Gzip 1.1
[unix-history] / gnu / usr.bin / gzip / trees.c
CommitLineData
3013fe88
NW
1/* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1992-1993 Jean-loup Gailly
3 * This is free software; you can redistribute it and/or modify it under the
4 * terms of the GNU General Public License, see the file COPYING.
5 */
6
7/*
8 * PURPOSE
9 *
10 * Encode various sets of source values using variable-length
11 * binary code trees.
12 *
13 * DISCUSSION
14 *
15 * The PKZIP "deflation" process uses several Huffman trees. The more
16 * common source values are represented by shorter bit sequences.
17 *
18 * Each code tree is stored in the ZIP file in a compressed form
19 * which is itself a Huffman encoding of the lengths of
20 * all the code strings (in ascending order by source values).
21 * The actual code strings are reconstructed from the lengths in
22 * the UNZIP process, as described in the "application note"
23 * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
24 *
25 * REFERENCES
26 *
27 * Lynch, Thomas J.
28 * Data Compression: Techniques and Applications, pp. 53-55.
29 * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
30 *
31 * Storer, James A.
32 * Data Compression: Methods and Theory, pp. 49-50.
33 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
34 *
35 * Sedgewick, R.
36 * Algorithms, p290.
37 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
38 *
39 * INTERFACE
40 *
41 * void ct_init (ush *attr, int *methodp)
42 * Allocate the match buffer, initialize the various tables and save
43 * the location of the internal file attribute (ascii/binary) and
44 * method (DEFLATE/STORE)
45 *
46 * void ct_tally (int dist, int lc);
47 * Save the match info and tally the frequency counts.
48 *
49 * long flush_block (char *buf, ulg stored_len, int eof)
50 * Determine the best encoding for the current block: dynamic trees,
51 * static trees or store, and output the encoded block to the zip
52 * file. Returns the total compressed length for the file so far.
53 *
54 */
55
56#include <ctype.h>
57#include <stdio.h>
58
59#include "tailor.h"
60#include "gzip.h"
61
62#ifndef lint
63static char rcsid[] = "$Id: trees.c,v 0.11 1993/03/26 14:55:43 jloup Exp $";
64#endif
65
66/* ===========================================================================
67 * Constants
68 */
69
70#define MAX_BITS 15
71/* All codes must not exceed MAX_BITS bits */
72
73#define MAX_BL_BITS 7
74/* Bit length codes must not exceed MAX_BL_BITS bits */
75
76#define LENGTH_CODES 29
77/* number of length codes, not counting the special END_BLOCK code */
78
79#define LITERALS 256
80/* number of literal bytes 0..255 */
81
82#define END_BLOCK 256
83/* end of block literal code */
84
85#define L_CODES (LITERALS+1+LENGTH_CODES)
86/* number of Literal or Length codes, including the END_BLOCK code */
87
88#define D_CODES 30
89/* number of distance codes */
90
91#define BL_CODES 19
92/* number of codes used to transfer the bit lengths */
93
94
95local int near extra_lbits[LENGTH_CODES] /* extra bits for each length code */
96 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
97
98local int near extra_dbits[D_CODES] /* extra bits for each distance code */
99 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
100
101local int near extra_blbits[BL_CODES]/* extra bits for each bit length code */
102 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
103
104#define STORED_BLOCK 0
105#define STATIC_TREES 1
106#define DYN_TREES 2
107/* The three kinds of block type */
108
109#ifndef LIT_BUFSIZE
110# ifdef SMALL_MEM
111# define LIT_BUFSIZE 0x2000
112# else
113# ifdef MEDIUM_MEM
114# define LIT_BUFSIZE 0x4000
115# else
116# define LIT_BUFSIZE 0x8000
117# endif
118# endif
119#endif
120#ifndef DIST_BUFSIZE
121# define DIST_BUFSIZE LIT_BUFSIZE
122#endif
123/* Sizes of match buffers for literals/lengths and distances. There are
124 * 4 reasons for limiting LIT_BUFSIZE to 64K:
125 * - frequencies can be kept in 16 bit counters
126 * - if compression is not successful for the first block, all input data is
127 * still in the window so we can still emit a stored block even when input
128 * comes from standard input. (This can also be done for all blocks if
129 * LIT_BUFSIZE is not greater than 32K.)
130 * - if compression is not successful for a file smaller than 64K, we can
131 * even emit a stored file instead of a stored block (saving 5 bytes).
132 * - creating new Huffman trees less frequently may not provide fast
133 * adaptation to changes in the input data statistics. (Take for
134 * example a binary file with poorly compressible code followed by
135 * a highly compressible string table.) Smaller buffer sizes give
136 * fast adaptation but have of course the overhead of transmitting trees
137 * more frequently.
