Cleanups for 4.4BSD-Lite
[unix-history] / usr / src / sys / kern / kern_synch.c
CommitLineData
f406ae69 1/*-
c34daa85
KB
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
f406ae69
KB
4 * All rights reserved.
5 *
6 * %sccs.include.redist.c%
da7c5cc6 7 *
6c1c42d5 8 * @(#)kern_synch.c 8.2 (Berkeley) %G%
da7c5cc6 9 */
961945a8 10
38a01dbe
KB
11#include <sys/param.h>
12#include <sys/systm.h>
13#include <sys/proc.h>
14#include <sys/kernel.h>
15#include <sys/buf.h>
16#include <sys/signalvar.h>
17#include <sys/resourcevar.h>
18#include <sys/vmmeter.h>
9fe02b59 19#ifdef KTRACE
38a01dbe 20#include <sys/ktrace.h>
9fe02b59 21#endif
1edb1cf8 22
38a01dbe 23#include <machine/cpu.h>
9db58063 24
6c1c42d5 25u_char curpriority; /* usrpri of curproc */
cca8a63d 26int lbolt; /* once a second sleep address */
70ca6a82 27
1edb1cf8
BJ
28/*
29 * Force switch among equal priority processes every 100ms.
30 */
80ecfe6e
CT
31/* ARGSUSED */
32void
33roundrobin(arg)
34 void *arg;
1edb1cf8
BJ
35{
36
132d8a6d 37 need_resched();
6c1c42d5 38 timeout(roundrobin, NULL, hz / 10);
1edb1cf8
BJ
39}
40
d048c9b6
KM
41/*
42 * constants for digital decay and forget
43 * 90% of (p_cpu) usage in 5*loadav time
44 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
45 * Note that, as ps(1) mentions, this can let percentages
46 * total over 100% (I've seen 137.9% for 3 processes).
47 *
48 * Note that hardclock updates p_cpu and p_cpticks independently.
49 *
50 * We wish to decay away 90% of p_cpu in (5 * loadavg) seconds.
51 * That is, the system wants to compute a value of decay such
52 * that the following for loop:
53 * for (i = 0; i < (5 * loadavg); i++)
54 * p_cpu *= decay;
55 * will compute
56 * p_cpu *= 0.1;
57 * for all values of loadavg:
58 *
59 * Mathematically this loop can be expressed by saying:
60 * decay ** (5 * loadavg) ~= .1
61 *
62 * The system computes decay as:
63 * decay = (2 * loadavg) / (2 * loadavg + 1)
64 *
65 * We wish to prove that the system's computation of decay
66 * will always fulfill the equation:
67 * decay ** (5 * loadavg) ~= .1
68 *
69 * If we compute b as:
70 * b = 2 * loadavg
71 * then
72 * decay = b / (b + 1)
73 *
74 * We now need to prove two things:
75 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
76 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
77 *
78 * Facts:
79 * For x close to zero, exp(x) =~ 1 + x, since
80 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
81 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
82 * For x close to zero, ln(1+x) =~ x, since
83 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
84 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
85 * ln(.1) =~ -2.30
86 *
87 * Proof of (1):
88 * Solve (factor)**(power) =~ .1 given power (5*loadav):
89 * solving for factor,
90 * ln(factor) =~ (-2.30/5*loadav), or
132d8a6d 91 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
d048c9b6
KM
92 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
93 *
94 * Proof of (2):
95 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
96 * solving for power,
97 * power*ln(b/(b+1)) =~ -2.30, or
98 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
99 *
100 * Actual power values for the implemented algorithm are as follows:
101 * loadav: 1 2 3 4
102 * power: 5.68 10.32 14.94 19.55
103 */
1e35e051 104
80b6b780 105/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
132d8a6d
MK
106#define loadfactor(loadav) (2 * (loadav))
107#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
80b6b780
KM
108
109/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
110fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
111
112/*
113 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
114 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
115 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
116 *
117 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
118 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
119 *
120 * If you dont want to bother with the faster/more-accurate formula, you
121 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
122 * (more general) method of calculating the %age of CPU used by a process.
