Initial commit of OpenSPARC T2 architecture model.
[OpenSPARC-T2-SAM] / sam-t2 / devtools / v9 / man / man3 / Switch.3
CommitLineData
920dae64
AT
1.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.32
2.\"
3.\" Standard preamble:
4.\" ========================================================================
5.de Sh \" Subsection heading
6.br
7.if t .Sp
8.ne 5
9.PP
10\fB\\$1\fR
11.PP
12..
13.de Sp \" Vertical space (when we can't use .PP)
14.if t .sp .5v
15.if n .sp
16..
17.de Vb \" Begin verbatim text
18.ft CW
19.nf
20.ne \\$1
21..
22.de Ve \" End verbatim text
23.ft R
24.fi
25..
26.\" Set up some character translations and predefined strings. \*(-- will
27.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
28.\" double quote, and \*(R" will give a right double quote. | will give a
29.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
30.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
31.\" expand to `' in nroff, nothing in troff, for use with C<>.
32.tr \(*W-|\(bv\*(Tr
33.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
34.ie n \{\
35. ds -- \(*W-
36. ds PI pi
37. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
38. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
39. ds L" ""
40. ds R" ""
41. ds C` ""
42. ds C' ""
43'br\}
44.el\{\
45. ds -- \|\(em\|
46. ds PI \(*p
47. ds L" ``
48. ds R" ''
49'br\}
50.\"
51.\" If the F register is turned on, we'll generate index entries on stderr for
52.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
53.\" entries marked with X<> in POD. Of course, you'll have to process the
54.\" output yourself in some meaningful fashion.
55.if \nF \{\
56. de IX
57. tm Index:\\$1\t\\n%\t"\\$2"
58..
59. nr % 0
60. rr F
61.\}
62.\"
63.\" For nroff, turn off justification. Always turn off hyphenation; it makes
64.\" way too many mistakes in technical documents.
65.hy 0
66.if n .na
67.\"
68.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
69.\" Fear. Run. Save yourself. No user-serviceable parts.
70. \" fudge factors for nroff and troff
71.if n \{\
72. ds #H 0
73. ds #V .8m
74. ds #F .3m
75. ds #[ \f1
76. ds #] \fP
77.\}
78.if t \{\
79. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
80. ds #V .6m
81. ds #F 0
82. ds #[ \&
83. ds #] \&
84.\}
85. \" simple accents for nroff and troff
86.if n \{\
87. ds ' \&
88. ds ` \&
89. ds ^ \&
90. ds , \&
91. ds ~ ~
92. ds /
93.\}
94.if t \{\
95. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
96. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
97. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
98. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
99. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
100. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
101.\}
102. \" troff and (daisy-wheel) nroff accents
103.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
104.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
105.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
106.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
107.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
108.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
109.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
110.ds ae a\h'-(\w'a'u*4/10)'e
111.ds Ae A\h'-(\w'A'u*4/10)'E
112. \" corrections for vroff
113.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
114.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
115. \" for low resolution devices (crt and lpr)
116.if \n(.H>23 .if \n(.V>19 \
117\{\
118. ds : e
119. ds 8 ss
120. ds o a
121. ds d- d\h'-1'\(ga
122. ds D- D\h'-1'\(hy
123. ds th \o'bp'
124. ds Th \o'LP'
125. ds ae ae
126. ds Ae AE
127.\}
128.rm #[ #] #H #V #F C
129.\" ========================================================================
130.\"
131.IX Title "Switch 3"
132.TH Switch 3 "2001-09-21" "perl v5.8.8" "Perl Programmers Reference Guide"
133.SH "NAME"
134Switch \- A switch statement for Perl
135.SH "VERSION"
136.IX Header "VERSION"
137This document describes version 2.10 of Switch,
138released Dec 29, 2003.
