, d = 8 };
415%}
416enum c_enum_type { a = 1, b, c = 4, d = 8 };
417</pre></div>
418
419<p>
420The output mli contains:
421</p>
422
423<div class="code"><pre>
424type c_enum_type = [
425 `unknown
426| `c_enum_type
427]
428type c_enum_tag = [
429 `int of int
430| `a
431| `b
432| `c
433| `d
434]
435val int_to_enum c_enum_type -&gt; int -&gt; c_obj
436val enum_to_int c_enum_type -&gt; c_obj -&gt; c_obj
437</pre>
438 </div>
439
440<p>
441 So it's possible to do this:
442</p>
443
444<div class="code">
445 <pre>
446bash-2.05a$ ocamlmktop -custom enum_test_wrap.o enum_test.cmo -o enum_test_top
447bash-2.05a$ ./enum_test_top
448 Objective Caml version 3.04
449
450# open Enum_test ;;
451# let x = C_enum `a ;;
452val x : Enum_test.c_obj = C_enum `a
453# enum_to_int `c_enum_type x ;;
454- : Enum_test.c_obj = C_int 1
455# int_to_enum `c_enum_type 4 ;;
456- : Enum_test.c_obj = C_enum `c
457</pre>
458 </div>
459
460<H4><a name="Ocaml_nn11"></a>22.2.2.1 Enum typing in Ocaml</H4>
461
462
463<p>
464The ocaml SWIG module now has support for loading and using multiple SWIG
465modules at the same time. This enhances modularity, but presents problems
466when used with a language which assumes that each module's types are complete
467at compile time. In order to achieve total soundness enum types are now
468isolated per-module. The type issue matters when values are shared between
469functions imported from different modules. You must convert values to master
470values using the swig_val function before sharing them with another module.
471</p>
472
473<H3><a name="Ocaml_nn12"></a>22.2.3 Arrays</H3>
474
475
476<H4><a name="Ocaml_nn13"></a>22.2.3.1 Simple types of bounded arrays</H4>
477
478
479<p>
480SWIG has support for array types, but you generally will need to provide
481a typemap to handle them. You can currently roll your own, or expand
482some of the macros provided (but not included by default) with the SWIG
483distribution.
484</p>
485
486<p>
487By including "carray.i", you will get access to some macros that help you
488create typemaps for array types fairly easily.
489</p>
490
491<p>
492<tt>%make_simple_array_typemap</tt> is the easiest way to get access to
493arrays of simple types with known bounds in your code, but this only works
494for arrays whose bounds are completely specified.
495</p>
496
497<H4><a name="Ocaml_nn14"></a>22.2.3.2 Complex and unbounded arrays</H4>
498
499
500<p>
501Unfortunately, unbounded arrays and pointers can't be handled in a
502completely general way by SWIG, because the end-condition of such an
503array can't be predicted. In some cases, it will be by consent
504(e.g. an array of four or more chars), sometimes by explicit length
505(char *buffer, int len), and sometimes by sentinel value (0,-1,etc.).
506SWIG can't predict which of these methods will be used in the array,
507so you have to specify it for yourself in the form of a typemap.
508</p>
509
510<H4><a name="Ocaml_nn15"></a>22.2.3.3 Using an object</H4>
511
512
513<p>
514It's possible to use C++ to your advantage by creating a simple object that
515provides access to your array. This may be more desirable in some cases,
516since the object can provide bounds checking, etc., that prevents crashes.
517</p>
518
519<p>
520Consider writing an object when the ending condition of your array is complex,
521such as using a required centinel, etc.
522</p>
523
524<H4><a name="Ocaml_nn16"></a>22.2.3.4 Example typemap for a function taking float * and int</H4>
525
526
527<p>
528This is a simple example <tt>in</tt> typemap for an array of float, where the
529length of the array is specified as an extra parameter. Other such typemaps
530will work similarly. In the example, the function printfloats is called with
531a float array, and specified length. The actual length reported in the len
532argument is the length of the array passed from ocaml, making passing an array
533into this type of function convenient.
