adding _0x macro for TAHOE.
[unix-history] / usr / src / lib / libm / common_source / expm1.c
CommitLineData
e5526aba
ZAL
1/*
2 * Copyright (c) 1985 Regents of the University of California.
3 *
4 * Use and reproduction of this software are granted in accordance with
5 * the terms and conditions specified in the Berkeley Software License
6 * Agreement (in particular, this entails acknowledgement of the programs'
7 * source, and inclusion of this notice) with the additional understanding
8 * that all recipients should regard themselves as participants in an
9 * ongoing research project and hence should feel obligated to report
10 * their experiences (good or bad) with these elementary function codes,
11 * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12 */
13
14#ifndef lint
a62df508 15static char sccsid[] =
0e01cbea 16"@(#)expm1.c 1.2 (Berkeley) 8/21/85; 1.5 (ucb.elefunt) %G%";
e5526aba
ZAL
17#endif not lint
18
19/* EXPM1(X)
20 * RETURN THE EXPONENTIAL OF X MINUS ONE
21 * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
22 * CODED IN C BY K.C. NG, 1/19/85;
23 * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
24 *
25 * Required system supported functions:
26 * scalb(x,n)
27 * copysign(x,y)
28 * finite(x)
29 *
30 * Kernel function:
31 * exp__E(x,c)
32 *
33 * Method:
34 * 1. Argument Reduction: given the input x, find r and integer k such
35 * that
36 * x = k*ln2 + r, |r| <= 0.5*ln2 .
37 * r will be represented as r := z+c for better accuracy.
38 *
39 * 2. Compute EXPM1(r)=exp(r)-1 by
40 *
41 * EXPM1(r=z+c) := z + exp__E(z,c)
42 *
43 * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
44 *
45 * Remarks:
46 * 1. When k=1 and z < -0.25, we use the following formula for
47 * better accuracy:
48 * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
49 * 2. To avoid rounding error in 1-2^-k where k is large, we use
50 * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
51 * when k>56.
52 *
53 * Special cases:
54 * EXPM1(INF) is INF, EXPM1(NaN) is NaN;
55 * EXPM1(-INF)= -1;
56 * for finite argument, only EXPM1(0)=0 is exact.
57 *
58 * Accuracy:
59 * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
60 * 1,166,000 random arguments on a VAX, the maximum observed error was
61 * .872 ulps (units of the last place).
62 *
63 * Constants:
64 * The hexadecimal values are the intended ones for the following constants.
65 * The decimal values may be used, provided that the compiler will convert
66 * from decimal to binary accurately enough to produce the hexadecimal values
67 * shown.
68 */
69
e0085737 70#if (defined(VAX)||defined(TAHOE)) /* VAX D format */
0e01cbea
ZAL
71#ifdef VAX
72#define _0x(A,B) 0x/**/A/**/B
73#else /* VAX */
74#define _0x(A,B) 0x/**/B/**/A
75#endif /* VAX */
62b65e15 76/* static double */
e5526aba
ZAL
77/* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
78/* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */
79/* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */
80/* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */
0e01cbea
ZAL
81static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
82static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
83static long lnhugex[] = { _0x(ec1d,43bd), _0x(9010,a73e)};
84static long invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)};
e5526aba
ZAL
85#define ln2hi (*(double*)ln2hix)
86#define ln2lo (*(double*)ln2lox)
87#define lnhuge (*(double*)lnhugex)
88#define invln2 (*(double*)invln2x)
89#else /* IEEE double */
62b65e15 90static double
e5526aba
ZAL
91ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
92ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */
93lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */
94invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */
95#endif
96
97double expm1(x)
98double x;
99{
62b65e15 100 static double one=1.0, half=1.0/2.0;
e5526aba
ZAL
101 double scalb(), copysign(), exp__E(), z,hi,lo,c;
102 int k,finite();
e0085737 103#if (defined(VAX)||defined(TAHOE))
e5526aba
ZAL
104 static prec=56;
105#else /* IEEE double */
106 static prec=53;
107#endif
e0085737 108#if (!defined(VAX)&&!defined(TAHOE))
e5526aba
ZAL
109 if(x!=x) return(x); /* x is NaN */
110#endif
111
112 if( x <= lnhuge ) {
113 if( x >= -40.0 ) {
114
115 /* argument reduction : x - k*ln2 */
116 k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */
117 hi=x-k*ln2hi ;
118 z=hi-(lo=k*ln2lo);
119 c=(hi-z)-lo;
120
121 if(k==0) return(z+exp__E(z,c));
122 if(k==1)
123 if(z< -0.25)
124 {x=z+half;x +=exp__E(z,c); return(x+x);}
125 else
126 {z+=exp__E(z,c); x=half+z; return(x+x);}
127 /* end of k=1 */
128
129 else {
130 if(k<=prec)
131 { x=one-scalb(one,-k); z += exp__E(z,c);}
132 else if(k<100)
133 { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
134 else
135 { x = exp__E(z,c)+z; z=one;}
136
137 return (scalb(x+z,k));
138 }
139 }
140 /* end of x > lnunfl */
141
142 else
143 /* expm1(-big#) rounded to -1 (inexact) */
144 if(finite(x))
145 { ln2hi+ln2lo; return(-one);}
146
147 /* expm1(-INF) is -1 */
148 else return(-one);
149 }
150 /* end of x < lnhuge */
151
152 else
153 /* expm1(INF) is INF, expm1(+big#) overflows to INF */
154 return( finite(x) ? scalb(one,5000) : x);
155}