Initial commit of OpenSPARC T2 architecture model.
[OpenSPARC-T2-SAM] / sam-t2 / devtools / v8plus / man / man3 / Math::Complex.3
CommitLineData
920dae64
AT
1.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.32
2.\"
3.\" Standard preamble:
4.\" ========================================================================
5.de Sh \" Subsection heading
6.br
7.if t .Sp
8.ne 5
9.PP
10\fB\\$1\fR
11.PP
12..
13.de Sp \" Vertical space (when we can't use .PP)
14.if t .sp .5v
15.if n .sp
16..
17.de Vb \" Begin verbatim text
18.ft CW
19.nf
20.ne \\$1
21..
22.de Ve \" End verbatim text
23.ft R
24.fi
25..
26.\" Set up some character translations and predefined strings. \*(-- will
27.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
28.\" double quote, and \*(R" will give a right double quote. | will give a
29.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
30.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
31.\" expand to `' in nroff, nothing in troff, for use with C<>.
32.tr \(*W-|\(bv\*(Tr
33.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
34.ie n \{\
35. ds -- \(*W-
36. ds PI pi
37. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
38. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
39. ds L" ""
40. ds R" ""
41. ds C` ""
42. ds C' ""
43'br\}
44.el\{\
45. ds -- \|\(em\|
46. ds PI \(*p
47. ds L" ``
48. ds R" ''
49'br\}
50.\"
51.\" If the F register is turned on, we'll generate index entries on stderr for
52.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
53.\" entries marked with X<> in POD. Of course, you'll have to process the
54.\" output yourself in some meaningful fashion.
55.if \nF \{\
56. de IX
57. tm Index:\\$1\t\\n%\t"\\$2"
58..
59. nr % 0
60. rr F
61.\}
62.\"
63.\" For nroff, turn off justification. Always turn off hyphenation; it makes
64.\" way too many mistakes in technical documents.
65.hy 0
66.if n .na
67.\"
68.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
69.\" Fear. Run. Save yourself. No user-serviceable parts.
70. \" fudge factors for nroff and troff
71.if n \{\
72. ds #H 0
73. ds #V .8m
74. ds #F .3m
75. ds #[ \f1
76. ds #] \fP
77.\}
78.if t \{\
79. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
80. ds #V .6m
81. ds #F 0
82. ds #[ \&
83. ds #] \&
84.\}
85. \" simple accents for nroff and troff
86.if n \{\
87. ds ' \&
88. ds ` \&
89. ds ^ \&
90. ds , \&
91. ds ~ ~
92. ds /
93.\}
94.if t \{\
95. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
96. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
97. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
98. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
99. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
100. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
101.\}
102. \" troff and (daisy-wheel) nroff accents
103.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
104.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
105.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
106.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
107.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
108.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
109.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
110.ds ae a\h'-(\w'a'u*4/10)'e
111.ds Ae A\h'-(\w'A'u*4/10)'E
112. \" corrections for vroff
113.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
114.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
115. \" for low resolution devices (crt and lpr)
116.if \n(.H>23 .if \n(.V>19 \
117\{\
118. ds : e
119. ds 8 ss
120. ds o a
121. ds d- d\h'-1'\(ga
122. ds D- D\h'-1'\(hy
123. ds th \o'bp'
124. ds Th \o'LP'
125. ds ae ae
126. ds Ae AE
127.\}
128.rm #[ #] #H #V #F C
129.\" ========================================================================
130.\"
131.IX Title "Math::Complex 3"
132.TH Math::Complex 3 "2001-09-21" "perl v5.8.8" "Perl Programmers Reference Guide"
133.SH "NAME"
134Math::Complex \- complex numbers and associated mathematical functions
135.SH "SYNOPSIS"
136.IX Header "SYNOPSIS"
137.Vb 1
138\& use Math::Complex;
139.Ve
140.PP
141.Vb 3
142\& $z = Math::Complex->make(5, 6);
143\& $t = 4 - 3*i + $z;
144\& $j = cplxe(1, 2*pi/3);
145.Ve
146.SH "DESCRIPTION"
147.IX Header "DESCRIPTION"
148This package lets you create and manipulate complex numbers. By default,
149\&\fIPerl\fR limits itself to real numbers, but an extra \f(CW\*(C`use\*(C'\fR statement brings
150full complex support, along with a full set of mathematical functions
151typically associated with and/or extended to complex numbers.