138 * - I can't count above 4
139 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
140 * memory at the expense of compression). Some optimizations would be possible
141 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
142 */
143#if LIT_BUFSIZE > INBUFSIZ
144 error cannot overlay l_buf and inbuf
145#endif
146
147#define REP_3_6 16
148/* repeat previous bit length 3-6 times (2 bits of repeat count) */
149
150#define REPZ_3_10 17
151/* repeat a zero length 3-10 times (3 bits of repeat count) */
152
153#define REPZ_11_138 18
154/* repeat a zero length 11-138 times (7 bits of repeat count) */
155
156/* ===========================================================================
157 * Local data
158 */
159
160/* Data structure describing a single value and its code string. */
161typedef struct ct_data {
162 union {
163 ush freq; /* frequency count */
164 ush code; /* bit string */
165 } fc;
166 union {
167 ush dad; /* father node in Huffman tree */
168 ush len; /* length of bit string */
169 } dl;
170} ct_data;
171
172#define Freq fc.freq
173#define Code fc.code
174#define Dad dl.dad
175#define Len dl.len
176
177#define HEAP_SIZE (2*L_CODES+1)
178/* maximum heap size */
179
180local ct_data near dyn_ltree[HEAP_SIZE]; /* literal and length tree */
181local ct_data near dyn_dtree[2*D_CODES+1]; /* distance tree */
182
183local ct_data near static_ltree[L_CODES+2];
184/* The static literal tree. Since the bit lengths are imposed, there is no
185 * need for the L_CODES extra codes used during heap construction. However
186 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
187 * below).
188 */
189
190local ct_data near static_dtree[D_CODES];
191/* The static distance tree. (Actually a trivial tree since all codes use
192 * 5 bits.)
193 */
194
195local ct_data near bl_tree[2*BL_CODES+1];
196/* Huffman tree for the bit lengths */
197
198typedef struct tree_desc {
199 ct_data near *dyn_tree; /* the dynamic tree */
200 ct_data near *static_tree; /* corresponding static tree or NULL */
201 int near *extra_bits; /* extra bits for each code or NULL */
202 int extra_base; /* base index for extra_bits */
203 int elems; /* max number of elements in the tree */
204 int max_length; /* max bit length for the codes */
205 int max_code; /* largest code with non zero frequency */
206} tree_desc;
207
208local tree_desc near l_desc =
209{dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};
210
211local tree_desc near d_desc =
212{dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0};
213
214local tree_desc near bl_desc =
215{bl_tree, (ct_data near *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0};
216
217
218local ush near bl_count[MAX_BITS+1];
219/* number of codes at each bit length for an optimal tree */
220
221local uch near bl_order[BL_CODES]
222 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
223/* The lengths of the bit length codes are sent in order of decreasing
224 * probability, to avoid transmitting the lengths for unused bit length codes.
225 */
226
227local int near heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
228local int heap_len; /* number of elements in the heap */
229local int heap_max; /* element of largest frequency */
230/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
231 * The same heap array is used to build all trees.
232 */
233
234local uch near depth[2*L_CODES+1];
235/* Depth of each subtree used as tie breaker for trees of equal frequency */
236
237local uch length_code[MAX_MATCH-MIN_MATCH+1];
238/* length code for each normalized match length (0 == MIN_MATCH) */
239
240local uch dist_code[512];
241/* distance codes. The first 256 values correspond to the distances
242 * 3 .. 258, the last 256 values correspond to the top 8 bits of
243 * the 15 bit distances.
244 */
245
246local int near base_length[LENGTH_CODES];
247/* First normalized length for each code (0 = MIN_MATCH) */
248
249local int near base_dist[D_CODES];
250/* First normalized distance for each code (0 = distance of 1) */
251
252#define l_buf inbuf
253/* DECLARE(uch, l_buf, LIT_BUFSIZE); buffer for literals or lengths */
254
255/* DECLARE(ush, d_buf, DIST_BUFSIZE); buffer for distances */
256
257local uch near flag_buf[(LIT_BUFSIZE/8)];
258/* flag_buf is a bit array distinguishing literals from lengths in
259 * l_buf, thus indicating the presence or absence of a distance.
260 */
261
262local unsigned last_lit; /* running index in l_buf */
263local unsigned last_dist; /* running index in d_buf */
264local unsigned last_flags; /* running index in flag_buf */
265local uch flags; /* current flags not yet saved in flag_buf */
266local uch flag_bit; /* current bit used in flags */
267/* bits are filled in flags starting at bit 0 (least significant).
