disc quotas / mush
[unix-history] / usr / src / sys / kern / kern_clock.c
CommitLineData
951c32fc 1/* kern_clock.c 4.34 82/07/21 */
83be5fac
BJ
2
3#include "../h/param.h"
4#include "../h/systm.h"
d9b8447e 5#include "../h/dk.h"
0a34b6fd 6#include "../h/callout.h"
83be5fac
BJ
7#include "../h/seg.h"
8#include "../h/dir.h"
9#include "../h/user.h"
10#include "../h/proc.h"
11#include "../h/reg.h"
12#include "../h/psl.h"
13#include "../h/vm.h"
14#include "../h/buf.h"
15#include "../h/text.h"
95ce0d37
BJ
16#include "../h/vlimit.h"
17#include "../h/mtpr.h"
18#include "../h/clock.h"
e5a79c70 19#include "../h/cpu.h"
72857acf 20#include "../h/protosw.h"
951c32fc
SL
21#include "../h/socket.h"
22#include "../net/if.h"
83be5fac 23
738a68d6 24#include "bk.h"
ec213dfb
BJ
25#include "dh.h"
26#include "dz.h"
1fa9ff62 27#include "ps.h"
6602c75b 28
83be5fac 29/*
f403d99f 30 * Hardclock is called straight from
83be5fac 31 * the real time clock interrupt.
f403d99f
BJ
32 * We limit the work we do at real clock interrupt time to:
33 * reloading clock
34 * decrementing time to callouts
35 * recording cpu time usage
4512b9a4 36 * modifying priority of current process
f403d99f
BJ
37 * arrange for soft clock interrupt
38 * kernel pc profiling
83be5fac 39 *
964bcfb1 40 * At software (softclock) interrupt time we:
83be5fac 41 * implement callouts
83be5fac 42 * maintain date
83be5fac
BJ
43 * lightning bolt wakeup (every second)
44 * alarm clock signals
45 * jab the scheduler
f403d99f
BJ
46 *
47 * On the vax softclock interrupts are implemented by
48 * software interrupts. Note that we may have multiple softclock
49 * interrupts compressed into one (due to excessive interrupt load),
50 * but that hardclock interrupts should never be lost.
83be5fac 51 */
3484be37
BJ
52#ifdef GPROF
53extern int profiling;
54extern char *s_lowpc;
55extern u_long s_textsize;
56extern u_short *kcount;
2752c877 57#endif
83be5fac 58
72857acf
BJ
59/*
60 * Protoslow is like lbolt, but for slow protocol timeouts, counting
61 * up to (hz/PR_SLOWHZ), then causing a pfslowtimo().
62 * Protofast is like lbolt, but for fast protocol timeouts, counting
63 * up to (hz/PR_FASTHZ), then causing a pffasttimo().
64 */
65int protoslow;
66int protofast;
951c32fc 67int ifnetslow;
72857acf 68
260ea681 69/*ARGSUSED*/
f403d99f 70hardclock(pc, ps)
4512b9a4 71 caddr_t pc;
83be5fac 72{
0a34b6fd 73 register struct callout *p1;
83be5fac 74 register struct proc *pp;
f403d99f 75 register int s, cpstate;
83be5fac
BJ
76
77 /*
78 * reprime clock
79 */
80 clkreld();
81
1fa9ff62
SL
82#if NPS > 0
83 /*
84 * sync referesh of picture system
85 */
86 psextsync(pc, ps);
87#endif
88
83be5fac 89 /*
f403d99f 90 * update callout times
83be5fac 91 */
c4710996
BJ
92 for (p1 = calltodo.c_next; p1 && p1->c_time <= 0; p1 = p1->c_next)
93 ;
94 if (p1)
95 p1->c_time--;
5da67d35
BJ
96
97 /*
f403d99f 98 * Maintain iostat and per-process cpu statistics
5da67d35 99 */
83be5fac
BJ
100 if (!noproc) {
101 s = u.u_procp->p_rssize;
102 u.u_vm.vm_idsrss += s;
103 if (u.u_procp->p_textp) {
104 register int xrss = u.u_procp->p_textp->x_rssize;
105
106 s += xrss;
107 u.u_vm.vm_ixrss += xrss;
108 }
109 if (s > u.u_vm.vm_maxrss)
110 u.u_vm.vm_maxrss = s;
0a34b6fd 111 if ((u.u_vm.vm_utime+u.u_vm.vm_stime+1)/hz > u.u_limit[LIM_CPU]) {
39f2f769
BJ
112 psignal(u.u_procp, SIGXCPU);
113 if (u.u_limit[LIM_CPU] < INFINITY - 5)
114 u.u_limit[LIM_CPU] += 5;
115 }
83be5fac 116 }
964bcfb1
BJ
117 /*
118 * Update iostat information.