152.PP
153If you wonder what complex numbers are, they were invented to be able to solve
154the following equation:
155.PP
156.Vb 1
157\& x*x = -1
158.Ve
159.PP
160and by definition, the solution is noted \fIi\fR (engineers use \fIj\fR instead since
161\&\fIi\fR usually denotes an intensity, but the name does not matter). The number
162\&\fIi\fR is a pure \fIimaginary\fR number.
163.PP
164The arithmetics with pure imaginary numbers works just like you would expect
165it with real numbers... you just have to remember that
166.PP
167.Vb 1
168\& i*i = -1
169.Ve
170.PP
171so you have:
172.PP
173.Vb 5
174\& 5i + 7i = i * (5 + 7) = 12i
175\& 4i - 3i = i * (4 - 3) = i
176\& 4i * 2i = -8
177\& 6i / 2i = 3
178\& 1 / i = -i
179.Ve
180.PP
181Complex numbers are numbers that have both a real part and an imaginary
182part, and are usually noted:
183.PP
184.Vb 1
185\& a + bi
186.Ve
187.PP
188where \f(CW\*(C`a\*(C'\fR is the \fIreal\fR part and \f(CW\*(C`b\*(C'\fR is the \fIimaginary\fR part. The
189arithmetic with complex numbers is straightforward. You have to
190keep track of the real and the imaginary parts, but otherwise the
191rules used for real numbers just apply:
192.PP
193.Vb 2
194\& (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
195\& (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
196.Ve
197.PP
198A graphical representation of complex numbers is possible in a plane
199(also called the \fIcomplex plane\fR, but it's really a 2D plane).
200The number
201.PP
202.Vb 1
203\& z = a + bi
204.Ve
205.PP
206is the point whose coordinates are (a, b). Actually, it would
207be the vector originating from (0, 0) to (a, b). It follows that the addition
208of two complex numbers is a vectorial addition.
209.PP
210Since there is a bijection between a point in the 2D plane and a complex
211number (i.e. the mapping is unique and reciprocal), a complex number
212can also be uniquely identified with polar coordinates:
213.PP
214.Vb 1
215\& [rho, theta]
216.Ve
217.PP
218where \f(CW\*(C`rho\*(C'\fR is the distance to the origin, and \f(CW\*(C`theta\*(C'\fR the angle between
219the vector and the \fIx\fR axis. There is a notation for this using the
220exponential form, which is:
221.PP
222.Vb 1
223\& rho * exp(i * theta)
224.Ve
225.PP
226where \fIi\fR is the famous imaginary number introduced above. Conversion
227between this form and the cartesian form \f(CW\*(C`a + bi\*(C'\fR is immediate:
228.PP
229.Vb 2
230\& a = rho * cos(theta)
231\& b = rho * sin(theta)
232.Ve
233.PP
234which is also expressed by this formula:
235.PP
236.Vb 1
237\& z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
238.Ve
239.PP
240In other words, it's the projection of the vector onto the \fIx\fR and \fIy\fR
241axes. Mathematicians call \fIrho\fR the \fInorm\fR or \fImodulus\fR and \fItheta\fR
242the \fIargument\fR of the complex number. The \fInorm\fR of \f(CW\*(C`z\*(C'\fR will be
243noted \f(CWabs(z)\fR.
244.PP
245The polar notation (also known as the trigonometric
246representation) is much more handy for performing multiplications and
247divisions of complex numbers, whilst the cartesian notation is better
248suited for additions and subtractions. Real numbers are on the \fIx\fR
249axis, and therefore \fItheta\fR is zero or \fIpi\fR.
250.PP
251All the common operations that can be performed on a real number have
252been defined to work on complex numbers as well, and are merely
253\&\fIextensions\fR of the operations defined on real numbers. This means
254they keep their natural meaning when there is no imaginary part, provided
255the number is within their definition set.
256.PP
257For instance, the \f(CW\*(C`sqrt\*(C'\fR routine which computes the square root of
258its argument is only defined for non-negative real numbers and yields a
259non-negative real number (it is an application from \fBR+\fR to \fBR+\fR).