268 * Note: these flags are overkill in the current code since we don't
269 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
270 */
271
272local ulg opt_len; /* bit length of current block with optimal trees */
273local ulg static_len; /* bit length of current block with static trees */
274
275local ulg compressed_len; /* total bit length of compressed file */
276
277local ulg input_len; /* total byte length of input file */
278/* input_len is for debugging only since we can get it by other means. */
279
280ush *file_type; /* pointer to UNKNOWN, BINARY or ASCII */
281int *file_method; /* pointer to DEFLATE or STORE */
282
283#ifdef DEBUG
284extern ulg bits_sent; /* bit length of the compressed data */
285extern long isize; /* byte length of input file */
286#endif
287
288extern long block_start; /* window offset of current block */
289extern unsigned near strstart; /* window offset of current string */
290
291/* ===========================================================================
292 * Local (static) routines in this file.
293 */
294
295local void init_block OF((void));
296local void pqdownheap OF((ct_data near *tree, int k));
297local void gen_bitlen OF((tree_desc near *desc));
298local void gen_codes OF((ct_data near *tree, int max_code));
299local void build_tree OF((tree_desc near *desc));
300local void scan_tree OF((ct_data near *tree, int max_code));
301local void send_tree OF((ct_data near *tree, int max_code));
302local int build_bl_tree OF((void));
303local void send_all_trees OF((int lcodes, int dcodes, int blcodes));
304local void compress_block OF((ct_data near *ltree, ct_data near *dtree));
305local void set_file_type OF((void));
306
307
308#ifndef DEBUG
309# define send_code(c, tree) send_bits(tree[c].Code, tree[c].Len)
310 /* Send a code of the given tree. c and tree must not have side effects */
311
312#else /* DEBUG */
313# define send_code(c, tree) \
314 { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
315 send_bits(tree[c].Code, tree[c].Len); }
316#endif
317
318#define d_code(dist) \
319 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
320/* Mapping from a distance to a distance code. dist is the distance - 1 and
321 * must not have side effects. dist_code[256] and dist_code[257] are never
322 * used.
323 */
324
325#define MAX(a,b) (a >= b ? a : b)
326/* the arguments must not have side effects */
327
328/* ===========================================================================
329 * Allocate the match buffer, initialize the various tables and save the
330 * location of the internal file attribute (ascii/binary) and method
331 * (DEFLATE/STORE).
332 */
333void ct_init(attr, methodp)
334 ush *attr; /* pointer to internal file attribute */
335 int *methodp; /* pointer to compression method */
336{
337 int n; /* iterates over tree elements */
338 int bits; /* bit counter */
339 int length; /* length value */
340 int code; /* code value */
341 int dist; /* distance index */
342
343 file_type = attr;
344 file_method = methodp;
345 compressed_len = input_len = 0L;
346
347 if (static_dtree[0].Len != 0) return; /* ct_init already called */
348
349 /* Initialize the mapping length (0..255) -> length code (0..28) */
350 length = 0;
351 for (code = 0; code < LENGTH_CODES-1; code++) {
352 base_length[code] = length;
353 for (n = 0; n < (1<<extra_lbits[code]); n++) {
354 length_code[length++] = (uch)code;
355 }
356 }
357 Assert (length == 256, "ct_init: length != 256");
358 /* Note that the length 255 (match length 258) can be represented
359 * in two different ways: code 284 + 5 bits or code 285, so we
360 * overwrite length_code[255] to use the best encoding:
361 */
362 length_code[length-1] = (uch)code;
363
364 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
365 dist = 0;
366 for (code = 0 ; code < 16; code++) {
367 base_dist[code] = dist;
368 for (n = 0; n < (1<<extra_dbits[code]); n++) {
369 dist_code[dist++] = (uch)code;
370 }
371 }
372 Assert (dist == 256, "ct_init: dist != 256");
373 dist >>= 7; /* from now on, all distances are divided by 128 */
374 for ( ; code < D_CODES; code++) {
375 base_dist[code] = dist << 7;
376 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
377 dist_code[256 + dist++] = (uch)code;
378 }
379 }
380 Assert (dist == 256, "ct_init: 256+dist != 512");
381
382 /* Construct the codes of the static literal tree */
383 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
384 n = 0;
385 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
386 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
387 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
388 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
389 /* Codes 286 and 287 do not exist, but we must include them in the
390 * tree construction to get a canonical Huffman tree (longest code
391 * all ones)
392 */
393 gen_codes((ct_data near *)static_ltree, L_CODES+1);
394
395 /* The static distance tree is trivial: */
396 for (n = 0; n < D_CODES; n++) {
397 static_dtree[n].Len = 5;
398 static_dtree[n].Code = bi_reverse(n, 5);
399 }
400
401 /* Initialize the first block of the first file: */
402 init_block();
403}
404
405/* ===========================================================================
406 * Initialize a new block.