123 */
124#define CCPU_SHIFT 11
1edb1cf8 125
1edb1cf8 126/*
6c1c42d5 127 * Recompute process priorities, every hz ticks.
1edb1cf8 128 */
80ecfe6e
CT
129/* ARGSUSED */
130void
131schedcpu(arg)
132 void *arg;
1edb1cf8 133{
ea853f5f 134 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1edb1cf8 135 register struct proc *p;
132d8a6d
MK
136 register int s;
137 register unsigned int newcpu;
1edb1cf8 138
1edb1cf8 139 wakeup((caddr_t)&lbolt);
80ecfe6e 140 for (p = (struct proc *)allproc; p != NULL; p = p->p_nxt) {
132d8a6d
MK
141 /*
142 * Increment time in/out of memory and sleep time
143 * (if sleeping). We ignore overflow; with 16-bit int's
144 * (remember them?) overflow takes 45 days.
145 */
146 p->p_time++;
147 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
148 p->p_slptime++;
80b6b780 149 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1e35e051
MK
150 /*
151 * If the process has slept the entire second,
152 * stop recalculating its priority until it wakes up.
153 */
80b6b780 154 if (p->p_slptime > 1)
1e35e051 155 continue;
471efe78 156 s = splstatclock(); /* prevent state changes */
1e35e051
MK
157 /*
158 * p_pctcpu is only for ps.
159 */
80b6b780
KM
160#if (FSHIFT >= CCPU_SHIFT)
161 p->p_pctcpu += (hz == 100)?
162 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
163 100 * (((fixpt_t) p->p_cpticks)
164 << (FSHIFT - CCPU_SHIFT)) / hz;
165#else
166 p->p_pctcpu += ((FSCALE - ccpu) *
167 (p->p_cpticks * FSCALE / hz)) >> FSHIFT;
168#endif
1edb1cf8 169 p->p_cpticks = 0;
132d8a6d
MK
170 newcpu = (u_int) decay_cpu(loadfac, p->p_cpu) + p->p_nice;
171 p->p_cpu = min(newcpu, UCHAR_MAX);
6c1c42d5 172 resetpriority(p);
1edb1cf8 173 if (p->p_pri >= PUSER) {
132d8a6d 174#define PPQ (128 / NQS) /* priorities per queue */
c081e302 175 if ((p != curproc) &&
1edb1cf8
BJ
176 p->p_stat == SRUN &&
177 (p->p_flag & SLOAD) &&
fab25db3 178 (p->p_pri / PPQ) != (p->p_usrpri / PPQ)) {
1edb1cf8
BJ
179 remrq(p);
180 p->p_pri = p->p_usrpri;
181 setrq(p);
182 } else
183 p->p_pri = p->p_usrpri;
184 }
185 splx(s);
186 }
187 vmmeter();
1edb1cf8 188 if (bclnlist != NULL)
132d8a6d 189 wakeup((caddr_t)pageproc);
80ecfe6e 190 timeout(schedcpu, (void *)0, hz);
1edb1cf8 191}
a379cce8 192
1e35e051
MK
193/*
194 * Recalculate the priority of a process after it has slept for a while.
132d8a6d
MK
195 * For all load averages >= 1 and max p_cpu of 255, sleeping for at least
196 * six times the loadfactor will decay p_cpu to zero.
1e35e051 197 */
80ecfe6e 198void
1e35e051
MK
199updatepri(p)
200 register struct proc *p;
201{
132d8a6d 202 register unsigned int newcpu = p->p_cpu;
ea853f5f 203 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
132d8a6d
MK
204
205 if (p->p_slptime > 5 * loadfac)
206 p->p_cpu = 0;
207 else {
208 p->p_slptime--; /* the first time was done in schedcpu */
209 while (newcpu && --p->p_slptime)
210 newcpu = (int) decay_cpu(loadfac, newcpu);
211 p->p_cpu = min(newcpu, UCHAR_MAX);
212 }
6c1c42d5 213 resetpriority(p);
1e35e051
MK
214}
215
a379cce8
BJ
216#define SQSIZE 0100 /* Must be power of 2 */
217#define HASH(x) (( (int) x >> 5) & (SQSIZE-1))
3abb418a
KM
218struct slpque {
219 struct proc *sq_head;
220 struct proc **sq_tailp;
221} slpque[SQSIZE];
a379cce8 222
ffa9c89a
MK
223/*
224 * During autoconfiguration or after a panic, a sleep will simply
225 * lower the priority briefly to allow interrupts, then return.