260If we allow it to return a complex number, then it can be extended to
261negative real numbers to become an application from \fBR\fR to \fBC\fR (the
262set of complex numbers):
263.PP
264.Vb 1
265\& sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
266.Ve
267.PP
268It can also be extended to be an application from \fBC\fR to \fBC\fR,
269whilst its restriction to \fBR\fR behaves as defined above by using
270the following definition:
271.PP
272.Vb 1
273\& sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
274.Ve
275.PP
276Indeed, a negative real number can be noted \f(CW\*(C`[x,pi]\*(C'\fR (the modulus
277\&\fIx\fR is always non\-negative, so \f(CW\*(C`[x,pi]\*(C'\fR is really \f(CW\*(C`\-x\*(C'\fR, a negative
278number) and the above definition states that
279.PP
280.Vb 1
281\& sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
282.Ve
283.PP
284which is exactly what we had defined for negative real numbers above.
285The \f(CW\*(C`sqrt\*(C'\fR returns only one of the solutions: if you want the both,
286use the \f(CW\*(C`root\*(C'\fR function.
287.PP
288All the common mathematical functions defined on real numbers that
289are extended to complex numbers share that same property of working
290\&\fIas usual\fR when the imaginary part is zero (otherwise, it would not
291be called an extension, would it?).
292.PP
293A \fInew\fR operation possible on a complex number that is
294the identity for real numbers is called the \fIconjugate\fR, and is noted
295with a horizontal bar above the number, or \f(CW\*(C`~z\*(C'\fR here.
296.PP
297.Vb 2
298\& z = a + bi
299\& ~z = a - bi
300.Ve
301.PP
302Simple... Now look:
303.PP
304.Vb 1
305\& z * ~z = (a + bi) * (a - bi) = a*a + b*b
306.Ve
307.PP
308We saw that the norm of \f(CW\*(C`z\*(C'\fR was noted \f(CWabs(z)\fR and was defined as the
309distance to the origin, also known as:
310.PP
311.Vb 1
312\& rho = abs(z) = sqrt(a*a + b*b)
313.Ve
314.PP
315so
316.PP
317.Vb 1
318\& z * ~z = abs(z) ** 2
319.Ve
320.PP
321If z is a pure real number (i.e. \f(CW\*(C`b == 0\*(C'\fR), then the above yields:
322.PP
323.Vb 1
324\& a * a = abs(a) ** 2
325.Ve
326.PP
327which is true (\f(CW\*(C`abs\*(C'\fR has the regular meaning for real number, i.e. stands
328for the absolute value). This example explains why the norm of \f(CW\*(C`z\*(C'\fR is
329noted \f(CWabs(z)\fR: it extends the \f(CW\*(C`abs\*(C'\fR function to complex numbers, yet
330is the regular \f(CW\*(C`abs\*(C'\fR we know when the complex number actually has no
331imaginary part... This justifies \fIa posteriori\fR our use of the \f(CW\*(C`abs\*(C'\fR
332notation for the norm.
333.SH "OPERATIONS"
334.IX Header "OPERATIONS"
335Given the following notations:
336.PP
337.Vb 3
338\& z1 = a + bi = r1 * exp(i * t1)
339\& z2 = c + di = r2 * exp(i * t2)
340\& z = <any complex or real number>
341.Ve
342.PP
343the following (overloaded) operations are supported on complex numbers:
344.PP
345.Vb 13
346\& z1 + z2 = (a + c) + i(b + d)
347\& z1 - z2 = (a - c) + i(b - d)
348\& z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
349\& z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
350\& z1 ** z2 = exp(z2 * log z1)
351\& ~z = a - bi
352\& abs(z) = r1 = sqrt(a*a + b*b)
353\& sqrt(z) = sqrt(r1) * exp(i * t/2)
354\& exp(z) = exp(a) * exp(i * b)
355\& log(z) = log(r1) + i*t
356\& sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
357\& cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
358\& atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order.