534</p>
535
536<table border="1" bgcolor="#dddddd" summary="float * and int typemap example">
537<tr><th><center>tarray.i</center></th></tr>
538<tr><td><pre>
539%module tarray
540%{
541#include &lt;stdio.h&gt;
542
543void printfloats( float *tab, int len ) {
544 int i;
545
546 for( i = 0; i &lt; len; i++ ) {
547 printf( "%f ", tab[i] );
548 }
549
550 printf( "\n" );
551}
552%}
553
554%typemap(in) (float *tab, int len) {
555 int i;
556 /* $*1_type */
557 $2 = caml_array_len($input);
558 $1 = ($*1_type *)malloc( $2 * sizeof( float ) );
559 for( i = 0; i &lt; $2; i++ ) {
560 $1[i] = caml_double_val(caml_array_nth($input,i));
561 }
562}
563
564void printfloats( float *tab, int len );
565</pre></td></tr>
566<tr><th>Sample Run</th></tr>
567<tr><td><pre>
568# open Tarray ;;
569# _printfloats (C_array [| C_double 1.0 ; C_double 3.0 ; C_double 5.6666 |]) ;;
5701.000000 3.000000 5.666600
571- : Tarray.c_obj = C_void
572</pre></td></tr></table>
573
574
575<H3><a name="Ocaml_nn17"></a>22.2.4 C++ Classes</H3>
576
577
578<p>
579C++ classes, along with structs and unions are represented by C_obj
580(string -&gt; c_obj -&gt; c_obj) wrapped closures. &nbsp;These objects
581contain a method list, and a type, which allow them to be used like
582C++ objects. When passed into typemaps that use pointers, they
583degrade to pointers through their "&amp;" method. &nbsp;Every method
584an object has is represented as a string in the object's method table,
585and each method table exists in memory only once. &nbsp;In addition
586to any other operators an object might have, certain builtin ones are
587provided by SWIG: (all of these take no arguments (C_void))
588</p>
589
590<table summary="SWIG provided operators">
591<tr><td>"~"</td><td>Delete this object</td></tr>
592<tr><td>"&amp;"</td><td>Return an ordinary C_ptr value representing this
593object's address</td></tr>
594<tr><td>"sizeof"</td><td>If enabled with ("sizeof"="1") on the module node,
595return the object's size in char.</td></tr>
596<tr><td>":methods"</td><td>Returns a list of strings containing the names of
597the methods this object contains</td></tr>
598<tr><td>":classof"</td><td>Returns the name of the class this object belongs
599to.</td></tr>
600<tr><td>":parents"</td><td>Returns a list of all direct parent classes which
601have been wrapped by SWIG.</td></tr>
602<tr><td>"::[parent-class]"</td><td>Returns a view of the object as the
603indicated parent class. This is mainly used internally by the SWIG module,
604but may be useful to client programs.</td></tr>
605<tr><td>"[member-variable]"</td><td>Each member variable is wrapped as a
606method with an optional parameter.
607Called with one argument, the member variable is set to the value of the
608argument. With zero arguments, the value is returned.
609</td></tr>
610</table>
611
612<p>
613Note that this string belongs to the wrapper object, and not
614the underlying pointer, so using create_[x]_from_ptr alters the
615returned value for the same object.
616</p>
617
618<H4><a name="Ocaml_nn18"></a>22.2.4.1 STL vector and string Example</H4>
619
620
621<p>
622Standard typemaps are now provided for STL vector and string. More are in
623the works. STL strings are passed just like normal strings, and returned
624as strings. STL string references don't mutate the original string, (which
625might be surprising), because Ocaml strings are mutable but have fixed
626length. Instead, use multiple returns, as in the argout_ref example.
627</p>
628
629<table border="1" bgcolor="#dddddd" summary="STL vector and string example">
630<tr><th><center>example.i</center></th></tr>
631<tr><td><pre>
632%module example
633%{
634#include "example.h"
635%}
636
637%include stl.i
638
639namespace std {
640 %template(StringVector) std::vector &lt; string &gt;;
641};
642
643%include example.h
644</pre></td></tr>
645<tr><td><font size="-1"><i>This example is in Examples/ocaml/stl
646</i></font></td></tr>
647</table>
648
649<p>
650Since there's a makefile in that directory, the example is easy to build.
651</p>
652
653<p>
654Here's a sample transcript of an interactive session using a string vector
655after making a toplevel (make toplevel). This example uses the camlp4
656module.
