use vn_close rather than vrele after vn_open
[unix-history] / usr / src / sys / kern / kern_clock.c
CommitLineData
f406ae69
KB
1/*-
2 * Copyright (c) 1982, 1986, 1991 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * %sccs.include.redist.c%
da7c5cc6 6 *
f406ae69 7 * @(#)kern_clock.c 7.16 (Berkeley) %G%
da7c5cc6 8 */
961945a8 9
94368568
JB
10#include "param.h"
11#include "systm.h"
fb1db32c 12#include "dkstat.h"
94368568 13#include "callout.h"
94368568
JB
14#include "kernel.h"
15#include "proc.h"
e7837d79 16#include "resourcevar.h"
83be5fac 17
0157085f 18#include "machine/cpu.h"
961945a8 19
8487304f 20#ifdef GPROF
94368568 21#include "gprof.h"
8487304f
KM
22#endif
23
45e9acec
MK
24#define ADJTIME /* For now... */
25#define ADJ_TICK 1000
26int adjtimedelta;
27
76b2a182
BJ
28/*
29 * Clock handling routines.
30 *
53a32545
SL
31 * This code is written to operate with two timers which run
32 * independently of each other. The main clock, running at hz
33 * times per second, is used to do scheduling and timeout calculations.
34 * The second timer does resource utilization estimation statistically
35 * based on the state of the machine phz times a second. Both functions
36 * can be performed by a single clock (ie hz == phz), however the
37 * statistics will be much more prone to errors. Ideally a machine
38 * would have separate clocks measuring time spent in user state, system
39 * state, interrupt state, and idle state. These clocks would allow a non-
40 * approximate measure of resource utilization.
76b2a182 41 */
6602c75b 42
76b2a182
BJ
43/*
44 * TODO:
88a7a62a
SL
45 * time of day, system/user timing, timeouts, profiling on separate timers
46 * allocate more timeout table slots when table overflows.
76b2a182 47 */
9c5cfb8b 48
ad8023d1
KM
49/*
50 * Bump a timeval by a small number of usec's.
51 */
ad8023d1
KM
52#define BUMPTIME(t, usec) { \
53 register struct timeval *tp = (t); \
54 \
55 tp->tv_usec += (usec); \
56 if (tp->tv_usec >= 1000000) { \
57 tp->tv_usec -= 1000000; \
58 tp->tv_sec++; \
59 } \
60}
83be5fac 61
76b2a182 62/*
53a32545
SL
63 * The hz hardware interval timer.
64 * We update the events relating to real time.
65 * If this timer is also being used to gather statistics,
66 * we run through the statistics gathering routine as well.
76b2a182 67 */
d293217c 68hardclock(frame)
0157085f 69 clockframe frame;
83be5fac 70{
0a34b6fd 71 register struct callout *p1;
0157085f 72 register struct proc *p = curproc;
e7837d79 73 register struct pstats *pstats;
0b355a6e 74 register int s;
83be5fac 75
76b2a182
BJ
76 /*
77 * Update real-time timeout queue.
78 * At front of queue are some number of events which are ``due''.
79 * The time to these is <= 0 and if negative represents the
80 * number of ticks which have passed since it was supposed to happen.
81 * The rest of the q elements (times > 0) are events yet to happen,
82 * where the time for each is given as a delta from the previous.
83 * Decrementing just the first of these serves to decrement the time
84 * to all events.
85 */
88a7a62a
SL
86 p1 = calltodo.c_next;
87 while (p1) {
88 if (--p1->c_time > 0)
89 break;
88a7a62a
SL
90 if (p1->c_time == 0)
91 break;
92 p1 = p1->c_next;
93 }
5da67d35 94
e7837d79
MK
95 /*
96 * Curproc (now in p) is null if no process is running.
97 * We assume that curproc is set in user mode!
98 */
99 if (p)
100 pstats = p->p_stats;
76b2a182
BJ
101 /*
102 * Charge the time out based on the mode the cpu is in.