359.Ve
360.PP
361The definition used for complex arguments of \fIatan2()\fR is
362.PP
363.Vb 1
364\& -i log((x + iy)/sqrt(x*x+y*y))
365.Ve
366.PP
367The following extra operations are supported on both real and complex
368numbers:
369.PP
370.Vb 4
371\& Re(z) = a
372\& Im(z) = b
373\& arg(z) = t
374\& abs(z) = r
375.Ve
376.PP
377.Vb 3
378\& cbrt(z) = z ** (1/3)
379\& log10(z) = log(z) / log(10)
380\& logn(z, n) = log(z) / log(n)
381.Ve
382.PP
383.Vb 1
384\& tan(z) = sin(z) / cos(z)
385.Ve
386.PP
387.Vb 3
388\& csc(z) = 1 / sin(z)
389\& sec(z) = 1 / cos(z)
390\& cot(z) = 1 / tan(z)
391.Ve
392.PP
393.Vb 3
394\& asin(z) = -i * log(i*z + sqrt(1-z*z))
395\& acos(z) = -i * log(z + i*sqrt(1-z*z))
396\& atan(z) = i/2 * log((i+z) / (i-z))
397.Ve
398.PP
399.Vb 3
400\& acsc(z) = asin(1 / z)
401\& asec(z) = acos(1 / z)
402\& acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))
403.Ve
404.PP
405.Vb 3
406\& sinh(z) = 1/2 (exp(z) - exp(-z))
407\& cosh(z) = 1/2 (exp(z) + exp(-z))
408\& tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
409.Ve
410.PP
411.Vb 3
412\& csch(z) = 1 / sinh(z)
413\& sech(z) = 1 / cosh(z)
414\& coth(z) = 1 / tanh(z)
415.Ve
416.PP
417.Vb 3
418\& asinh(z) = log(z + sqrt(z*z+1))
419\& acosh(z) = log(z + sqrt(z*z-1))
420\& atanh(z) = 1/2 * log((1+z) / (1-z))
421.Ve
422.PP
423.Vb 3
424\& acsch(z) = asinh(1 / z)
425\& asech(z) = acosh(1 / z)
426\& acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))
427.Ve
428.PP
429\&\fIarg\fR, \fIabs\fR, \fIlog\fR, \fIcsc\fR, \fIcot\fR, \fIacsc\fR, \fIacot\fR, \fIcsch\fR,
430\&\fIcoth\fR, \fIacosech\fR, \fIacotanh\fR, have aliases \fIrho\fR, \fItheta\fR, \fIln\fR,
431\&\fIcosec\fR, \fIcotan\fR, \fIacosec\fR, \fIacotan\fR, \fIcosech\fR, \fIcotanh\fR,
432\&\fIacosech\fR, \fIacotanh\fR, respectively. \f(CW\*(C`Re\*(C'\fR, \f(CW\*(C`Im\*(C'\fR, \f(CW\*(C`arg\*(C'\fR, \f(CW\*(C`abs\*(C'\fR,
433\&\f(CW\*(C`rho\*(C'\fR, and \f(CW\*(C`theta\*(C'\fR can be used also as mutators. The \f(CW\*(C`cbrt\*(C'\fR
434returns only one of the solutions: if you want all three, use the
435\&\f(CW\*(C`root\*(C'\fR function.
436.PP
437The \fIroot\fR function is available to compute all the \fIn\fR
438roots of some complex, where \fIn\fR is a strictly positive integer.
439There are exactly \fIn\fR such roots, returned as a list. Getting the
440number mathematicians call \f(CW\*(C`j\*(C'\fR such that:
441.PP
442.Vb 1
443\& 1 + j + j*j = 0;
444.Ve
445.PP
446is a simple matter of writing:
447.PP
448.Vb 1
449\& $j = ((root(1, 3))[1];
450.Ve
451.PP
452The \fIk\fRth root for \f(CW\*(C`z = [r,t]\*(C'\fR is given by:
453.PP
454.Vb 1
455\& (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
456.Ve
457.PP
458You can return the \fIk\fRth root directly by \f(CW\*(C`root(z, n, k)\*(C'\fR,
459indexing starting from \fIzero\fR and ending at \fIn \- 1\fR.