407 */
408local void init_block()
409{
410 int n; /* iterates over tree elements */
411
412 /* Initialize the trees. */
413 for (n = 0; n < L_CODES; n++) dyn_ltree[n].Freq = 0;
414 for (n = 0; n < D_CODES; n++) dyn_dtree[n].Freq = 0;
415 for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0;
416
417 dyn_ltree[END_BLOCK].Freq = 1;
418 opt_len = static_len = 0L;
419 last_lit = last_dist = last_flags = 0;
420 flags = 0; flag_bit = 1;
421}
422
423#define SMALLEST 1
424/* Index within the heap array of least frequent node in the Huffman tree */
425
426
427/* ===========================================================================
428 * Remove the smallest element from the heap and recreate the heap with
429 * one less element. Updates heap and heap_len.
430 */
431#define pqremove(tree, top) \
432{\
433 top = heap[SMALLEST]; \
434 heap[SMALLEST] = heap[heap_len--]; \
435 pqdownheap(tree, SMALLEST); \
436}
437
438/* ===========================================================================
439 * Compares to subtrees, using the tree depth as tie breaker when
440 * the subtrees have equal frequency. This minimizes the worst case length.
441 */
442#define smaller(tree, n, m) \
443 (tree[n].Freq < tree[m].Freq || \
444 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
445
446/* ===========================================================================
447 * Restore the heap property by moving down the tree starting at node k,
448 * exchanging a node with the smallest of its two sons if necessary, stopping
449 * when the heap property is re-established (each father smaller than its
450 * two sons).
451 */
452local void pqdownheap(tree, k)
453 ct_data near *tree; /* the tree to restore */
454 int k; /* node to move down */
455{
456 int v = heap[k];
457 int j = k << 1; /* left son of k */
458 while (j <= heap_len) {
459 /* Set j to the smallest of the two sons: */
460 if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++;
461
462 /* Exit if v is smaller than both sons */
463 if (smaller(tree, v, heap[j])) break;
464
465 /* Exchange v with the smallest son */
466 heap[k] = heap[j]; k = j;
467
468 /* And continue down the tree, setting j to the left son of k */
469 j <<= 1;
470 }
471 heap[k] = v;
472}
473
474/* ===========================================================================
475 * Compute the optimal bit lengths for a tree and update the total bit length
476 * for the current block.
477 * IN assertion: the fields freq and dad are set, heap[heap_max] and
478 * above are the tree nodes sorted by increasing frequency.
479 * OUT assertions: the field len is set to the optimal bit length, the
480 * array bl_count contains the frequencies for each bit length.
481 * The length opt_len is updated; static_len is also updated if stree is
482 * not null.
483 */
484local void gen_bitlen(desc)
485 tree_desc near *desc; /* the tree descriptor */
486{
487 ct_data near *tree = desc->dyn_tree;
488 int near *extra = desc->extra_bits;
489 int base = desc->extra_base;
490 int max_code = desc->max_code;
491 int max_length = desc->max_length;
492 ct_data near *stree = desc->static_tree;
493 int h; /* heap index */
494 int n, m; /* iterate over the tree elements */
495 int bits; /* bit length */
496 int xbits; /* extra bits */
497 ush f; /* frequency */
498 int overflow = 0; /* number of elements with bit length too large */
499
500 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
501
502 /* In a first pass, compute the optimal bit lengths (which may
503 * overflow in the case of the bit length tree).
504 */
505 tree[heap[heap_max]].Len = 0; /* root of the heap */
506
507 for (h = heap_max+1; h < HEAP_SIZE; h++) {
508 n = heap[h];
509 bits = tree[tree[n].Dad].Len + 1;
510 if (bits > max_length) bits = max_length, overflow++;
511 tree[n].Len = (ush)bits;
512 /* We overwrite tree[n].Dad which is no longer needed */
513
514 if (n > max_code) continue; /* not a leaf node */
515
516 bl_count[bits]++;
517 xbits = 0;
518 if (n >= base) xbits = extra[n-base];
519 f = tree[n].Freq;
520 opt_len += (ulg)f * (bits + xbits);
521 if (stree) static_len += (ulg)f * (stree[n].Len + xbits);
522 }
523 if (overflow == 0) return;
524
525 Trace((stderr,"\nbit length overflow\n"));
526 /* This happens for example on obj2 and pic of the Calgary corpus */
527
528 /* Find the first bit length which could increase: */
529 do {
530 bits = max_length-1;
531 while (bl_count[bits] == 0) bits--;
532 bl_count[bits]--; /* move one leaf down the tree */
533 bl_count[bits+1] += 2; /* move one overflow item as its brother */
534 bl_count[max_length]--;
535 /* The brother of the overflow item also moves one step up,
536 * but this does not affect bl_count[max_length]
537 */
538 overflow -= 2;
539 } while (overflow > 0);
540
541 /* Now recompute all bit lengths, scanning in increasing frequency.
542 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
543 * lengths instead of fixing only the wrong ones. This idea is taken
544 * from 'ar' written by Haruhiko Okumura.)