139.SH "SYNOPSIS"
140.IX Header "SYNOPSIS"
141.Vb 1
142\& use Switch;
143.Ve
144.PP
145.Vb 1
146\& switch ($val) {
147.Ve
148.PP
149.Vb 11
150\& case 1 { print "number 1" }
151\& case "a" { print "string a" }
152\& case [1..10,42] { print "number in list" }
153\& case (@array) { print "number in list" }
154\& case /\ew+/ { print "pattern" }
155\& case qr/\ew+/ { print "pattern" }
156\& case (%hash) { print "entry in hash" }
157\& case (\e%hash) { print "entry in hash" }
158\& case (\e&sub) { print "arg to subroutine" }
159\& else { print "previous case not true" }
160\& }
161.Ve
162.SH "BACKGROUND"
163.IX Header "BACKGROUND"
164[Skip ahead to \*(L"\s-1DESCRIPTION\s0\*(R" if you don't care about the whys
165and wherefores of this control structure]
166.PP
167In seeking to devise a \*(L"Swiss Army\*(R" case mechanism suitable for Perl,
168it is useful to generalize this notion of distributed conditional
169testing as far as possible. Specifically, the concept of \*(L"matching\*(R"
170between the switch value and the various case values need not be
171restricted to numeric (or string or referential) equality, as it is in other
172languages. Indeed, as Table 1 illustrates, Perl
173offers at least eighteen different ways in which two values could
174generate a match.
175.PP
176.Vb 1
177\& Table 1: Matching a switch value ($s) with a case value ($c)
178.Ve
179.PP
180.Vb 3
181\& Switch Case Type of Match Implied Matching Code
182\& Value Value
183\& ====== ===== ===================== =============
184.Ve
185.PP
186.Vb 2
187\& number same numeric or referential match if $s == $c;
188\& or ref equality
189.Ve
190.PP
191.Vb 3
192\& object method result of method call match if $s->$c();
193\& ref name match if defined $s->$c();
194\& or ref
195.Ve
196.PP
197.Vb 3
198\& other other string equality match if $s eq $c;
199\& non-ref non-ref
200\& scalar scalar
201.Ve
202.PP
203.Vb 1
204\& string regexp pattern match match if $s =~ /$c/;
205.Ve
206.PP
207.Vb 3
208\& array scalar array entry existence match if 0<=$c && $c<@$s;
209\& ref array entry definition match if defined $s->[$c];
210\& array entry truth match if $s->[$c];
211.Ve
212.PP
213.Vb 5
214\& array array array intersection match if intersects(@$s, @$c);
215\& ref ref (apply this table to
216\& all pairs of elements
217\& $s->[$i] and
218\& $c->[$j])
219.Ve
220.PP
221.Vb 2
222\& array regexp array grep match if grep /$c/, @$s;
223\& ref
224.Ve
225.PP
226.Vb 3
227\& hash scalar hash entry existence match if exists $s->{$c};
228\& ref hash entry definition match if defined $s->{$c};
229\& hash entry truth match if $s->{$c};
230.Ve
231.PP
232.Vb 2
233\& hash regexp hash grep match if grep /$c/, keys %$s;
234\& ref
235.Ve
236.PP
237.Vb 2
238\& sub scalar return value defn match if defined $s->($c);
239\& ref return value truth match if $s->($c);
240.Ve
241.PP
242.Vb 2
243\& sub array return value defn match if defined $s->(@$c);
244\& ref ref return value truth match if $s->(@$c);
245.Ve
246.PP
247In reality, Table 1 covers 31 alternatives, because only the equality and
248intersection tests are commutative; in all other cases, the roles of
249the \f(CW$s\fR and \f(CW$c\fR variables could be reversed to produce a
250different test. For example, instead of testing a single hash for
251the existence of a series of keys (\f(CW\*(C`match if exists $s\->{$c}\*(C'\fR),
252one could test for the existence of a single key in a series of hashes
253(\f(CW\*(C`match if exists $c\->{$s}\*(C'\fR).
254.PP
255As perltodo observes, a Perl case mechanism must support all these
256\&\*(L"ways to do it\*(R".
257.SH "DESCRIPTION"
258.IX Header "DESCRIPTION"
259The Switch.pm module implements a generalized case mechanism that covers
260the numerous possible combinations of switch and case values described above.
261.PP
262The module augments the standard Perl syntax with two new control
263statements: \f(CW\*(C`switch\*(C'\fR and \f(CW\*(C`case\*(C'\fR. The \f(CW\*(C`switch\*(C'\fR statement takes a
264single scalar argument of any type, specified in parentheses.
265\&\f(CW\*(C`switch\*(C'\fR stores this value as the
266current switch value in a (localized) control variable.
267The value is followed by a block which may contain one or more
268Perl statements (including the \f(CW\*(C`case\*(C'\fR statement described below).
269The block is unconditionally executed once the switch value has
270been cached.