460.PP
461The \fIspaceship\fR comparison operator, <=>, is also defined. In
462order to ensure its restriction to real numbers is conform to what you
463would expect, the comparison is run on the real part of the complex
464number first, and imaginary parts are compared only when the real
465parts match.
466.SH "CREATION"
467.IX Header "CREATION"
468To create a complex number, use either:
469.PP
470.Vb 2
471\& $z = Math::Complex->make(3, 4);
472\& $z = cplx(3, 4);
473.Ve
474.PP
475if you know the cartesian form of the number, or
476.PP
477.Vb 1
478\& $z = 3 + 4*i;
479.Ve
480.PP
481if you like. To create a number using the polar form, use either:
482.PP
483.Vb 2
484\& $z = Math::Complex->emake(5, pi/3);
485\& $x = cplxe(5, pi/3);
486.Ve
487.PP
488instead. The first argument is the modulus, the second is the angle
489(in radians, the full circle is 2*pi). (Mnemonic: \f(CW\*(C`e\*(C'\fR is used as a
490notation for complex numbers in the polar form).
491.PP
492It is possible to write:
493.PP
494.Vb 1
495\& $x = cplxe(-3, pi/4);
496.Ve
497.PP
498but that will be silently converted into \f(CW\*(C`[3,\-3pi/4]\*(C'\fR, since the
499modulus must be non-negative (it represents the distance to the origin
500in the complex plane).
501.PP
502It is also possible to have a complex number as either argument of the
503\&\f(CW\*(C`make\*(C'\fR, \f(CW\*(C`emake\*(C'\fR, \f(CW\*(C`cplx\*(C'\fR, and \f(CW\*(C`cplxe\*(C'\fR: the appropriate component of
504the argument will be used.
505.PP
506.Vb 2
507\& $z1 = cplx(-2, 1);
508\& $z2 = cplx($z1, 4);
509.Ve
510.PP
511The \f(CW\*(C`new\*(C'\fR, \f(CW\*(C`make\*(C'\fR, \f(CW\*(C`emake\*(C'\fR, \f(CW\*(C`cplx\*(C'\fR, and \f(CW\*(C`cplxe\*(C'\fR will also
512understand a single (string) argument of the forms
513.PP
514.Vb 5
515\& 2-3i
516\& -3i
517\& [2,3]
518\& [2,-3pi/4]
519\& [2]
520.Ve
521.PP
522in which case the appropriate cartesian and exponential components
523will be parsed from the string and used to create new complex numbers.
524The imaginary component and the theta, respectively, will default to zero.
525.PP
526The \f(CW\*(C`new\*(C'\fR, \f(CW\*(C`make\*(C'\fR, \f(CW\*(C`emake\*(C'\fR, \f(CW\*(C`cplx\*(C'\fR, and \f(CW\*(C`cplxe\*(C'\fR will also
527understand the case of no arguments: this means plain zero or (0, 0).
528.SH "DISPLAYING"
529.IX Header "DISPLAYING"
530When printed, a complex number is usually shown under its cartesian
531style \fIa+bi\fR, but there are legitimate cases where the polar style
532\&\fI[r,t]\fR is more appropriate. The process of converting the complex
533number into a string that can be displayed is known as \fIstringification\fR.
534.PP
535By calling the class method \f(CW\*(C`Math::Complex::display_format\*(C'\fR and
536supplying either \f(CW"polar"\fR or \f(CW"cartesian"\fR as an argument, you
537override the default display style, which is \f(CW"cartesian"\fR. Not
538supplying any argument returns the current settings.
539.PP
540This default can be overridden on a per-number basis by calling the
541\&\f(CW\*(C`display_format\*(C'\fR method instead. As before, not supplying any argument
542returns the current display style for this number. Otherwise whatever you
543specify will be the new display style for \fIthis\fR particular number.
544.PP
545For instance:
546.PP
547.Vb 1
548\& use Math::Complex;
549.Ve
550.PP
551.Vb 5
552\& Math::Complex::display_format('polar');
553\& $j = (root(1, 3))[1];
554\& print "j = $j\en"; # Prints "j = [1,2pi/3]"
555\& $j->display_format('cartesian');
556\& print "j = $j\en"; # Prints "j = -0.5+0.866025403784439i"
557.Ve
558.PP
559The polar style attempts to emphasize arguments like \fIk*pi/n\fR
560(where \fIn\fR is a positive integer and \fIk\fR an integer within [\-9, +9]),
561this is called \fIpolar pretty-printing\fR.