103 * Here again we fudge for the lack of proper interval timers
104 * assuming that the current state has been around at least
105 * one tick.
106 */
76b2a182
BJ
107 /*
108 * CPU was in user state. Increment
109 * user time counter, and process process-virtual time
877ef342 110 * interval timer.
76b2a182 111 */
53fbb3b3 112 BUMPTIME(&p->p_utime, tick);
0157085f
MK
113 if (timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
114 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
53fbb3b3 115 psignal(p, SIGVTALRM);
83be5fac 116 } else {
76b2a182 117 /*
0b355a6e 118 * CPU was in system state.
76b2a182 119 */
e7837d79 120 if (p)
53fbb3b3 121 BUMPTIME(&p->p_stime, tick);
83be5fac 122 }
27b91f59 123
9fb1a8d0
SL
124 /*
125 * If the cpu is currently scheduled to a process, then
126 * charge it with resource utilization for a tick, updating
127 * statistics which run in (user+system) virtual time,
128 * such as the cpu time limit and profiling timers.
129 * This assumes that the current process has been running
130 * the entire last tick.
131 */
e7837d79 132 if (p) {
53fbb3b3 133 if ((p->p_utime.tv_sec+p->p_stime.tv_sec+1) >
0157085f 134 p->p_rlimit[RLIMIT_CPU].rlim_cur) {
53fbb3b3 135 psignal(p, SIGXCPU);
0157085f
MK
136 if (p->p_rlimit[RLIMIT_CPU].rlim_cur <
137 p->p_rlimit[RLIMIT_CPU].rlim_max)
138 p->p_rlimit[RLIMIT_CPU].rlim_cur += 5;
9fb1a8d0 139 }
0157085f
MK
140 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
141 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
53fbb3b3 142 psignal(p, SIGPROF);
9fb1a8d0 143
0157085f
MK
144 /*
145 * We adjust the priority of the current process.
146 * The priority of a process gets worse as it accumulates
147 * CPU time. The cpu usage estimator (p_cpu) is increased here
148 * and the formula for computing priorities (in kern_synch.c)
149 * will compute a different value each time the p_cpu increases
150 * by 4. The cpu usage estimator ramps up quite quickly when
151 * the process is running (linearly), and decays away
152 * exponentially, * at a rate which is proportionally slower
153 * when the system is busy. The basic principal is that the
154 * system will 90% forget that a process used a lot of CPU
155 * time in 5*loadav seconds. This causes the system to favor
156 * processes which haven't run much recently, and to
157 * round-robin among other processes.
158 */
27b91f59
BJ
159 p->p_cpticks++;
160 if (++p->p_cpu == 0)
161 p->p_cpu--;
76b2a182 162 if ((p->p_cpu&3) == 0) {
0157085f 163 setpri(p);
27b91f59
BJ
164 if (p->p_pri >= PUSER)
165 p->p_pri = p->p_usrpri;
83be5fac
BJ
166 }
167 }
76b2a182 168
53a32545
SL
169 /*
170 * If the alternate clock has not made itself known then
171 * we must gather the statistics.
172 */
173 if (phz == 0)
0157085f 174 gatherstats(&frame);
53a32545 175
76b2a182
BJ
176 /*
177 * Increment the time-of-day, and schedule
178 * processing of the callouts at a very low cpu priority,
179 * so we don't keep the relatively high clock interrupt
180 * priority any longer than necessary.