119 */
83be5fac
BJ
120 if (USERMODE(ps)) {
121 u.u_vm.vm_utime++;
122 if(u.u_procp->p_nice > NZERO)
41888f16
BJ
123 cpstate = CP_NICE;
124 else
125 cpstate = CP_USER;
83be5fac 126 } else {
3484be37
BJ
127#ifdef GPROF
128 int k = pc - s_lowpc;
129 if (profiling < 2 && k < s_textsize)
130 kcount[k / sizeof (*kcount)]++;
2752c877 131#endif
41888f16 132 cpstate = CP_SYS;
ddb3ced5
SL
133 if (noproc) {
134 if ((ps&PSL_IPL) != 0)
135 cpstate = CP_IDLE;
136 } else
83be5fac
BJ
137 u.u_vm.vm_stime++;
138 }
2d7d59e9 139 cp_time[cpstate]++;
f403d99f
BJ
140 for (s = 0; s < DK_NDRIVE; s++)
141 if (dk_busy&(1<<s))
142 dk_time[s]++;
964bcfb1
BJ
143 /*
144 * Adjust priority of current process.
145 */
83be5fac
BJ
146 if (!noproc) {
147 pp = u.u_procp;
dd808ba3 148 pp->p_cpticks++;
83be5fac
BJ
149 if(++pp->p_cpu == 0)
150 pp->p_cpu--;
16a64baa 151 if(pp->p_cpu % 4 == 0) {
81263dba 152 (void) setpri(pp);
83be5fac
BJ
153 if (pp->p_pri >= PUSER)
154 pp->p_pri = pp->p_usrpri;
155 }
156 }
964bcfb1
BJ
157 /*
158 * Time moves on.
159 */
83be5fac 160 ++lbolt;
72857acf
BJ
161
162 /*
163 * Time moves on for protocols.
164 */
951c32fc 165 --protoslow; --protofast; --ifnetslow;
72857acf 166
e5a79c70 167#if VAX780
964bcfb1
BJ
168 /*
169 * On 780's, impelement a fast UBA watcher,
170 * to make sure uba's don't get stuck.
171 */
287d9996 172 if (cpu == VAX_780 && panicstr == 0 && !BASEPRI(ps))
f403d99f
BJ
173 unhang();
174#endif
964bcfb1
BJ
175 /*
176 * Schedule a software interrupt for the rest
177 * of clock activities.
178 */
f403d99f
BJ
179 setsoftclock();
180}
181
182/*
16a64baa
BJ
183 * The digital decay cpu usage priority assignment is scaled to run in
184 * time as expanded by the 1 minute load average. Each second we
185 * multiply the the previous cpu usage estimate by
186 * nrscale*avenrun[0]
187 * The following relates the load average to the period over which
188 * cpu usage is 90% forgotten:
189 * loadav 1 5 seconds
190 * loadav 5 24 seconds
191 * loadav 10 47 seconds
192 * loadav 20 93 seconds
193 * This is a great improvement on the previous algorithm which
194 * decayed the priorities by a constant, and decayed away all knowledge
195 * of previous activity in about 20 seconds. Under heavy load,
196 * the previous algorithm degenerated to round-robin with poor response
197 * time when there was a high load average.