545 */
546 for (bits = max_length; bits != 0; bits--) {
547 n = bl_count[bits];
548 while (n != 0) {
549 m = heap[--h];
550 if (m > max_code) continue;
551 if (tree[m].Len != (unsigned) bits) {
552 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
553 opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;
554 tree[m].Len = (ush)bits;
555 }
556 n--;
557 }
558 }
559}
560
561/* ===========================================================================
562 * Generate the codes for a given tree and bit counts (which need not be
563 * optimal).
564 * IN assertion: the array bl_count contains the bit length statistics for
565 * the given tree and the field len is set for all tree elements.
566 * OUT assertion: the field code is set for all tree elements of non
567 * zero code length.
568 */
569local void gen_codes (tree, max_code)
570 ct_data near *tree; /* the tree to decorate */
571 int max_code; /* largest code with non zero frequency */
572{
573 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
574 ush code = 0; /* running code value */
575 int bits; /* bit index */
576 int n; /* code index */
577
578 /* The distribution counts are first used to generate the code values
579 * without bit reversal.
580 */
581 for (bits = 1; bits <= MAX_BITS; bits++) {
582 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
583 }
584 /* Check that the bit counts in bl_count are consistent. The last code
585 * must be all ones.
586 */
587 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
588 "inconsistent bit counts");
589 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
590
591 for (n = 0; n <= max_code; n++) {
592 int len = tree[n].Len;
593 if (len == 0) continue;
594 /* Now reverse the bits */
595 tree[n].Code = bi_reverse(next_code[len]++, len);
596
597 Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
598 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
599 }
600}
601
602/* ===========================================================================
603 * Construct one Huffman tree and assigns the code bit strings and lengths.
604 * Update the total bit length for the current block.
605 * IN assertion: the field freq is set for all tree elements.
606 * OUT assertions: the fields len and code are set to the optimal bit length
607 * and corresponding code. The length opt_len is updated; static_len is
608 * also updated if stree is not null. The field max_code is set.
609 */
610local void build_tree(desc)
611 tree_desc near *desc; /* the tree descriptor */
612{
613 ct_data near *tree = desc->dyn_tree;
614 ct_data near *stree = desc->static_tree;
615 int elems = desc->elems;
616 int n, m; /* iterate over heap elements */
617 int max_code = -1; /* largest code with non zero frequency */
618 int node = elems; /* next internal node of the tree */
619
620 /* Construct the initial heap, with least frequent element in
621 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
622 * heap[0] is not used.
623 */
624 heap_len = 0, heap_max = HEAP_SIZE;
625
626 for (n = 0; n < elems; n++) {
627 if (tree[n].Freq != 0) {
628 heap[++heap_len] = max_code = n;
629 depth[n] = 0;
630 } else {
631 tree[n].Len = 0;
632 }
633 }
634
635 /* The pkzip format requires that at least one distance code exists,
636 * and that at least one bit should be sent even if there is only one
637 * possible code. So to avoid special checks later on we force at least
638 * two codes of non zero frequency.
639 */
640 while (heap_len < 2) {
641 int new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
642 tree[new].Freq = 1;
643 depth[new] = 0;
644 opt_len--; if (stree) static_len -= stree[new].Len;
645 /* new is 0 or 1 so it does not have extra bits */
646 }
647 desc->max_code = max_code;
648
649 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
650 * establish sub-heaps of increasing lengths:
651 */
652 for (n = heap_len/2; n >= 1; n--) pqdownheap(tree, n);
653
654 /* Construct the Huffman tree by repeatedly combining the least two
655 * frequent nodes.
656 */
657 do {
658 pqremove(tree, n); /* n = node of least frequency */
659 m = heap[SMALLEST]; /* m = node of next least frequency */
660
661 heap[--heap_max] = n; /* keep the nodes sorted by frequency */
662 heap[--heap_max] = m;
663
664 /* Create a new node father of n and m */
665 tree[node].Freq = tree[n].Freq + tree[m].Freq;
666 depth[node] = (uch) (MAX(depth[n], depth[m]) + 1);
667 tree[n].Dad = tree[m].Dad = (ush)node;
668#ifdef DUMP_BL_TREE
669 if (tree == bl_tree) {
670 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
671 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
672 }
673#endif
674 /* and insert the new node in the heap */
675 heap[SMALLEST] = node++;
676 pqdownheap(tree, SMALLEST);
677
678 } while (heap_len >= 2);
679
680 heap[--heap_max] = heap[SMALLEST];
681
682 /* At this point, the fields freq and dad are set. We can now
683 * generate the bit lengths.
684 */
685 gen_bitlen((tree_desc near *)desc);
686
687 /* The field len is now set, we can generate the bit codes */
688 gen_codes ((ct_data near *)tree, max_code);
689}
690
691/* ===========================================================================
692 * Scan a literal or distance tree to determine the frequencies of the codes
693 * in the bit length tree. Updates opt_len to take into account the repeat
694 * counts. (The contribution of the bit length codes will be added later
695 * during the construction of bl_tree.)