226 * The priority to be used (safepri) is machine-dependent, thus this
227 * value is initialized and maintained in the machine-dependent layers.
228 * This priority will typically be 0, or the lowest priority
229 * that is safe for use on the interrupt stack; it can be made
230 * higher to block network software interrupts after panics.
231 */
232int safepri;
233
a379cce8 234/*
6c1c42d5
KB
235 * General sleep call. Suspends the current process until a wakeup is
236 * performed on the specified identifier. The process will then be made
237 * runnable with the specified priority. Sleeps at most timo/hz seconds
238 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
239 * before and after sleeping, else signals are not checked. Returns 0 if
240 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
241 * signal needs to be delivered, ERESTART is returned if the current system
242 * call should be restarted if possible, and EINTR is returned if the system
243 * call should be interrupted by the signal (return EINTR).
a379cce8 244 */
80ecfe6e 245int
6c1c42d5
KB
246tsleep(ident, priority, wmesg, timo)
247 void *ident;
248 int priority, timo;
67e9a600 249 char *wmesg;
67e9a600 250{
c081e302 251 register struct proc *p = curproc;
67e9a600
MT
252 register struct slpque *qp;
253 register s;
6c1c42d5 254 int sig, catch = priority & PCATCH;
67e9a600 255 extern int cold;
80ecfe6e 256 void endtsleep __P((void *));
67e9a600 257
9fe02b59
MT
258#ifdef KTRACE
259 if (KTRPOINT(p, KTR_CSW))
260 ktrcsw(p->p_tracep, 1, 0);
261#endif
67e9a600
MT
262 s = splhigh();
263 if (cold || panicstr) {
264 /*
265 * After a panic, or during autoconfiguration,
266 * just give interrupts a chance, then just return;
267 * don't run any other procs or panic below,
268 * in case this is the idle process and already asleep.
67e9a600 269 */
ffa9c89a 270 splx(safepri);
67e9a600
MT
271 splx(s);
272 return (0);
273 }
274#ifdef DIAGNOSTIC
6c1c42d5 275 if (ident == NULL || p->p_stat != SRUN || p->p_rlink)
25667a4a 276 panic("tsleep");
67e9a600 277#endif
6c1c42d5 278 p->p_wchan = ident;
132d8a6d
MK
279 p->p_wmesg = wmesg;
280 p->p_slptime = 0;
6c1c42d5
KB
281 p->p_pri = priority & PRIMASK;
282 qp = &slpque[HASH(ident)];
67e9a600 283 if (qp->sq_head == 0)
132d8a6d 284 qp->sq_head = p;
67e9a600 285 else
132d8a6d
MK
286 *qp->sq_tailp = p;
287 *(qp->sq_tailp = &p->p_link) = 0;
ffa9c89a 288 if (timo)
80ecfe6e 289 timeout(endtsleep, (void *)p, timo);
67e9a600 290 /*
132d8a6d
MK
291 * We put ourselves on the sleep queue and start our timeout
292 * before calling CURSIG, as we could stop there, and a wakeup
293 * or a SIGCONT (or both) could occur while we were stopped.
ffa9c89a
MK
294 * A SIGCONT would cause us to be marked as SSLEEP
295 * without resuming us, thus we must be ready for sleep
296 * when CURSIG is called. If the wakeup happens while we're
132d8a6d 297 * stopped, p->p_wchan will be 0 upon return from CURSIG.