964bcfb1 198 */
b620b354 199#undef ave
16a64baa
BJ
200#define ave(a,b) ((int)(((int)(a*b))/(b+1)))
201int nrscale = 2;
202double avenrun[];
964bcfb1
BJ
203
204/*
205 * Constant for decay filter for cpu usage field
206 * in process table (used by ps au).
f403d99f
BJ
207 */
208double ccpu = 0.95122942450071400909; /* exp(-1/20) */
209
210/*
211 * Software clock interrupt.
964bcfb1 212 * This routine runs at lower priority than device interrupts.
f403d99f 213 */
260ea681 214/*ARGSUSED*/
f403d99f 215softclock(pc, ps)
4512b9a4 216 caddr_t pc;
f403d99f 217{
dee48a1b 218 register struct callout *p1;
f403d99f
BJ
219 register struct proc *pp;
220 register int a, s;
c4710996
BJ
221 caddr_t arg;
222 int (*func)();
f403d99f
BJ
223
224 /*
287d9996 225 * Perform callouts (but not after panic's!)
f403d99f 226 */
c4710996
BJ
227 if (panicstr == 0) {
228 for (;;) {
229 s = spl7();
849fc3ee
BJ
230 if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
231 splx(s);
c4710996 232 break;
849fc3ee 233 }
c4710996
BJ
234 calltodo.c_next = p1->c_next;
235 arg = p1->c_arg;
236 func = p1->c_func;
237 p1->c_next = callfree;
238 callfree = p1;
239 (void) splx(s);
240 (*func)(arg);
f403d99f
BJ
241 }
242 }
243
244 /*
245 * Drain silos.
246 */
3b90686d 247#if NDH > 0
f403d99f
BJ
248 s = spl5(); dhtimer(); splx(s);
249#endif
3b90686d 250#if NDZ > 0
f403d99f
BJ
251 s = spl5(); dztimer(); splx(s);
252#endif
253
4512b9a4
BJ
254 /*
255 * If idling and processes are waiting to swap in,
256 * check on them.
257 */
258 if (noproc && runin) {
259 runin = 0;
260 wakeup((caddr_t)&runin);
261 }
262
f403d99f 263 /*
16a64baa 264 * Run paging daemon every 1/4 sec.
f403d99f 265 */
0a34b6fd 266 if (lbolt % (hz/4) == 0) {
83be5fac 267 vmpago();
16a64baa
BJ
268 }
269
270 /*
271 * Reschedule every 1/10 sec.
272 */
273 if (lbolt % (hz/10) == 0) {
83be5fac 274 runrun++;
f403d99f 275 aston();
83be5fac 276 }
f403d99f 277
72857acf
BJ
278 /*
279 * Run network slow and fast timeouts.
280 */
20bbf2f5
BJ
281 if (protofast <= 0) {
282 protofast = hz / PR_FASTHZ;
72857acf 283 pffasttimo();
20bbf2f5
BJ
284 }
285 if (protoslow <= 0) {
286 protoslow = hz / PR_SLOWHZ;
72857acf 287 pfslowtimo();
20bbf2f5 288 }
951c32fc
SL
289 if (ifnetslow <= 0) {
290 ifnetslow = hz / IFNET_SLOWHZ;
291 if_slowtimo();
292 }
72857acf 293
f403d99f
BJ
294 /*
295 * Lightning bolt every second:
296 * sleep timeouts
297 * process priority recomputation
298 * process %cpu averaging
299 * virtual memory metering
300 * kick swapper if processes want in
301 */
0a34b6fd 302 if (lbolt >= hz) {
287d9996 303 /*
964bcfb1 304 * This doesn't mean much on VAX since we run at
287d9996
BJ
305 * software interrupt time... if hardclock()
306 * calls softclock() directly, it prevents
307 * this code from running when the priority
308 * was raised when the clock interrupt occurred.
309 */
83be5fac
BJ
310 if (BASEPRI(ps))
311 return;
287d9996
BJ
312
313 /*
314 * If we didn't run a few times because of
315 * long blockage at high ipl, we don't
316 * really want to run this code several times,
317 * so squish out all multiples of hz here.
318 */
ddb3ced5
SL
319 s = spl6();
320 time += lbolt / hz; lbolt %= hz;
321 splx(s);
287d9996
BJ
322
323 /*
324 * Wakeup lightning bolt sleepers.