696 */
697local void scan_tree (tree, max_code)
698 ct_data near *tree; /* the tree to be scanned */
699 int max_code; /* and its largest code of non zero frequency */
700{
701 int n; /* iterates over all tree elements */
702 int prevlen = -1; /* last emitted length */
703 int curlen; /* length of current code */
704 int nextlen = tree[0].Len; /* length of next code */
705 int count = 0; /* repeat count of the current code */
706 int max_count = 7; /* max repeat count */
707 int min_count = 4; /* min repeat count */
708
709 if (nextlen == 0) max_count = 138, min_count = 3;
710 tree[max_code+1].Len = (ush)0xffff; /* guard */
711
712 for (n = 0; n <= max_code; n++) {
713 curlen = nextlen; nextlen = tree[n+1].Len;
714 if (++count < max_count && curlen == nextlen) {
715 continue;
716 } else if (count < min_count) {
717 bl_tree[curlen].Freq += count;
718 } else if (curlen != 0) {
719 if (curlen != prevlen) bl_tree[curlen].Freq++;
720 bl_tree[REP_3_6].Freq++;
721 } else if (count <= 10) {
722 bl_tree[REPZ_3_10].Freq++;
723 } else {
724 bl_tree[REPZ_11_138].Freq++;
725 }
726 count = 0; prevlen = curlen;
727 if (nextlen == 0) {
728 max_count = 138, min_count = 3;
729 } else if (curlen == nextlen) {
730 max_count = 6, min_count = 3;
731 } else {
732 max_count = 7, min_count = 4;
733 }
734 }
735}
736
737/* ===========================================================================
738 * Send a literal or distance tree in compressed form, using the codes in
739 * bl_tree.
740 */
741local void send_tree (tree, max_code)
742 ct_data near *tree; /* the tree to be scanned */
743 int max_code; /* and its largest code of non zero frequency */
744{
745 int n; /* iterates over all tree elements */
746 int prevlen = -1; /* last emitted length */
747 int curlen; /* length of current code */
748 int nextlen = tree[0].Len; /* length of next code */
749 int count = 0; /* repeat count of the current code */
750 int max_count = 7; /* max repeat count */
751 int min_count = 4; /* min repeat count */
752
753 /* tree[max_code+1].Len = -1; */ /* guard already set */
754 if (nextlen == 0) max_count = 138, min_count = 3;
755
756 for (n = 0; n <= max_code; n++) {
757 curlen = nextlen; nextlen = tree[n+1].Len;
758 if (++count < max_count && curlen == nextlen) {
759 continue;
760 } else if (count < min_count) {
761 do { send_code(curlen, bl_tree); } while (--count != 0);
762
763 } else if (curlen != 0) {
764 if (curlen != prevlen) {
765 send_code(curlen, bl_tree); count--;
766 }
767 Assert(count >= 3 && count <= 6, " 3_6?");
768 send_code(REP_3_6, bl_tree); send_bits(count-3, 2);
769
770 } else if (count <= 10) {
771 send_code(REPZ_3_10, bl_tree); send_bits(count-3, 3);
772
773 } else {
774 send_code(REPZ_11_138, bl_tree); send_bits(count-11, 7);
775 }
776 count = 0; prevlen = curlen;
777 if (nextlen == 0) {
778 max_count = 138, min_count = 3;
779 } else if (curlen == nextlen) {
780 max_count = 6, min_count = 3;
781 } else {
782 max_count = 7, min_count = 4;
783 }
784 }
785}
786
787/* ===========================================================================
788 * Construct the Huffman tree for the bit lengths and return the index in
789 * bl_order of the last bit length code to send.
790 */
791local int build_bl_tree()
792{
793 int max_blindex; /* index of last bit length code of non zero freq */
794
795 /* Determine the bit length frequencies for literal and distance trees */
796 scan_tree((ct_data near *)dyn_ltree, l_desc.max_code);
797 scan_tree((ct_data near *)dyn_dtree, d_desc.max_code);
798
799 /* Build the bit length tree: */
800 build_tree((tree_desc near *)(&bl_desc));
801 /* opt_len now includes the length of the tree representations, except
802 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
803 */
804
805 /* Determine the number of bit length codes to send. The pkzip format
806 * requires that at least 4 bit length codes be sent. (appnote.txt says
807 * 3 but the actual value used is 4.)
808 */
809 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
810 if (bl_tree[bl_order[max_blindex]].Len != 0) break;
811 }
812 /* Update opt_len to include the bit length tree and counts */
813 opt_len += 3*(max_blindex+1) + 5+5+4;
814 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", opt_len, static_len));
815
816 return max_blindex;
817}
818
819/* ===========================================================================
820 * Send the header for a block using dynamic Huffman trees: the counts, the
821 * lengths of the bit length codes, the literal tree and the distance tree.