67e9a600 298 */
25667a4a 299 if (catch) {
132d8a6d
MK
300 p->p_flag |= SSINTR;
301 if (sig = CURSIG(p)) {
302 if (p->p_wchan)
303 unsleep(p);
304 p->p_stat = SRUN;
ffa9c89a 305 goto resume;
25667a4a 306 }
132d8a6d 307 if (p->p_wchan == 0) {
ffa9c89a
MK
308 catch = 0;
309 goto resume;
25667a4a 310 }
d4018dda
CT
311 } else
312 sig = 0;
132d8a6d 313 p->p_stat = SSLEEP;
132d8a6d 314 p->p_stats->p_ru.ru_nvcsw++;
67e9a600 315 swtch();
ffa9c89a 316resume:
6c1c42d5 317 curpriority = p->p_usrpri;
67e9a600 318 splx(s);
132d8a6d
MK
319 p->p_flag &= ~SSINTR;
320 if (p->p_flag & STIMO) {
321 p->p_flag &= ~STIMO;
d4018dda 322 if (sig == 0) {
9fe02b59
MT
323#ifdef KTRACE
324 if (KTRPOINT(p, KTR_CSW))
325 ktrcsw(p->p_tracep, 0, 0);
326#endif
ffa9c89a 327 return (EWOULDBLOCK);
9fe02b59 328 }
ffa9c89a 329 } else if (timo)
80ecfe6e 330 untimeout(endtsleep, (void *)p);
132d8a6d 331 if (catch && (sig != 0 || (sig = CURSIG(p)))) {
9fe02b59
MT
332#ifdef KTRACE
333 if (KTRPOINT(p, KTR_CSW))
334 ktrcsw(p->p_tracep, 0, 0);
335#endif
132d8a6d 336 if (p->p_sigacts->ps_sigintr & sigmask(sig))
25667a4a
MK
337 return (EINTR);
338 return (ERESTART);
339 }
9fe02b59
MT
340#ifdef KTRACE
341 if (KTRPOINT(p, KTR_CSW))
342 ktrcsw(p->p_tracep, 0, 0);
343#endif
67e9a600
MT
344 return (0);
345}
346
347/*
348 * Implement timeout for tsleep.
349 * If process hasn't been awakened (wchan non-zero),
350 * set timeout flag and undo the sleep. If proc
351 * is stopped, just unsleep so it will remain stopped.
352 */
80ecfe6e
CT
353void
354endtsleep(arg)
355 void *arg;
67e9a600 356{
80ecfe6e
CT
357 register struct proc *p;
358 int s;
67e9a600 359
80ecfe6e
CT
360 p = (struct proc *)arg;
361 s = splhigh();
67e9a600
MT
362 if (p->p_wchan) {
363 if (p->p_stat == SSLEEP)
364 setrun(p);
365 else
366 unsleep(p);
367 p->p_flag |= STIMO;
368 }
369 splx(s);
370}
371
25667a4a
MK
372/*
373 * Short-term, non-interruptable sleep.
374 */
80ecfe6e 375void
6c1c42d5
KB
376sleep(ident, priority)
377 void *ident;
378 int priority;
a379cce8 379{
c081e302 380 register struct proc *p = curproc;
3abb418a 381 register struct slpque *qp;
6fdc0335 382 register s;
79a4402e 383 extern int cold;
a379cce8 384
25667a4a 385#ifdef DIAGNOSTIC
6c1c42d5
KB
386 if (priority > PZERO) {
387 printf("sleep called with priority %d > PZERO, wchan: %x\n",
388 priority, ident);
25667a4a
MK
389 panic("old sleep");
390 }
391#endif
1e35e051 392 s = splhigh();
79a4402e 393 if (cold || panicstr) {
76acd871 394 /*
79a4402e
MK
395 * After a panic, or during autoconfiguration,
396 * just give interrupts a chance, then just return;
397 * don't run any other procs or panic below,
398 * in case this is the idle process and already asleep.