271.PP
272A \f(CW\*(C`case\*(C'\fR statement takes a single scalar argument (in mandatory
273parentheses if it's a variable; otherwise the parens are optional) and
274selects the appropriate type of matching between that argument and the
275current switch value. The type of matching used is determined by the
276respective types of the switch value and the \f(CW\*(C`case\*(C'\fR argument, as
277specified in Table 1. If the match is successful, the mandatory
278block associated with the \f(CW\*(C`case\*(C'\fR statement is executed.
279.PP
280In most other respects, the \f(CW\*(C`case\*(C'\fR statement is semantically identical
281to an \f(CW\*(C`if\*(C'\fR statement. For example, it can be followed by an \f(CW\*(C`else\*(C'\fR
282clause, and can be used as a postfix statement qualifier.
283.PP
284However, when a \f(CW\*(C`case\*(C'\fR block has been executed control is automatically
285transferred to the statement after the immediately enclosing \f(CW\*(C`switch\*(C'\fR
286block, rather than to the next statement within the block. In other
287words, the success of any \f(CW\*(C`case\*(C'\fR statement prevents other cases in the
288same scope from executing. But see \*(L"Allowing fall\-through\*(R" below.
289.PP
290Together these two new statements provide a fully generalized case
291mechanism:
292.PP
293.Vb 1
294\& use Switch;
295.Ve
296.PP
297.Vb 1
298\& # AND LATER...
299.Ve
300.PP
301.Vb 1
302\& %special = ( woohoo => 1, d'oh => 1 );
303.Ve
304.PP
305.Vb 2
306\& while (<>) {
307\& switch ($_) {
308.Ve
309.PP
310.Vb 3
311\& case (%special) { print "homer\en"; } # if $special{$_}
312\& case /a-z/i { print "alpha\en"; } # if $_ =~ /a-z/i
313\& case [1..9] { print "small num\en"; } # if $_ in [1..9]
314.Ve
315.PP
316.Vb 3
317\& case { $_[0] >= 10 } { # if $_ >= 10
318\& my $age = <>;
319\& switch (sub{ $_[0] < $age } ) {
320.Ve
321.PP
322.Vb 5
323\& case 20 { print "teens\en"; } # if 20 < $age
324\& case 30 { print "twenties\en"; } # if 30 < $age
325\& else { print "history\en"; }
326\& }
327\& }
328.Ve
329.PP
330.Vb 2
331\& print "must be punctuation\en" case /\eW/; # if $_ ~= /\eW/
332\& }
333.Ve
334.PP
335Note that \f(CW\*(C`switch\*(C'\fRes can be nested within \f(CW\*(C`case\*(C'\fR (or any other) blocks,
336and a series of \f(CW\*(C`case\*(C'\fR statements can try different types of matches
337\&\*(-- hash membership, pattern match, array intersection, simple equality,
338etc. \*(-- against the same switch value.
339.PP
340The use of intersection tests against an array reference is particularly
341useful for aggregating integral cases:
342.PP
343.Vb 8
344\& sub classify_digit
345\& {
346\& switch ($_[0]) { case 0 { return 'zero' }
347\& case [2,4,6,8] { return 'even' }
348\& case [1,3,4,7,9] { return 'odd' }
349\& case /[A-F]/i { return 'hex' }
350\& }
351\& }
352.Ve
353.Sh "Allowing fall-through"
354.IX Subsection "Allowing fall-through"
355Fall-though (trying another case after one has already succeeded)
356is usually a Bad Idea in a switch statement. However, this
357is Perl, not a police state, so there \fIis\fR a way to do it, if you must.
358.PP
359If a \f(CW\*(C`case\*(C'\fR block executes an untargeted \f(CW\*(C`next\*(C'\fR, control is
360immediately transferred to the statement \fIafter\fR the \f(CW\*(C`case\*(C'\fR statement
361(i.e. usually another case), rather than out of the surrounding
362\&\f(CW\*(C`switch\*(C'\fR block.
363.PP
364For example:
365.PP
366.Vb 7
367\& switch ($val) {
368\& case 1 { handle_num_1(); next } # and try next case...
369\& case "1" { handle_str_1(); next } # and try next case...
370\& case [0..9] { handle_num_any(); } # and we're done
371\& case /\ed/ { handle_dig_any(); next } # and try next case...
372\& case /.*/ { handle_str_any(); next } # and try next case...