822 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
823 */
824local void send_all_trees(lcodes, dcodes, blcodes)
825 int lcodes, dcodes, blcodes; /* number of codes for each tree */
826{
827 int rank; /* index in bl_order */
828
829 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
830 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
831 "too many codes");
832 Tracev((stderr, "\nbl counts: "));
833 send_bits(lcodes-257, 5); /* not +255 as stated in appnote.txt */
834 send_bits(dcodes-1, 5);
835 send_bits(blcodes-4, 4); /* not -3 as stated in appnote.txt */
836 for (rank = 0; rank < blcodes; rank++) {
837 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
838 send_bits(bl_tree[bl_order[rank]].Len, 3);
839 }
840 Tracev((stderr, "\nbl tree: sent %ld", bits_sent));
841
842 send_tree((ct_data near *)dyn_ltree, lcodes-1); /* send the literal tree */
843 Tracev((stderr, "\nlit tree: sent %ld", bits_sent));
844
845 send_tree((ct_data near *)dyn_dtree, dcodes-1); /* send the distance tree */
846 Tracev((stderr, "\ndist tree: sent %ld", bits_sent));
847}
848
849/* ===========================================================================
850 * Determine the best encoding for the current block: dynamic trees, static
851 * trees or store, and output the encoded block to the zip file. This function
852 * returns the total compressed length for the file so far.
853 */
854ulg flush_block(buf, stored_len, eof)
855 char *buf; /* input block, or NULL if too old */
856 ulg stored_len; /* length of input block */
857 int eof; /* true if this is the last block for a file */
858{
859 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
860 int max_blindex; /* index of last bit length code of non zero freq */
861
862 flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
863
864 /* Check if the file is ascii or binary */
865 if (*file_type == (ush)UNKNOWN) set_file_type();
866
867 /* Construct the literal and distance trees */
868 build_tree((tree_desc near *)(&l_desc));
869 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", opt_len, static_len));
870
871 build_tree((tree_desc near *)(&d_desc));
872 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", opt_len, static_len));
873 /* At this point, opt_len and static_len are the total bit lengths of
874 * the compressed block data, excluding the tree representations.
875 */
876
877 /* Build the bit length tree for the above two trees, and get the index
878 * in bl_order of the last bit length code to send.
879 */
880 max_blindex = build_bl_tree();
881
882 /* Determine the best encoding. Compute first the block length in bytes */
883 opt_lenb = (opt_len+3+7)>>3;
884 static_lenb = (static_len+3+7)>>3;
885 input_len += stored_len; /* for debugging only */
886
887 Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
888 opt_lenb, opt_len, static_lenb, static_len, stored_len,
889 last_lit, last_dist));
890
891 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
892
893 /* If compression failed and this is the first and last block,
894 * and if the zip file can be seeked (to rewrite the local header),
895 * the whole file is transformed into a stored file:
896 */
897#ifdef FORCE_METHOD
898 if (level == 1 && eof && compressed_len == 0L) { /* force stored file */
899#else
900 if (stored_len <= opt_lenb && eof && compressed_len == 0L && seekable()) {
901#endif
902 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
903 if (buf == (char*)0) error ("block vanished");
904
905 copy_block(buf, (unsigned)stored_len, 0); /* without header */
906 compressed_len = stored_len << 3;
907 *file_method = STORED;
908
909#ifdef FORCE_METHOD
910 } else if (level == 2 && buf != (char*)0) { /* force stored block */
911#else
912 } else if (stored_len+4 <= opt_lenb && buf != (char*)0) {
913 /* 4: two words for the lengths */
914#endif
915 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
916 * Otherwise we can't have processed more than WSIZE input bytes since
917 * the last block flush, because compression would have been
918 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
919 * transform a block into a stored block.
920 */
921 send_bits((STORED_BLOCK<<1)+eof, 3); /* send block type */
922 compressed_len = (compressed_len + 3 + 7) & ~7L;
923 compressed_len += (stored_len + 4) << 3;
924
925 copy_block(buf, (unsigned)stored_len, 1); /* with header */
926
927#ifdef FORCE_METHOD
928 } else if (level == 3) { /* force static trees */
929#else
930 } else if (static_lenb == opt_lenb) {
931#endif
932 send_bits((STATIC_TREES<<1)+eof, 3);
933 compress_block((ct_data near *)static_ltree, (ct_data near *)static_dtree);
934 compressed_len += 3 + static_len;
935 } else {
936 send_bits((DYN_TREES<<1)+eof, 3);
937 send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
938 compress_block((ct_data near *)dyn_ltree, (ct_data near *)dyn_dtree);
939 compressed_len += 3 + opt_len;
940 }
941 Assert (compressed_len == bits_sent, "bad compressed size");
942 init_block();
943
944 if (eof) {
945 Assert (input_len == isize, "bad input size");
946 bi_windup();
947 compressed_len += 7; /* align on byte boundary */
948 }
949 Tracev((stderr,"\ncomprlen %lu(%lu) ", compressed_len>>3,
950 compressed_len-7*eof));
951
952 return compressed_len >> 3;
953}
954
955/* ===========================================================================
956 * Save the match info and tally the frequency counts. Return true if
957 * the current block must be flushed.
