date and time created 85/09/06 17:52:49 by zliu
[unix-history] / usr / src / lib / libm / common_source / expm1.c
CommitLineData
e5526aba
ZAL
1/*
2 * Copyright (c) 1985 Regents of the University of California.
3 *
4 * Use and reproduction of this software are granted in accordance with
5 * the terms and conditions specified in the Berkeley Software License
6 * Agreement (in particular, this entails acknowledgement of the programs'
7 * source, and inclusion of this notice) with the additional understanding
8 * that all recipients should regard themselves as participants in an
9 * ongoing research project and hence should feel obligated to report
10 * their experiences (good or bad) with these elementary function codes,
11 * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12 */
13
14#ifndef lint
15static char sccsid[] = "@(#)expm1.c 1.1 (ELEFUNT) %G%";
16#endif not lint
17
18/* EXPM1(X)
19 * RETURN THE EXPONENTIAL OF X MINUS ONE
20 * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
21 * CODED IN C BY K.C. NG, 1/19/85;
22 * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
23 *
24 * Required system supported functions:
25 * scalb(x,n)
26 * copysign(x,y)
27 * finite(x)
28 *
29 * Kernel function:
30 * exp__E(x,c)
31 *
32 * Method:
33 * 1. Argument Reduction: given the input x, find r and integer k such
34 * that
35 * x = k*ln2 + r, |r| <= 0.5*ln2 .
36 * r will be represented as r := z+c for better accuracy.
37 *
38 * 2. Compute EXPM1(r)=exp(r)-1 by
39 *
40 * EXPM1(r=z+c) := z + exp__E(z,c)
41 *
42 * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
43 *
44 * Remarks:
45 * 1. When k=1 and z < -0.25, we use the following formula for
46 * better accuracy:
47 * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
48 * 2. To avoid rounding error in 1-2^-k where k is large, we use
49 * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
50 * when k>56.
51 *
52 * Special cases:
53 * EXPM1(INF) is INF, EXPM1(NaN) is NaN;
54 * EXPM1(-INF)= -1;
55 * for finite argument, only EXPM1(0)=0 is exact.
56 *
57 * Accuracy:
58 * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
59 * 1,166,000 random arguments on a VAX, the maximum observed error was
60 * .872 ulps (units of the last place).
61 *
62 * Constants:
63 * The hexadecimal values are the intended ones for the following constants.
64 * The decimal values may be used, provided that the compiler will convert
65 * from decimal to binary accurately enough to produce the hexadecimal values
66 * shown.
67 */
68
69#ifdef VAX /* VAX D format */
70/* double static */
71/* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
72/* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */
73/* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */
74/* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */
75static long ln2hix[] = { 0x72174031, 0x0000f7d0};
76static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
77static long lnhugex[] = { 0xec1d43bd, 0x9010a73e};
78static long invln2x[] = { 0xaa3b40b8, 0x17f1295c};
79#define ln2hi (*(double*)ln2hix)
80#define ln2lo (*(double*)ln2lox)
81#define lnhuge (*(double*)lnhugex)
82#define invln2 (*(double*)invln2x)
83#else /* IEEE double */
84double static
85ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
86ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */
87lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */
88invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */
89#endif
90
91double expm1(x)
92double x;
93{
94 double static one=1.0, half=1.0/2.0;
95 double scalb(), copysign(), exp__E(), z,hi,lo,c;
96 int k,finite();
97#ifdef VAX
98 static prec=56;
99#else /* IEEE double */
100 static prec=53;
101#endif
102#ifndef VAX
103 if(x!=x) return(x); /* x is NaN */
104#endif
105
106 if( x <= lnhuge ) {
107 if( x >= -40.0 ) {
108
109 /* argument reduction : x - k*ln2 */
110 k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */
111 hi=x-k*ln2hi ;
112 z=hi-(lo=k*ln2lo);
113 c=(hi-z)-lo;
114
115 if(k==0) return(z+exp__E(z,c));
116 if(k==1)
117 if(z< -0.25)
118 {x=z+half;x +=exp__E(z,c); return(x+x);}
119 else
120 {z+=exp__E(z,c); x=half+z; return(x+x);}
121 /* end of k=1 */
122
123 else {
124 if(k<=prec)
125 { x=one-scalb(one,-k); z += exp__E(z,c);}
126 else if(k<100)
127 { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
128 else
129 { x = exp__E(z,c)+z; z=one;}
130
131 return (scalb(x+z,k));
132 }
133 }
134 /* end of x > lnunfl */
135
136 else
137 /* expm1(-big#) rounded to -1 (inexact) */
138 if(finite(x))
139 { ln2hi+ln2lo; return(-one);}
140
141 /* expm1(-INF) is -1 */
142 else return(-one);
143 }
144 /* end of x < lnhuge */
145
146 else
147 /* expm1(INF) is INF, expm1(+big#) overflows to INF */
148 return( finite(x) ? scalb(one,5000) : x);
149}