325 * Processes sleep on lbolt to wait
326 * for short amounts of time (e.g. 1 second).
327 */
83be5fac 328 wakeup((caddr_t)&lbolt);
287d9996
BJ
329
330 /*
331 * Recompute process priority and process
332 * sleep() system calls as well as internal
333 * sleeps with timeouts (tsleep() kernel routine).
334 */
335 for (pp = proc; pp < procNPROC; pp++)
8418f526 336 if (pp->p_stat && pp->p_stat!=SZOMB) {
287d9996
BJ
337 /*
338 * Increase resident time, to max of 127 seconds
339 * (it is kept in a character.) For
340 * loaded processes this is time in core; for
341 * swapped processes, this is time on drum.
342 */
343 if (pp->p_time != 127)
83be5fac 344 pp->p_time++;
287d9996
BJ
345 /*
346 * If process has clock counting down, and it
347 * expires, set it running (if this is a tsleep()),
348 * or give it an SIGALRM (if the user process
349 * is using alarm signals.
350 */
351 if (pp->p_clktim && --pp->p_clktim == 0)
352 if (pp->p_flag & STIMO) {
353 s = spl6();
354 switch (pp->p_stat) {
daac5944 355
287d9996
BJ
356 case SSLEEP:
357 setrun(pp);
358 break;
daac5944 359
287d9996
BJ
360 case SSTOP:
361 unsleep(pp);
362 break;
363 }
364 pp->p_flag &= ~STIMO;
365 splx(s);
366 } else
367 psignal(pp, SIGALRM);
368 /*
369 * If process is blocked, increment computed
370 * time blocked. This is used in swap scheduling.
371 */
372 if (pp->p_stat==SSLEEP || pp->p_stat==SSTOP)
83be5fac
BJ
373 if (pp->p_slptime != 127)
374 pp->p_slptime++;
287d9996
BJ
375 /*
376 * Update digital filter estimation of process
377 * cpu utilization for loaded processes.
378 */
dd808ba3
BJ
379 if (pp->p_flag&SLOAD)
380 pp->p_pctcpu = ccpu * pp->p_pctcpu +
0a34b6fd 381 (1.0 - ccpu) * (pp->p_cpticks/(float)hz);
287d9996
BJ
382 /*
383 * Recompute process priority. The number p_cpu
384 * is a weighted estimate of cpu time consumed.
385 * A process which consumes cpu time has this
386 * increase regularly. We here decrease it by
16a64baa
BJ
387 * a fraction based on load average giving a digital
388 * decay filter which damps out in about 5 seconds
389 * when seconds are measured in time expanded by the
390 * load average.
287d9996
BJ
391 *
392 * If a process is niced, then the nice directly
393 * affects the new priority. The final priority
394 * is in the range 0 to 255, to fit in a character.
395 */
dd808ba3 396 pp->p_cpticks = 0;
16a64baa
BJ
397 a = ave((pp->p_cpu & 0377), avenrun[0]*nrscale) +
398 pp->p_nice - NZERO;
287d9996 399 if (a < 0)
83be5fac 400 a = 0;
287d9996 401 if (a > 255)
83be5fac
BJ
402 a = 255;
403 pp->p_cpu = a;
81263dba 404 (void) setpri(pp);
287d9996
BJ
405 /*
406 * Now have computed new process priority
407 * in p->p_usrpri. Carefully change p->p_pri.
408 * A process is on a run queue associated with
409 * this priority, so we must block out process
410 * state changes during the transition.
411 */
83be5fac 412 s = spl6();
287d9996 413 if (pp->p_pri >= PUSER) {
83be5fac
BJ
414 if ((pp != u.u_procp || noproc) &&
415 pp->p_stat == SRUN &&
416 (pp->p_flag & SLOAD) &&
417 pp->p_pri != pp->p_usrpri) {
418 remrq(pp);
419 pp->p_pri = pp->p_usrpri;
420 setrq(pp);
421 } else
422 pp->p_pri = pp->p_usrpri;
423 }
424 splx(s);
425 }
287d9996
BJ
426
427 /*
428 * Perform virtual memory metering.