181 */
45e9acec
MK
182#ifdef ADJTIME
183 if (adjtimedelta == 0)
184 bumptime(&time, tick);
185 else {
186 if (adjtimedelta < 0) {
187 bumptime(&time, tick-ADJ_TICK);
188 adjtimedelta++;
189 } else {
190 bumptime(&time, tick+ADJ_TICK);
191 adjtimedelta--;
192 }
193 }
194#else
4ca0d0d6 195 if (timedelta == 0)
99e47f6b
MK
196 BUMPTIME(&time, tick)
197 else {
198 register delta;
199
4ca0d0d6
MK
200 if (timedelta < 0) {
201 delta = tick - tickdelta;
202 timedelta += tickdelta;
99e47f6b 203 } else {
4ca0d0d6
MK
204 delta = tick + tickdelta;
205 timedelta -= tickdelta;
99e47f6b
MK
206 }
207 BUMPTIME(&time, delta);
208 }
45e9acec 209#endif
ca6b57a4 210 setsoftclock();
f403d99f
BJ
211}
212
d976d466 213int dk_ndrive = DK_NDRIVE;
53a32545
SL
214/*
215 * Gather statistics on resource utilization.
216 *
217 * We make a gross assumption: that the system has been in the
218 * state it is in (user state, kernel state, interrupt state,
219 * or idle state) for the entire last time interval, and
220 * update statistics accordingly.
221 */
0157085f
MK
222gatherstats(framep)
223 clockframe *framep;
53a32545 224{
9c5cfb8b 225 register int cpstate, s;
53a32545
SL
226
227 /*
228 * Determine what state the cpu is in.
229 */
0157085f 230 if (CLKF_USERMODE(framep)) {
53a32545
SL
231 /*
232 * CPU was in user state.
233 */
0157085f 234 if (curproc->p_nice > NZERO)
53a32545
SL
235 cpstate = CP_NICE;
236 else
237 cpstate = CP_USER;
238 } else {
239 /*
240 * CPU was in system state. If profiling kernel
0b355a6e
JB
241 * increment a counter. If no process is running
242 * then this is a system tick if we were running
243 * at a non-zero IPL (in a driver). If a process is running,
244 * then we charge it with system time even if we were
245 * at a non-zero IPL, since the system often runs
246 * this way during processing of system calls.
247 * This is approximate, but the lack of true interval
248 * timers makes doing anything else difficult.
53a32545
SL
249 */
250 cpstate = CP_SYS;
e7837d79 251 if (curproc == NULL && CLKF_BASEPRI(framep))
53a32545
SL
252 cpstate = CP_IDLE;
253#ifdef GPROF
0157085f 254 s = CLKF_PC(framep) - s_lowpc;
53a32545
SL
255 if (profiling < 2 && s < s_textsize)
256 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
257#endif
258 }
259 /*
260 * We maintain statistics shown by user-level statistics
261 * programs: the amount of time in each cpu state, and
262 * the amount of time each of DK_NDRIVE ``drives'' is busy.
263 */
264 cp_time[cpstate]++;
265 for (s = 0; s < DK_NDRIVE; s++)
fb1db32c 266 if (dk_busy&(1<<s))
53a32545
SL
267 dk_time[s]++;
268}
269
76b2a182
BJ
270/*
271 * Software priority level clock interrupt.
272 * Run periodic events from timeout queue.
273 */
260ea681 274/*ARGSUSED*/
d293217c 275softclock(frame)
0157085f 276 clockframe frame;
f403d99f 277{
f403d99f 278
27b91f59 279 for (;;) {
76b2a182
BJ
280 register struct callout *p1;
281 register caddr_t arg;
282 register int (*func)();
283 register int a, s;
284
9c5cfb8b 285 s = splhigh();
27b91f59
BJ
286 if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
287 splx(s);
288 break;
f403d99f 289 }
76b2a182 290 arg = p1->c_arg; func = p1->c_func; a = p1->c_time;
27b91f59 291 calltodo.c_next = p1->c_next;
27b91f59
BJ
292 p1->c_next = callfree;
293 callfree = p1;
4f083fd7 294 splx(s);
d01b68d6 295 (*func)(arg, a);
f403d99f 296 }
877ef342 297 /*
db1f1262
SL
298 * If trapped user-mode and profiling, give it
299 * a profiling tick.