958 */
959int ct_tally (dist, lc)
960 int dist; /* distance of matched string */
961 int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
962{
963 l_buf[last_lit++] = (uch)lc;
964 if (dist == 0) {
965 /* lc is the unmatched char */
966 dyn_ltree[lc].Freq++;
967 } else {
968 /* Here, lc is the match length - MIN_MATCH */
969 dist--; /* dist = match distance - 1 */
970 Assert((ush)dist < (ush)MAX_DIST &&
971 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
972 (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
973
974 dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
975 dyn_dtree[d_code(dist)].Freq++;
976
977 d_buf[last_dist++] = (ush)dist;
978 flags |= flag_bit;
979 }
980 flag_bit <<= 1;
981
982 /* Output the flags if they fill a byte: */
983 if ((last_lit & 7) == 0) {
984 flag_buf[last_flags++] = flags;
985 flags = 0, flag_bit = 1;
986 }
987 /* Try to guess if it is profitable to stop the current block here */
988 if (level > 2 && (last_lit & 0xfff) == 0) {
989 /* Compute an upper bound for the compressed length */
990 ulg out_length = (ulg)last_lit*8L;
991 ulg in_length = (ulg)strstart-block_start;
992 int dcode;
993 for (dcode = 0; dcode < D_CODES; dcode++) {
994 out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
995 }
996 out_length >>= 3;
997 Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
998 last_lit, last_dist, in_length, out_length,
999 100L - out_length*100L/in_length));
1000 if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
1001 }
1002 return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE);
1003 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1004 * on 16 bit machines and because stored blocks are restricted to
1005 * 64K-1 bytes.
1006 */
1007}
1008
1009/* ===========================================================================
1010 * Send the block data compressed using the given Huffman trees
1011 */
1012local void compress_block(ltree, dtree)
1013 ct_data near *ltree; /* literal tree */
1014 ct_data near *dtree; /* distance tree */
1015{
1016 unsigned dist; /* distance of matched string */
1017 int lc; /* match length or unmatched char (if dist == 0) */
1018 unsigned lx = 0; /* running index in l_buf */
1019 unsigned dx = 0; /* running index in d_buf */
1020 unsigned fx = 0; /* running index in flag_buf */
1021 uch flag = 0; /* current flags */
1022 unsigned code; /* the code to send */
1023 int extra; /* number of extra bits to send */
1024
1025 if (last_lit != 0) do {
1026 if ((lx & 7) == 0) flag = flag_buf[fx++];
1027 lc = l_buf[lx++];
1028 if ((flag & 1) == 0) {
1029 send_code(lc, ltree); /* send a literal byte */
1030 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1031 } else {
1032 /* Here, lc is the match length - MIN_MATCH */
1033 code = length_code[lc];
1034 send_code(code+LITERALS+1, ltree); /* send the length code */
1035 extra = extra_lbits[code];
1036 if (extra != 0) {
1037 lc -= base_length[code];
1038 send_bits(lc, extra); /* send the extra length bits */
1039 }
1040 dist = d_buf[dx++];
1041 /* Here, dist is the match distance - 1 */
1042 code = d_code(dist);
1043 Assert (code < D_CODES, "bad d_code");
1044
1045 send_code(code, dtree); /* send the distance code */
1046 extra = extra_dbits[code];
1047 if (extra != 0) {
1048 dist -= base_dist[code];
1049 send_bits(dist, extra); /* send the extra distance bits */
1050 }
1051 } /* literal or match pair ? */
1052 flag >>= 1;
1053 } while (lx < last_lit);
1054
1055 send_code(END_BLOCK, ltree);
1056}
1057
1058/* ===========================================================================
1059 * Set the file type to ASCII or BINARY, using a crude approximation:
1060 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1061 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1062 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1063 */
1064local void set_file_type()
1065{
1066 int n = 0;
1067 unsigned ascii_freq = 0;
1068 unsigned bin_freq = 0;
1069 while (n < 7) bin_freq += dyn_ltree[n++].Freq;
1070 while (n < 128) ascii_freq += dyn_ltree[n++].Freq;
1071 while (n < LITERALS) bin_freq += dyn_ltree[n++].Freq;
1072 *file_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII;
1073 if (*file_type == BINARY && translate_eol) {
1074 warn("-l used on binary file", "");
1075 }
1076}