373\& }
374.Ve
375.PP
376If \f(CW$val\fR held the number \f(CW1\fR, the above \f(CW\*(C`switch\*(C'\fR block would call the
377first three \f(CW\*(C`handle_...\*(C'\fR subroutines, jumping to the next case test
378each time it encountered a \f(CW\*(C`next\*(C'\fR. After the thrid \f(CW\*(C`case\*(C'\fR block
379was executed, control would jump to the end of the enclosing
380\&\f(CW\*(C`switch\*(C'\fR block.
381.PP
382On the other hand, if \f(CW$val\fR held \f(CW10\fR, then only the last two \f(CW\*(C`handle_...\*(C'\fR
383subroutines would be called.
384.PP
385Note that this mechanism allows the notion of \fIconditional fall-through\fR.
386For example:
387.PP
388.Vb 4
389\& switch ($val) {
390\& case [0..9] { handle_num_any(); next if $val < 7; }
391\& case /\ed/ { handle_dig_any(); }
392\& }
393.Ve
394.PP
395If an untargeted \f(CW\*(C`last\*(C'\fR statement is executed in a case block, this
396immediately transfers control out of the enclosing \f(CW\*(C`switch\*(C'\fR block
397(in other words, there is an implicit \f(CW\*(C`last\*(C'\fR at the end of each
398normal \f(CW\*(C`case\*(C'\fR block). Thus the previous example could also have been
399written:
400.PP
401.Vb 4
402\& switch ($val) {
403\& case [0..9] { handle_num_any(); last if $val >= 7; next; }
404\& case /\ed/ { handle_dig_any(); }
405\& }
406.Ve
407.Sh "Automating fall-through"
408.IX Subsection "Automating fall-through"
409In situations where case fall-through should be the norm, rather than an
410exception, an endless succession of terminal \f(CW\*(C`next\*(C'\fRs is tedious and ugly.
411Hence, it is possible to reverse the default behaviour by specifying
412the string \*(L"fallthrough\*(R" when importing the module. For example, the
413following code is equivalent to the first example in \*(L"Allowing fall\-through\*(R":
414.PP
415.Vb 1
416\& use Switch 'fallthrough';
417.Ve
418.PP
419.Vb 7
420\& switch ($val) {
421\& case 1 { handle_num_1(); }
422\& case "1" { handle_str_1(); }
423\& case [0..9] { handle_num_any(); last }
424\& case /\ed/ { handle_dig_any(); }
425\& case /.*/ { handle_str_any(); }
426\& }
427.Ve
428.PP
429Note the explicit use of a \f(CW\*(C`last\*(C'\fR to preserve the non-fall-through
430behaviour of the third case.
431.Sh "Alternative syntax"
432.IX Subsection "Alternative syntax"
433Perl 6 will provide a built-in switch statement with essentially the
434same semantics as those offered by Switch.pm, but with a different
435pair of keywords. In Perl 6 \f(CW\*(C`switch\*(C'\fR will be spelled \f(CW\*(C`given\*(C'\fR, and
436\&\f(CW\*(C`case\*(C'\fR will be pronounced \f(CW\*(C`when\*(C'\fR. In addition, the \f(CW\*(C`when\*(C'\fR statement
437will not require switch or case values to be parenthesized.
438.PP
439This future syntax is also (largely) available via the Switch.pm module, by
440importing it with the argument \f(CW"Perl6"\fR. For example:
441.PP
442.Vb 1
443\& use Switch 'Perl6';
444.Ve
445.PP
446.Vb 8
447\& given ($val) {
448\& when 1 { handle_num_1(); }
449\& when ($str1) { handle_str_1(); }
450\& when [0..9] { handle_num_any(); last }
451\& when /\ed/ { handle_dig_any(); }
452\& when /.*/ { handle_str_any(); }
453\& default { handle anything else; }
454\& }
455.Ve
456.PP
457Note that scalars still need to be parenthesized, since they would be
458ambiguous in Perl 5.