877ef342 300 */
0157085f
MK
301 if (CLKF_USERMODE(&frame)) {
302 register struct proc *p = curproc;
db1f1262 303
0157085f
MK
304 if (p->p_stats->p_prof.pr_scale)
305 profile_tick(p, &frame);
db1f1262
SL
306 /*
307 * Check to see if process has accumulated
308 * more than 10 minutes of user time. If so
309 * reduce priority to give others a chance.
310 */
0157085f 311 if (p->p_ucred->cr_uid && p->p_nice == NZERO &&
53fbb3b3 312 p->p_utime.tv_sec > 10 * 60) {
0157085f
MK
313 p->p_nice = NZERO + 4;
314 setpri(p);
db1f1262
SL
315 p->p_pri = p->p_usrpri;
316 }
877ef342 317 }
83be5fac
BJ
318}
319
88a7a62a 320/*
0157085f 321 * Arrange that (*func)(arg) is called in t/hz seconds.
83be5fac 322 */
0157085f
MK
323timeout(func, arg, t)
324 int (*func)();
4512b9a4 325 caddr_t arg;
88a7a62a 326 register int t;
83be5fac 327{
c4710996 328 register struct callout *p1, *p2, *pnew;
9c5cfb8b 329 register int s = splhigh();
83be5fac 330
ba96129b 331 if (t <= 0)
88a7a62a 332 t = 1;
c4710996
BJ
333 pnew = callfree;
334 if (pnew == NULL)
335 panic("timeout table overflow");
336 callfree = pnew->c_next;
337 pnew->c_arg = arg;
0157085f 338 pnew->c_func = func;
c4710996 339 for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
d45b61eb
SL
340 if (p2->c_time > 0)
341 t -= p2->c_time;
c4710996
BJ
342 p1->c_next = pnew;
343 pnew->c_next = p2;
344 pnew->c_time = t;
345 if (p2)
346 p2->c_time -= t;
83be5fac
BJ
347 splx(s);
348}
1fa9ff62
SL
349
350/*
351 * untimeout is called to remove a function timeout call
352 * from the callout structure.
353 */
0157085f
MK
354untimeout(func, arg)
355 int (*func)();
1fa9ff62
SL
356 caddr_t arg;
357{
1fa9ff62
SL
358 register struct callout *p1, *p2;
359 register int s;
360
9c5cfb8b 361 s = splhigh();
1fa9ff62 362 for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) {
0157085f 363 if (p2->c_func == func && p2->c_arg == arg) {
d01b68d6 364 if (p2->c_next && p2->c_time > 0)
1fa9ff62
SL
365 p2->c_next->c_time += p2->c_time;
366 p1->c_next = p2->c_next;
367 p2->c_next = callfree;
368 callfree = p2;
369 break;
370 }
371 }
372 splx(s);
373}
d01b68d6 374
76b2a182
BJ
375/*
376 * Compute number of hz until specified time.
377 * Used to compute third argument to timeout() from an
378 * absolute time.
379 */
d01b68d6
BJ
380hzto(tv)
381 struct timeval *tv;
382{
76b2a182
BJ
383 register long ticks;
384 register long sec;
9c5cfb8b 385 int s = splhigh();
d01b68d6 386
76b2a182
BJ
387 /*
388 * If number of milliseconds will fit in 32 bit arithmetic,
389 * then compute number of milliseconds to time and scale to
390 * ticks. Otherwise just compute number of hz in time, rounding
391 * times greater than representible to maximum value.
392 *
393 * Delta times less than 25 days can be computed ``exactly''.
394 * Maximum value for any timeout in 10ms ticks is 250 days.
395 */
396 sec = tv->tv_sec - time.tv_sec;
397 if (sec <= 0x7fffffff / 1000 - 1000)
398 ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
399 (tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
400 else if (sec <= 0x7fffffff / hz)
401 ticks = sec * hz;
402 else
403 ticks = 0x7fffffff;
d01b68d6
BJ
404 splx(s);
405 return (ticks);
406}