76acd871 399 */
ffa9c89a 400 splx(safepri);
76acd871
MK
401 splx(s);
402 return;
403 }
67e9a600 404#ifdef DIAGNOSTIC
6c1c42d5 405 if (ident == NULL || p->p_stat != SRUN || p->p_rlink)
a379cce8 406 panic("sleep");
67e9a600 407#endif
6c1c42d5 408 p->p_wchan = ident;
132d8a6d
MK
409 p->p_wmesg = NULL;
410 p->p_slptime = 0;
6c1c42d5
KB
411 p->p_pri = priority;
412 qp = &slpque[HASH(ident)];
3abb418a 413 if (qp->sq_head == 0)
132d8a6d 414 qp->sq_head = p;
3abb418a 415 else
132d8a6d
MK
416 *qp->sq_tailp = p;
417 *(qp->sq_tailp = &p->p_link) = 0;
418 p->p_stat = SSLEEP;
132d8a6d 419 p->p_stats->p_ru.ru_nvcsw++;
9fe02b59
MT
420#ifdef KTRACE
421 if (KTRPOINT(p, KTR_CSW))
422 ktrcsw(p->p_tracep, 1, 0);
423#endif
25667a4a 424 swtch();
9fe02b59
MT
425#ifdef KTRACE
426 if (KTRPOINT(p, KTR_CSW))
427 ktrcsw(p->p_tracep, 0, 0);
428#endif
6c1c42d5 429 curpriority = p->p_usrpri;
a379cce8 430 splx(s);
a379cce8
BJ
431}
432
87d0f32e
BJ
433/*
434 * Remove a process from its wait queue
435 */
80ecfe6e 436void
87d0f32e 437unsleep(p)
18a4549b 438 register struct proc *p;
87d0f32e 439{
3abb418a 440 register struct slpque *qp;
87d0f32e 441 register struct proc **hp;
3abb418a 442 int s;
87d0f32e 443
1e35e051 444 s = splhigh();
87d0f32e 445 if (p->p_wchan) {
3abb418a 446 hp = &(qp = &slpque[HASH(p->p_wchan)])->sq_head;
87d0f32e
BJ
447 while (*hp != p)
448 hp = &(*hp)->p_link;
449 *hp = p->p_link;
3abb418a
KM
450 if (qp->sq_tailp == &p->p_link)
451 qp->sq_tailp = hp;
87d0f32e
BJ
452 p->p_wchan = 0;
453 }
454 splx(s);
455}
456
a379cce8 457/*
6c1c42d5 458 * Make all processes sleeping on the specified identifier runnable.
a379cce8 459 */
80ecfe6e 460void
6c1c42d5
KB
461wakeup(ident)
462 register void *ident;
a379cce8 463{
3abb418a
KM
464 register struct slpque *qp;
465 register struct proc *p, **q;
a379cce8
BJ
466 int s;
467
1e35e051 468 s = splhigh();
6c1c42d5 469 qp = &slpque[HASH(ident)];
a379cce8 470restart:
3abb418a 471 for (q = &qp->sq_head; p = *q; ) {
67e9a600 472#ifdef DIAGNOSTIC
87d0f32e 473 if (p->p_rlink || p->p_stat != SSLEEP && p->p_stat != SSTOP)
a379cce8 474 panic("wakeup");
67e9a600 475#endif
6c1c42d5 476 if (p->p_wchan == ident) {
a379cce8 477 p->p_wchan = 0;
e5df4be8 478 *q = p->p_link;
3abb418a
KM
479 if (qp->sq_tailp == &p->p_link)
480 qp->sq_tailp = q;
87d0f32e
BJ
481 if (p->p_stat == SSLEEP) {
482 /* OPTIMIZED INLINE EXPANSION OF setrun(p) */
6f414c22
MK
483 if (p->p_slptime > 1)
484 updatepri(p);
132d8a6d 485 p->p_slptime = 0;
87d0f32e 486 p->p_stat = SRUN;
c74c8a79 487 if (p->p_flag & SLOAD)
87d0f32e 488 setrq(p);
fab25db3 489 /*
6c1c42d5
KB
490 * Since curpriority is a user priority,
491 * p->p_pri is always better than curpriority.
fab25db3 492 */
132d8a6d
MK
493 if ((p->p_flag&SLOAD) == 0)
494 wakeup((caddr_t)&proc0);
495 else
496 need_resched();
87d0f32e 497 /* END INLINE EXPANSION */
e5df4be8 498 goto restart;
a379cce8 499 }
e5df4be8
BJ
500 } else
501 q = &p->p_link;
a379cce8
BJ
502 }
503 splx(s);
504}
505
80ecfe6e
CT
506/*
507 * The machine independent parts of swtch().