429 */
83be5fac 430 vmmeter();
287d9996
BJ
431
432 /*
433 * If the swap process is trying to bring
434 * a process in, have it look again to see
435 * if it is possible now.
436 */
437 if (runin!=0) {
83be5fac
BJ
438 runin = 0;
439 wakeup((caddr_t)&runin);
440 }
287d9996 441
83be5fac
BJ
442 /*
443 * If there are pages that have been cleaned,
444 * jolt the pageout daemon to process them.
445 * We do this here so that these pages will be
446 * freed if there is an abundance of memory and the
447 * daemon would not be awakened otherwise.
448 */
449 if (bclnlist != NULL)
450 wakeup((caddr_t)&proc[2]);
287d9996
BJ
451
452 /*
453 * If the trap occurred from usermode,
454 * then check to see if it has now been
455 * running more than 10 minutes of user time
456 * and should thus run with reduced priority
457 * to give other processes a chance.
458 */
83be5fac
BJ
459 if (USERMODE(ps)) {
460 pp = u.u_procp;
287d9996
BJ
461 if (pp->p_uid && pp->p_nice == NZERO &&
462 u.u_vm.vm_utime > 600 * hz)
463 pp->p_nice = NZERO+4;
81263dba 464 (void) setpri(pp);
83be5fac 465 pp->p_pri = pp->p_usrpri;
054016e1 466 }
83be5fac 467 }
287d9996
BJ
468 /*
469 * If trapped user-mode, give it a profiling tick.
470 */
f403d99f
BJ
471 if (USERMODE(ps) && u.u_prof.pr_scale) {
472 u.u_procp->p_flag |= SOWEUPC;
473 aston();
83be5fac 474 }
83be5fac
BJ
475}
476
477/*
964bcfb1 478 * Timeout is called to arrange that
0a34b6fd 479 * fun(arg) is called in tim/hz seconds.
c4710996 480 * An entry is linked into the callout
964bcfb1 481 * structure. The time in each structure
0a34b6fd 482 * entry is the number of hz's more
83be5fac
BJ
483 * than the previous entry.
484 * In this way, decrementing the
485 * first entry has the effect of
486 * updating all entries.
487 *
488 * The panic is there because there is nothing
489 * intelligent to be done if an entry won't fit.
490 */
491timeout(fun, arg, tim)
4512b9a4
BJ
492 int (*fun)();
493 caddr_t arg;
83be5fac 494{
c4710996 495 register struct callout *p1, *p2, *pnew;
83be5fac
BJ
496 register int t;
497 int s;
498
47477f34
BJ
499/* DEBUGGING CODE */
500 int ttrstrt();
501
502 if (fun == ttrstrt && arg == 0)
503 panic("timeout ttrstr arg");
504/* END DEBUGGING CODE */
83be5fac 505 t = tim;
83be5fac 506 s = spl7();
c4710996
BJ
507 pnew = callfree;
508 if (pnew == NULL)
509 panic("timeout table overflow");
510 callfree = pnew->c_next;
511 pnew->c_arg = arg;
512 pnew->c_func = fun;
513 for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
514 t -= p2->c_time;
515 p1->c_next = pnew;
516 pnew->c_next = p2;
517 pnew->c_time = t;
518 if (p2)
519 p2->c_time -= t;
83be5fac
BJ
520 splx(s);
521}
1fa9ff62
SL
522
523/*
524 * untimeout is called to remove a function timeout call
525 * from the callout structure.
526 */
527untimeout (fun, arg)
528 int (*fun)();
529 caddr_t arg;
530{
531
532 register struct callout *p1, *p2;
533 register int s;
534
535 s = spl7();
536 for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) {
537 if (p2->c_func == fun && p2->c_arg == arg) {
538 if (p2->c_next)
539 p2->c_next->c_time += p2->c_time;
540 p1->c_next = p2->c_next;
541 p2->c_next = callfree;
542 callfree = p2;
543 break;
544 }
545 }
546 splx(s);
547}