562.PP
563For the reverse of stringifying, see the \f(CW\*(C`make\*(C'\fR and \f(CW\*(C`emake\*(C'\fR.
564.Sh "\s-1CHANGED\s0 \s-1IN\s0 \s-1PERL\s0 5.6"
565.IX Subsection "CHANGED IN PERL 5.6"
566The \f(CW\*(C`display_format\*(C'\fR class method and the corresponding
567\&\f(CW\*(C`display_format\*(C'\fR object method can now be called using
568a parameter hash instead of just a one parameter.
569.PP
570The old display format style, which can have values \f(CW"cartesian"\fR or
571\&\f(CW"polar"\fR, can be changed using the \f(CW"style"\fR parameter.
572.PP
573.Vb 1
574\& $j->display_format(style => "polar");
575.Ve
576.PP
577The one parameter calling convention also still works.
578.PP
579.Vb 1
580\& $j->display_format("polar");
581.Ve
582.PP
583There are two new display parameters.
584.PP
585The first one is \f(CW"format"\fR, which is a \fIsprintf()\fR\-style format string
586to be used for both numeric parts of the complex number(s). The is
587somewhat system-dependent but most often it corresponds to \f(CW"%.15g"\fR.
588You can revert to the default by setting the \f(CW\*(C`format\*(C'\fR to \f(CW\*(C`undef\*(C'\fR.
589.PP
590.Vb 1
591\& # the $j from the above example
592.Ve
593.PP
594.Vb 4
595\& $j->display_format('format' => '%.5f');
596\& print "j = $j\en"; # Prints "j = -0.50000+0.86603i"
597\& $j->display_format('format' => undef);
598\& print "j = $j\en"; # Prints "j = -0.5+0.86603i"
599.Ve
600.PP
601Notice that this affects also the return values of the
602\&\f(CW\*(C`display_format\*(C'\fR methods: in list context the whole parameter hash
603will be returned, as opposed to only the style parameter value.
604This is a potential incompatibility with earlier versions if you
605have been calling the \f(CW\*(C`display_format\*(C'\fR method in list context.
606.PP
607The second new display parameter is \f(CW"polar_pretty_print"\fR, which can
608be set to true or false, the default being true. See the previous
609section for what this means.
610.SH "USAGE"
611.IX Header "USAGE"
612Thanks to overloading, the handling of arithmetics with complex numbers
613is simple and almost transparent.
614.PP
615Here are some examples:
616.PP
617.Vb 1
618\& use Math::Complex;
619.Ve
620.PP
621.Vb 3
622\& $j = cplxe(1, 2*pi/3); # $j ** 3 == 1
623\& print "j = $j, j**3 = ", $j ** 3, "\en";
624\& print "1 + j + j**2 = ", 1 + $j + $j**2, "\en";
625.Ve
626.PP
627.Vb 2
628\& $z = -16 + 0*i; # Force it to be a complex
629\& print "sqrt($z) = ", sqrt($z), "\en";
630.Ve
631.PP
632.Vb 2
633\& $k = exp(i * 2*pi/3);
634\& print "$j - $k = ", $j - $k, "\en";
635.Ve
636.PP
637.Vb 3
638\& $z->Re(3); # Re, Im, arg, abs,
639\& $j->arg(2); # (the last two aka rho, theta)
640\& # can be used also as mutators.
641.Ve
642.SH "ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO"
643.IX Header "ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO"
644The division (/) and the following functions
645.PP
646.Vb 5
647\& log ln log10 logn
648\& tan sec csc cot
649\& atan asec acsc acot
650\& tanh sech csch coth
651\& atanh asech acsch acoth
652.Ve
653.PP
654cannot be computed for all arguments because that would mean dividing
655by zero or taking logarithm of zero. These situations cause fatal
656runtime errors looking like this
657.PP
658.Vb 3
659\& cot(0): Division by zero.
660\& (Because in the definition of cot(0), the divisor sin(0) is 0)
661\& Died at ...
