handle follow/don't follow symbolic links
[unix-history] / usr / src / sys / kern / kern_clock.c
CommitLineData
4f083fd7 1/* kern_clock.c 4.45 82/11/13 */
83be5fac
BJ
2
3#include "../h/param.h"
4#include "../h/systm.h"
d9b8447e 5#include "../h/dk.h"
0a34b6fd 6#include "../h/callout.h"
83be5fac
BJ
7#include "../h/dir.h"
8#include "../h/user.h"
f0da6d20 9#include "../h/kernel.h"
83be5fac 10#include "../h/proc.h"
83be5fac
BJ
11#include "../h/psl.h"
12#include "../h/vm.h"
83be5fac 13#include "../h/text.h"
c53dce5d
RE
14#ifdef MUSH
15#include "../h/quota.h"
16#include "../h/share.h"
17#endif
83be5fac 18
76b2a182
BJ
19/*
20 * Clock handling routines.
21 *
22 * This code is written for a machine with only one interval timer,
23 * and does timing and resource utilization estimation statistically
24 * based on the state of the machine hz times a second. A machine
25 * with proper clocks (running separately in user state, system state,
26 * interrupt state and idle state) as well as a time-of-day clock
27 * would allow a non-approximate implementation.
28 */
6602c75b 29
76b2a182
BJ
30/*
31 * TODO:
32 * * Keep more accurate statistics by simulating good interval timers.
33 * * Use the time-of-day clock on the VAX to keep more accurate time
34 * than is possible by repeated use of the interval timer.
35 * * Allocate more timeout table slots when table overflows.
36 */
83be5fac 37
76b2a182
BJ
38/* bump a timeval by a small number of usec's */
39#define bumptime(tp, usec) \
40 (tp)->tv_usec += usec; \
27b91f59
BJ
41 if ((tp)->tv_usec >= 1000000) { \
42 (tp)->tv_usec -= 1000000; \
43 (tp)->tv_sec++; \
44 }
72857acf 45
76b2a182
BJ
46/*
47 * The (single) hardware interval timer.
48 * We update the events relating to real time, and then
49 * make a gross assumption: that the system has been in the
50 * state it is in (user state, kernel state, interrupt state,
51 * or idle state) for the entire last time interval, and
52 * update statistics accordingly.
53 */
260ea681 54/*ARGSUSED*/
b4e32d36 55#ifdef vax
f403d99f 56hardclock(pc, ps)
4512b9a4 57 caddr_t pc;
460ab27f 58 int ps;
83be5fac 59{
460ab27f 60#endif
b4e32d36 61#ifdef sun
460ab27f
BJ
62hardclock(regs)
63 struct regs regs;
64{
65 int ps = regs.r_sr;
66 caddr_t pc = (caddr_t)regs.r_pc;
67#endif
0a34b6fd 68 register struct callout *p1;
27b91f59 69 register struct proc *p;
f403d99f 70 register int s, cpstate;
83be5fac 71
76b2a182
BJ
72 /*
73 * Update real-time timeout queue.
74 * At front of queue are some number of events which are ``due''.
75 * The time to these is <= 0 and if negative represents the
76 * number of ticks which have passed since it was supposed to happen.
77 * The rest of the q elements (times > 0) are events yet to happen,
78 * where the time for each is given as a delta from the previous.
79 * Decrementing just the first of these serves to decrement the time
80 * to all events.
81 */
c4710996 82 for (p1 = calltodo.c_next; p1 && p1->c_time <= 0; p1 = p1->c_next)
d01b68d6 83 --p1->c_time;
c4710996 84 if (p1)
d01b68d6 85 --p1->c_time;
5da67d35 86
76b2a182
BJ
87 /*
88 * If the cpu is currently scheduled to a process, then
89 * charge it with resource utilization for a tick, updating
90 * statistics which run in (user+system) virtual time,
91 * such as the cpu time limit and profiling timers.
92 * This assumes that the current process has been running
93 * the entire last tick.