657</p>
658
659<div class="code"><pre>
660bash-2.05a$ ./example_top
661 Objective Caml version 3.06
662
663 Camlp4 Parsing version 3.06
664
665# open Swig ;;
666# open Example ;;
667# let x = new_StringVector '() ;;
668val x : Example.c_obj = C_obj &lt;fun&gt;
669# x -&gt; ":methods" () ;;
670- : Example.c_obj =
671C_list
672 [C_string "nop"; C_string "size"; C_string "empty"; C_string "clear";
673 C_string "push_back"; C_string "[]"; C_string "="; C_string "set";
674 C_string "~"; C_string "&amp;"; C_string ":parents"; C_string ":classof";
675 C_string ":methods"]
676# x -&gt; push_back ("foo") ;;
677- : Example.c_obj = C_void
678# x -&gt; push_back ("bar") ;;
679- : Example.c_obj = C_void
680# x -&gt; push_back ("baz") ;;
681- : Example.c_obj = C_void
682# x '[1] ;;
683- : Example.c_obj = C_string "bar"
684# x -&gt; set (1,"spam") ;;
685- : Example.c_obj = C_void
686# x '[1] ;;
687- : Example.c_obj = C_string "spam"
688# for i = 0 to (x -&gt; size() as int) - 1 do
689 print_endline ((x '[i to int]) as string)
690 done ;;
691foo
692bar
693baz
694- : unit = ()
695#
696</pre></div>
697
698<H4><a name="Ocaml_nn19"></a>22.2.4.2 C++ Class Example</H4>
699
700
701<p>
702Here's a simple example using Trolltech's Qt Library:
703</p>
704
705<table border="1" bgcolor="#dddddd" summary="Qt Library example">
706 <tr><th><center>qt.i</center></th></tr>
707<tr><td><pre>
708%module qt
709%{
710#include &lt;qapplication.h&gt;
711#include &lt;qpushbutton.h&gt;
712%}
713class QApplication {
714public:
715 QApplication( int argc, char **argv );
716 void setMainWidget( QWidget *widget );
717 void exec();
718};
719
720class QPushButton {
721public:
722 QPushButton( char *str, QWidget *w );
723 void resize( int x, int y );
724 void show();
725};
726</pre></td></tr></table>
727
728<H4><a name="Ocaml_nn20"></a>22.2.4.3 Compiling the example</H4>
729
730
731<div class="code"><pre>
732bash-2.05a$ QTPATH=/your/qt/path
733bash-2.05a$ for file in swig.mli swig.ml swigp4.ml ; do swig -ocaml -co $file ; done
734bash-2.05a$ ocamlc -c swig.mli ; ocamlc -c swig.ml
735bash-2.05a$ ocamlc -I `camlp4 -where` -pp "camlp4o pa_extend.cmo q_MLast.cmo" -c swigp4.ml
736bash-2.05a$ swig -ocaml -c++ -I$QTPATH/include qt.i
737bash-2.05a$ mv qt_wrap.cxx qt_wrap.c
738bash-2.05a$ ocamlc -c -ccopt -xc++ -ccopt -g -g -ccopt -I$QTPATH/include qt_wrap.c
739bash-2.05a$ ocamlc -c qt.mli
740bash-2.05a$ ocamlc -c qt.ml
741bash-2.05a$ ocamlmktop -custom swig.cmo -I `camlp4 -where` \
742 camlp4o.cma swigp4.cmo qt_wrap.o qt.cmo -o qt_top -cclib \
743 -L$QTPATH/lib -cclib -lqt
744</pre></div>
745
746<H4><a name="Ocaml_nn21"></a>22.2.4.4 Sample Session</H4>
747
748
749<div class="code"><pre>
750bash-2.05a$ ./qt_top
751 Objective Caml version 3.06
752
753 Camlp4 Parsing version 3.06
754
755# open Swig ;;
756# open Qt ;;
757# let a = new_QApplication '(0,0) ;;
758val a : Qt.c_obj = C_obj &lt;fun&gt;
759# let hello = new_QPushButton '("hi",0) ;;
760val hello : Qt.c_obj = C_obj &lt;fun&gt;
761# hello -&gt; resize (100,30) ;;
762- : Qt.c_obj = C_void
763# hello -&gt; show () ;;
764- : Qt.c_obj = C_void
765# a -&gt; exec () ;;
766</pre></div>
767
768<p>
769Assuming you have a working installation of QT, you will see a window
770containing the string "hi" in a button.