459.PP
460Note too that you can mix and match both syntaxes by importing the module
461with:
462.PP
463.Vb 1
464\& use Switch 'Perl5', 'Perl6';
465.Ve
466.Sh "Higher-order Operations"
467.IX Subsection "Higher-order Operations"
468One situation in which \f(CW\*(C`switch\*(C'\fR and \f(CW\*(C`case\*(C'\fR do not provide a good
469substitute for a cascaded \f(CW\*(C`if\*(C'\fR, is where a switch value needs to
470be tested against a series of conditions. For example:
471.PP
472.Vb 2
473\& sub beverage {
474\& switch (shift) {
475.Ve
476.PP
477.Vb 9
478\& case sub { $_[0] < 10 } { return 'milk' }
479\& case sub { $_[0] < 20 } { return 'coke' }
480\& case sub { $_[0] < 30 } { return 'beer' }
481\& case sub { $_[0] < 40 } { return 'wine' }
482\& case sub { $_[0] < 50 } { return 'malt' }
483\& case sub { $_[0] < 60 } { return 'Moet' }
484\& else { return 'milk' }
485\& }
486\& }
487.Ve
488.PP
489The need to specify each condition as a subroutine block is tiresome. To
490overcome this, when importing Switch.pm, a special \*(L"placeholder\*(R"
491subroutine named \f(CW\*(C`_\|_\*(C'\fR [sic] may also be imported. This subroutine
492converts (almost) any expression in which it appears to a reference to a
493higher-order function. That is, the expression:
494.PP
495.Vb 1
496\& use Switch '__';
497.Ve
498.PP
499.Vb 1
500\& __ < 2 + __
501.Ve
502.PP
503is equivalent to:
504.PP
505.Vb 1
506\& sub { $_[0] < 2 + $_[1] }
507.Ve
508.PP
509With \f(CW\*(C`_\|_\*(C'\fR, the previous ugly case statements can be rewritten:
510.PP
511.Vb 7
512\& case __ < 10 { return 'milk' }
513\& case __ < 20 { return 'coke' }
514\& case __ < 30 { return 'beer' }
515\& case __ < 40 { return 'wine' }
516\& case __ < 50 { return 'malt' }
517\& case __ < 60 { return 'Moet' }
518\& else { return 'milk' }
519.Ve
520.PP
521The \f(CW\*(C`_\|_\*(C'\fR subroutine makes extensive use of operator overloading to
522perform its magic. All operations involving _\|_ are overloaded to
523produce an anonymous subroutine that implements a lazy version
524of the original operation.
525.PP
526The only problem is that operator overloading does not allow the
527boolean operators \f(CW\*(C`&&\*(C'\fR and \f(CW\*(C`||\*(C'\fR to be overloaded. So a case statement
528like this:
529.PP
530.Vb 1
531\& case 0 <= __ && __ < 10 { return 'digit' }
532.Ve
533.PP
534doesn't act as expected, because when it is
535executed, it constructs two higher order subroutines
536and then treats the two resulting references as arguments to \f(CW\*(C`&&\*(C'\fR:
537.PP
538.Vb 1
539\& sub { 0 <= $_[0] } && sub { $_[0] < 10 }
540.Ve
541.PP
542This boolean expression is inevitably true, since both references are
543non\-false. Fortunately, the overloaded \f(CW'bool'\fR operator catches this
544situation and flags it as a error.
545.SH "DEPENDENCIES"
546.IX Header "DEPENDENCIES"
547The module is implemented using Filter::Util::Call and Text::Balanced
548and requires both these modules to be installed.
549.SH "AUTHOR"
550.IX Header "AUTHOR"
551Damian Conway (damian@conway.org). The maintainer of this module is now Rafael
552Garcia-Suarez (rgarciasuarez@free.fr).
553.SH "BUGS"
554.IX Header "BUGS"
555There are undoubtedly serious bugs lurking somewhere in code this funky :\-)
556Bug reports and other feedback are most welcome.
557.SH "LIMITATIONS"
558.IX Header "LIMITATIONS"
559Due to the heuristic nature of Switch.pm's source parsing, the presence
560of regexes specified with raw \f(CW\*(C`?...?\*(C'\fR delimiters may cause mysterious
561errors. The workaround is to use \f(CW\*(C`m?...?\*(C'\fR instead.
562.PP
563Due to the way source filters work in Perl, you can't use Switch inside
564an string \f(CW\*(C`eval\*(C'\fR.
565.PP
566If your source file is longer then 1 million characters and you have a
567switch statement that crosses the 1 million (or 2 million, etc.)
568character boundary you will get mysterious errors. The workaround is to
569use smaller source files.
570.SH "COPYRIGHT"
571.IX Header "COPYRIGHT"
572.Vb 3
573\& Copyright (c) 1997-2003, Damian Conway. All Rights Reserved.
574\& This module is free software. It may be used, redistributed
575\& and/or modified under the same terms as Perl itself.
576.Ve