662.Ve
663.PP
664or
665.PP
666.Vb 2
667\& atanh(-1): Logarithm of zero.
668\& Died at...
669.Ve
670.PP
671For the \f(CW\*(C`csc\*(C'\fR, \f(CW\*(C`cot\*(C'\fR, \f(CW\*(C`asec\*(C'\fR, \f(CW\*(C`acsc\*(C'\fR, \f(CW\*(C`acot\*(C'\fR, \f(CW\*(C`csch\*(C'\fR, \f(CW\*(C`coth\*(C'\fR,
672\&\f(CW\*(C`asech\*(C'\fR, \f(CW\*(C`acsch\*(C'\fR, the argument cannot be \f(CW0\fR (zero). For the
673logarithmic functions and the \f(CW\*(C`atanh\*(C'\fR, \f(CW\*(C`acoth\*(C'\fR, the argument cannot
674be \f(CW1\fR (one). For the \f(CW\*(C`atanh\*(C'\fR, \f(CW\*(C`acoth\*(C'\fR, the argument cannot be
675\&\f(CW\*(C`\-1\*(C'\fR (minus one). For the \f(CW\*(C`atan\*(C'\fR, \f(CW\*(C`acot\*(C'\fR, the argument cannot be
676\&\f(CW\*(C`i\*(C'\fR (the imaginary unit). For the \f(CW\*(C`atan\*(C'\fR, \f(CW\*(C`acoth\*(C'\fR, the argument
677cannot be \f(CW\*(C`\-i\*(C'\fR (the negative imaginary unit). For the \f(CW\*(C`tan\*(C'\fR,
678\&\f(CW\*(C`sec\*(C'\fR, \f(CW\*(C`tanh\*(C'\fR, the argument cannot be \fIpi/2 + k * pi\fR, where \fIk\fR
679is any integer. atan2(0, 0) is undefined, and if the complex arguments
680are used for \fIatan2()\fR, a division by zero will happen if z1**2+z2**2 == 0.
681.PP
682Note that because we are operating on approximations of real numbers,
683these errors can happen when merely `too close' to the singularities
684listed above.
685.SH "ERRORS DUE TO INDIGESTIBLE ARGUMENTS"
686.IX Header "ERRORS DUE TO INDIGESTIBLE ARGUMENTS"
687The \f(CW\*(C`make\*(C'\fR and \f(CW\*(C`emake\*(C'\fR accept both real and complex arguments.
688When they cannot recognize the arguments they will die with error
689messages like the following
690.PP
691.Vb 4
692\& Math::Complex::make: Cannot take real part of ...
693\& Math::Complex::make: Cannot take real part of ...
694\& Math::Complex::emake: Cannot take rho of ...
695\& Math::Complex::emake: Cannot take theta of ...
696.Ve
697.SH "BUGS"
698.IX Header "BUGS"
699Saying \f(CW\*(C`use Math::Complex;\*(C'\fR exports many mathematical routines in the
700caller environment and even overrides some (\f(CW\*(C`sqrt\*(C'\fR, \f(CW\*(C`log\*(C'\fR, \f(CW\*(C`atan2\*(C'\fR).
701This is construed as a feature by the Authors, actually... ;\-)
702.PP
703All routines expect to be given real or complex numbers. Don't attempt to
704use BigFloat, since Perl has currently no rule to disambiguate a '+'
705operation (for instance) between two overloaded entities.
706.PP
707In Cray \s-1UNICOS\s0 there is some strange numerical instability that results
708in \fIroot()\fR, \fIcos()\fR, \fIsin()\fR, \fIcosh()\fR, \fIsinh()\fR, losing accuracy fast. Beware.
709The bug may be in \s-1UNICOS\s0 math libs, in \s-1UNICOS\s0 C compiler, in Math::Complex.
710Whatever it is, it does not manifest itself anywhere else where Perl runs.
711.SH "AUTHORS"
712.IX Header "AUTHORS"
713Daniel S. Lewart <\fId\-lewart@uiuc.edu\fR>
714.PP
715Original authors Raphael Manfredi <\fIRaphael_Manfredi@pobox.com\fR> and
716Jarkko Hietaniemi <\fIjhi@iki.fi\fR>