771</p>
772
773<H3><a name="Ocaml_nn22"></a>22.2.5 Director Classes</H3>
774
775
776<H4><a name="Ocaml_nn23"></a>22.2.5.1 Director Introduction</H4>
777
778
779<p>
780Director classes are classes which allow Ocaml code to override the public
781methods of a C++ object. This facility allows the user to use C++ libraries
782that require a derived class to provide application specific functionality in
783the context of an application or utility framework.
784</p>
785
786<p>
787You can turn on director classes by using an optional module argument like
788this:
789</p>
790
791<div class="code"><pre>
792%module(directors="1")
793
794...
795
796// Turn on the director class for a specific class like this:
797%feature("director")
798class foo {
799 ...
800};
801</pre></div>
802
803<H4><a name="Ocaml_nn24"></a>22.2.5.2 Overriding Methods in Ocaml</H4>
804
805
806<p>
807Because the Ocaml language module treats C++ method calls as calls to a
808certain function, all you need to do is to define the function that will
809handle the method calls in terms of the public methods of the object, and
810any other relevant information. The function <tt>new_derived_object</tt>
811uses a stub class to call your methods in place of the ones provided by the
812underlying implemenation. The object you receive is the underlying object,
813so you are free to call any methods you want from within your derived method.
814Note that calls to the underlying object do not invoke Ocaml code. You need
815to handle that yourself.
816</p>
817
818<p>
819<tt>new_derived_object</tt> receives your function, the function that creates
820the underlying object, and any constructor arguments, and provides an
821object that you can use in any usual way. When C++ code calls one of the
822object's methods, the object invokes the Ocaml function as if it had been
823invoked from Ocaml, allowing any method definitions to override the C++ ones.
824</p>
825
826<p>
827In this example, I'll examine the objective caml code involved in providing
828an overloaded class. This example is contained in Examples/ocaml/shapes.
829</p>
830
831<H4><a name="Ocaml_nn25"></a>22.2.5.3 Director Usage Example</H4>
832
833
834<table border="1" bgcolor="#dddddd" summary="Director usage example">
835<tr><th><center>example_prog.ml</center>
836</th></tr>
837<tr><td><pre>
838open Swig
839open Example
840
841...
842
843let triangle_class pts ob meth args =
844 match meth with
845 "cover" -&gt;
846 (match args with
847 C_list [ x_arg ; y_arg ] -&gt;
848 let xa = x_arg as float
849 and ya = y_arg as float in
850 (point_in_triangle pts xa ya) to bool
851 | _ -&gt; raise (Failure "cover needs two double arguments."))
852 | _ -&gt; (invoke ob) meth args ;;
853
854let triangle =
855 new_derived_object
856 new_shape
857 (triangle_class ((0.0,0.0),(0.5,1.0),(1.0,0.0)))
858 '() ;;
859
860let _ = _draw_shape_coverage '(triangle, C_int 60, C_int 20) ;;
861</pre></td></tr>
862</table>
863
864<p>
865This is the meat of what you need to do. The actual "class" definition
866containing the overloaded method is defined in the function triangle_class.
867This is a lot like the class definitions emitted by SWIG, if you look at
868example.ml, which is generated when SWIG consumes example.i. Basically,
869you are given the arguments as a c_obj and the method name as a string, and
870you must intercept the method you are interested in and provide whatever
871return value you need. Bear in mind that the underlying C++ code needs the
872right return type, or an exception will be thrown. This exception will
873generally be Failure, or NotObject. You must call other ocaml methods that
874you rely on yourself. Due to the way directors are implemented, method
875calls on your object from with ocaml code will always invoke C++ methods
876even if they are overridden in ocaml.
877</p>
878
879<p>
880In the example, the draw_shape_coverage function plots the indicated number
881of points as either covered (<tt>x</tt>) or uncovered ( ) between
8820 and 1 on the X and Y axes. Your shape implementation can provide any
883coverage map it likes, as long as it responds to the "cover" method call
884with a boolean return (the underlying method returns bool). This might allow
885a tricky shape implementation, such as a boolean combination, to be expressed
886in a more effortless style in ocaml, while leaving the "engine" part of the
887program in C++.