508 * Must be called at splstatclock() or higher.
509 */
510void
511swtch()
512{
513 register struct proc *p = curproc; /* XXX */
514 register struct rlimit *rlim;
515 register long s, u;
516 struct timeval tv;
517
518 /*
519 * Compute the amount of time during which the current
520 * process was running, and add that to its total so far.
521 */
522 microtime(&tv);
523 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
524 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
525 if (u < 0) {
526 u += 1000000;
527 s--;
528 } else if (u >= 1000000) {
529 u -= 1000000;
530 s++;
531 }
532 p->p_rtime.tv_usec = u;
533 p->p_rtime.tv_sec = s;
534
535 /*
536 * Check if the process exceeds its cpu resource allocation.
537 * If over max, kill it. In any case, if it has run for more
538 * than 10 minutes, reduce priority to give others a chance.
539 */
540 rlim = &p->p_rlimit[RLIMIT_CPU];
541 if (s >= rlim->rlim_cur) {
542 if (s >= rlim->rlim_max)
543 psignal(p, SIGKILL);
544 else {
545 psignal(p, SIGXCPU);
546 if (rlim->rlim_cur < rlim->rlim_max)
547 rlim->rlim_cur += 5;
548 }
549 }
550 if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
551 p->p_nice = NZERO + 4;
6c1c42d5 552 resetpriority(p);
80ecfe6e
CT
553 }
554
555 /*
556 * Pick a new current process and record its start time.
557 */
558 cnt.v_swtch++;
559 cpu_swtch(p);
560 microtime(&runtime);
561}
562
a379cce8
BJ
563/*
564 * Initialize the (doubly-linked) run queues
565 * to be empty.
566 */
567rqinit()
568{
569 register int i;
570
571 for (i = 0; i < NQS; i++)
572 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
573}
a379cce8
BJ
574
575/*
132d8a6d
MK
576 * Change process state to be runnable,
577 * placing it on the run queue if it is in memory,
578 * and awakening the swapper if it isn't in memory.
a379cce8 579 */
80ecfe6e 580void
a379cce8 581setrun(p)
18a4549b 582 register struct proc *p;
a379cce8 583{
18a4549b 584 register int s;
a379cce8 585
1e35e051 586 s = splhigh();
a379cce8
BJ
587 switch (p->p_stat) {
588
589 case 0:
590 case SWAIT:
591 case SRUN:
592 case SZOMB:
593 default:
594 panic("setrun");
595
6fdc0335 596 case SSTOP:
a379cce8 597 case SSLEEP:
87d0f32e 598 unsleep(p); /* e.g. when sending signals */
a379cce8
BJ
599 break;
600
601 case SIDL:
a379cce8
BJ
602 break;
603 }
604 p->p_stat = SRUN;
605 if (p->p_flag & SLOAD)
606 setrq(p);
607 splx(s);
27bc21f7
MK
608 if (p->p_slptime > 1)
609 updatepri(p);
132d8a6d
MK
610 p->p_slptime = 0;
611 if ((p->p_flag&SLOAD) == 0)
612 wakeup((caddr_t)&proc0);
6c1c42d5 613 else if (p->p_pri < curpriority)
132d8a6d 614 need_resched();
a379cce8
BJ
615}
616
617/*
6c1c42d5
KB
618 * Compute the priority of a process when running in user mode.
619 * Arrange to reschedule if the resulting priority is better
620 * than that of the current process.
a379cce8 621 */
80ecfe6e 622void
6c1c42d5 623resetpriority(p)
132d8a6d 624 register struct proc *p;
a379cce8 625{
6c1c42d5 626 register unsigned int newpriority;
132d8a6d 627
6c1c42d5
KB
628 newpriority = PUSER + p->p_cpu / 4 + 2 * p->p_nice;
629 newpriority = min(newpriority, MAXPRI);
630 p->p_usrpri = newpriority;
631 if (newpriority < curpriority)
132d8a6d 632 need_resched();
a379cce8 633}