94 */
83be5fac
BJ
95 if (!noproc) {
96 s = u.u_procp->p_rssize;
27b91f59 97 u.u_ru.ru_idrss += s; u.u_ru.ru_isrss += 0; /* XXX */
83be5fac
BJ
98 if (u.u_procp->p_textp) {
99 register int xrss = u.u_procp->p_textp->x_rssize;
100
101 s += xrss;
f0da6d20 102 u.u_ru.ru_ixrss += xrss;
83be5fac 103 }
f0da6d20
BJ
104 if (s > u.u_ru.ru_maxrss)
105 u.u_ru.ru_maxrss = s;
106 if ((u.u_ru.ru_utime.tv_sec+u.u_ru.ru_stime.tv_sec+1) >
107 u.u_rlimit[RLIMIT_CPU].rlim_cur) {
39f2f769 108 psignal(u.u_procp, SIGXCPU);
f0da6d20
BJ
109 if (u.u_rlimit[RLIMIT_CPU].rlim_cur <
110 u.u_rlimit[RLIMIT_CPU].rlim_max)
111 u.u_rlimit[RLIMIT_CPU].rlim_cur += 5;
39f2f769 112 }
27b91f59
BJ
113 if (timerisset(&u.u_timer[ITIMER_PROF].it_value) &&
114 itimerdecr(&u.u_timer[ITIMER_PROF], tick) == 0)
115 psignal(u.u_procp, SIGPROF);
83be5fac 116 }
27b91f59 117
76b2a182
BJ
118 /*
119 * Charge the time out based on the mode the cpu is in.
120 * Here again we fudge for the lack of proper interval timers
121 * assuming that the current state has been around at least
122 * one tick.
123 */
83be5fac 124 if (USERMODE(ps)) {
76b2a182
BJ
125 /*
126 * CPU was in user state. Increment
127 * user time counter, and process process-virtual time
128 * interval timer.
129 */
130 bumptime(&u.u_ru.ru_utime, tick);
27b91f59
BJ
131 if (timerisset(&u.u_timer[ITIMER_VIRTUAL].it_value) &&
132 itimerdecr(&u.u_timer[ITIMER_VIRTUAL], tick) == 0)
133 psignal(u.u_procp, SIGVTALRM);
f0da6d20 134 if (u.u_procp->p_nice > NZERO)
41888f16
BJ
135 cpstate = CP_NICE;
136 else
137 cpstate = CP_USER;
83be5fac 138 } else {
76b2a182
BJ
139 /*
140 * CPU was in system state. If profiling kernel
141 * increment a counter. If no process is running
142 * then this is a system tick if we were running
143 * at a non-zero IPL (in a driver). If a process is running,
144 * then we charge it with system time even if we were
145 * at a non-zero IPL, since the system often runs
146 * this way during processing of system calls.
147 * This is approximate, but the lack of true interval
148 * timers makes doing anything else difficult.
149 */
3484be37
BJ
150#ifdef GPROF
151 int k = pc - s_lowpc;
152 if (profiling < 2 && k < s_textsize)
153 kcount[k / sizeof (*kcount)]++;
2752c877 154#endif
41888f16 155 cpstate = CP_SYS;
ddb3ced5 156 if (noproc) {
460ab27f 157 if (BASEPRI(ps))
ddb3ced5 158 cpstate = CP_IDLE;
f0da6d20 159 } else {
76b2a182 160 bumptime(&u.u_ru.ru_stime, tick);
f0da6d20 161 }
83be5fac 162 }
27b91f59 163
76b2a182
BJ
164 /*
165 * We maintain statistics shown by user-level statistics
166 * programs: the amount of time in each cpu state, and
167 * the amount of time each of DK_NDRIVE ``drives'' is busy.
168 */
2d7d59e9 169 cp_time[cpstate]++;
f403d99f
BJ
170 for (s = 0; s < DK_NDRIVE; s++)
171 if (dk_busy&(1<<s))
172 dk_time[s]++;
27b91f59 173
76b2a182
BJ
174 /*
175 * We adjust the priority of the current process.
176 * The priority of a process gets worse as it accumulates
177 * CPU time. The cpu usage estimator (p_cpu) is increased here
178 * and the formula for computing priorities (in kern_synch.c)
179 * will compute a different value each time the p_cpu increases
180 * by 4. The cpu usage estimator ramps up quite quickly when
181 * the process is running (linearly), and decays away exponentially,
182 * at a rate which is proportionally slower when the system is
183 * busy. The basic principal is that the system will 90% forget
184 * that a process used a lot of CPU time in 5*loadav seconds.
185 * This causes the system to favor processes which haven't run
186 * much recently, and to round-robin among other processes.
187 */
83be5fac 188 if (!noproc) {
27b91f59
BJ
189 p = u.u_procp;
190 p->p_cpticks++;
191 if (++p->p_cpu == 0)
192 p->p_cpu--;
c53dce5d 193#ifdef MUSH
27b91f59
BJ
194 p->p_quota->q_cost += (p->p_nice > NZERO ?
195 (shconsts.sc_tic * ((2*NZERO)-p->p_nice)) / NZERO :
c53dce5d
RE
196 shconsts.sc_tic) * (((int)avenrun[0]+2)/3);
197#endif
76b2a182 198 if ((p->p_cpu&3) == 0) {
27b91f59
BJ
199 (void) setpri(p);
200 if (p->p_pri >= PUSER)
201 p->p_pri = p->p_usrpri;
83be5fac
BJ
202 }
203 }
76b2a182
BJ
204
205 /*
206 * Increment the time-of-day, and schedule
207 * processing of the callouts at a very low cpu priority,
208 * so we don't keep the relatively high clock interrupt
209 * priority any longer than necessary.