888</p>
889
890<H4><a name="Ocaml_nn26"></a>22.2.5.4 Creating director objects</H4>
891
892
893<p>
894The definition of the actual object triangle can be described this way:
895</p>
896
897<div class="code"><pre>
898let triangle =
899 new_derived_object
900 new_shape
901 (triangle_class ((0.0,0.0),(0.5,1.0),(1.0,0.0)))
902 '()
903</pre></div>
904
905<p>
906The first argument to <tt>new_derived_object</tt>, new_shape is the method
907which returns a shape instance. This function will be invoked with the
908third argument will be appended to the argument list [ C_void ]. In the
909example, the actual argument list is sent as (C_list [ C_void ; C_void ]).
910The augmented constructor for a director class needs the first argument
911to determine whether it is being constructed as a derived object, or as
912an object of the indicated type only (in this case <tt>shape</tt>). The
913Second argument is a closure that will be added to the final C_obj.
914</p>
915
916<p>
917The actual object passed to the self parameter of the director object will
918be a C_director_core, containing a c_obj option ref and a c_obj. The
919c_obj provided is the same object that will be returned from new_derived
920object, that is, the object exposing the overridden methods. The other part
921is an option ref that will have its value extracted before becoming the
922<tt>ob</tt> parameter of your class closure. This ref will contain
923<tt>None</tt> if the C++ object underlying is ever destroyed, and will
924consequently trigger an exception when any method is called on the object
925after that point (the actual raise is from an inner function used by
926new_derived_object, and throws NotObject). This prevents a deleted C++
927object from causing a core dump, as long as the object is destroyed
928properly.
929</p>
930
931<H4><a name="Ocaml_nn27"></a>22.2.5.5 Typemaps for directors, <tt>directorin, directorout, directorargout</tt></H4>
932
933
934<p>
935Special typemaps exist for use with directors, the <tt>directorin, directorout, directorargout</tt>
936are used in place of <tt>in, out, argout</tt> typemaps, except that their
937direction is reversed. They provide for you to provide argout values, as
938well as a function return value in the same way you provide function arguments,
939and to receive arguments the same way you normally receive function returns.
940</p>
941
942<H4><a name="Ocaml_nn28"></a>22.2.5.6 <tt>directorin</tt> typemap</H4>
943
944
945<p>
946The <tt>directorin</tt> typemap is used when you will receive arguments from a call
947made by C++ code to you, therefore, values will be translated from C++ to
948ocaml. You must provide some valid C_obj value. This is the value your ocaml
949code receives when you are called. In general, a simple <tt>directorin</tt> typemap
950can use the same body as a simple <tt>out</tt> typemap.
951</p>
952
953<H4><a name="Ocaml_nn29"></a>22.2.5.7 <tt>directorout</tt> typemap</H4>
954
955
956<p>
957The <tt>directorout</tt> typemap is used when you will send an argument from your
958code back to the C++ caller. That is; directorout specifies a function return
959conversion. You can usually use the same body as an <tt>in</tt> typemap
960for the same type, except when there are special requirements for object
961ownership, etc.
962</p>
963
964<H4><a name="Ocaml_nn30"></a>22.2.5.8 <tt>directorargout</tt> typemap</H4>
965
966
967<p>
968C++ allows function arguments which are by pointer (*) and by reference (&amp;)
969to receive a value from the called function, as well as sending one there.
970Sometimes, this is the main purpose of the argument given. <tt>directorargout</tt>
971typemaps allow your caml code to emulate this by specifying additional return
972values to be put into the output parameters. The SWIG ocaml module is a bit
973loose in order to make code eaiser to write. In this case, your return to
974the caller must be a list containing the normal function return first, followed
975by any argout values in order. These argout values will be taken from the
976list and assigned to the values to be returned to C++ through directorargout typemaps.
977In the event that you don't specify all of the necessary values, integral
978values will read zero, and struct or object returns have undefined results.
979</p>
980
981<H3><a name="Ocaml_nn31"></a>22.2.6 Exceptions</H3>
982
983
984<p>
985Catching exceptions is now supported using SWIG's %exception feature. A simple
986but not too useful example is provided by the throw_exception testcase in
987Examples/test-suite. You can provide your own exceptions, too.
988</p>
989
990</body>
991</html>