210 */
211 bumptime(&time, tick);
f403d99f
BJ
212 setsoftclock();
213}
214
76b2a182
BJ
215/*
216 * Software priority level clock interrupt.
217 * Run periodic events from timeout queue.
218 */
260ea681 219/*ARGSUSED*/
b4e32d36 220#ifdef vax
f403d99f 221softclock(pc, ps)
4512b9a4 222 caddr_t pc;
460ab27f 223 int ps;
f403d99f 224{
460ab27f 225#endif
b4e32d36 226#ifdef sun
460ab27f
BJ
227softclock(sirret, regs)
228 caddr_t sirreg;
229 struct regs regs;
230{
231 int ps = regs.r_sr;
232 caddr_t pc = (caddr_t)regs.r_pc;
233#endif
f403d99f 234
27b91f59 235 for (;;) {
76b2a182
BJ
236 register struct callout *p1;
237 register caddr_t arg;
238 register int (*func)();
239 register int a, s;
240
27b91f59
BJ
241 s = spl7();
242 if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
243 splx(s);
244 break;
f403d99f 245 }
76b2a182 246 arg = p1->c_arg; func = p1->c_func; a = p1->c_time;
27b91f59 247 calltodo.c_next = p1->c_next;
27b91f59
BJ
248 p1->c_next = callfree;
249 callfree = p1;
4f083fd7 250 splx(s);
d01b68d6 251 (*func)(arg, a);
f403d99f 252 }
83be5fac
BJ
253}
254
255/*
27b91f59 256 * Arrange that (*fun)(arg) is called in tim/hz seconds.
83be5fac
BJ
257 */
258timeout(fun, arg, tim)
4512b9a4
BJ
259 int (*fun)();
260 caddr_t arg;
27b91f59 261 int tim;
83be5fac 262{
c4710996 263 register struct callout *p1, *p2, *pnew;
83be5fac
BJ
264 register int t;
265 int s;
266
267 t = tim;
83be5fac 268 s = spl7();
c4710996
BJ
269 pnew = callfree;
270 if (pnew == NULL)
271 panic("timeout table overflow");
272 callfree = pnew->c_next;
273 pnew->c_arg = arg;
274 pnew->c_func = fun;
275 for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
276 t -= p2->c_time;
277 p1->c_next = pnew;
278 pnew->c_next = p2;
279 pnew->c_time = t;
280 if (p2)
281 p2->c_time -= t;
83be5fac
BJ
282 splx(s);
283}
1fa9ff62
SL
284
285/*
286 * untimeout is called to remove a function timeout call
287 * from the callout structure.
288 */
27b91f59 289untimeout(fun, arg)
1fa9ff62
SL
290 int (*fun)();
291 caddr_t arg;
292{
1fa9ff62
SL
293 register struct callout *p1, *p2;
294 register int s;
295
296 s = spl7();
297 for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) {
298 if (p2->c_func == fun && p2->c_arg == arg) {
d01b68d6 299 if (p2->c_next && p2->c_time > 0)
1fa9ff62
SL
300 p2->c_next->c_time += p2->c_time;
301 p1->c_next = p2->c_next;
302 p2->c_next = callfree;
303 callfree = p2;
304 break;
305 }
306 }
307 splx(s);
308}
d01b68d6 309
76b2a182
BJ
310/*
311 * Compute number of hz until specified time.
312 * Used to compute third argument to timeout() from an
313 * absolute time.
314 */
d01b68d6
BJ
315hzto(tv)
316 struct timeval *tv;
317{
76b2a182
BJ
318 register long ticks;
319 register long sec;
d01b68d6
BJ
320 int s = spl7();
321
76b2a182
BJ
322 /*
323 * If number of milliseconds will fit in 32 bit arithmetic,
324 * then compute number of milliseconds to time and scale to
325 * ticks. Otherwise just compute number of hz in time, rounding
326 * times greater than representible to maximum value.
327 *
328 * Delta times less than 25 days can be computed ``exactly''.
329 * Maximum value for any timeout in 10ms ticks is 250 days.
330 */
331 sec = tv->tv_sec - time.tv_sec;
332 if (sec <= 0x7fffffff / 1000 - 1000)
333 ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
334 (tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
335 else if (sec <= 0x7fffffff / hz)
336 ticks = sec * hz;
337 else
338 ticks = 0x7fffffff;
d01b68d6
BJ
339 splx(s);
340 return (ticks);
341}