gcc-2.4.3.1 subdirectories
[unix-history] / gnu / usr.bin / cc / common / loop.c
CommitLineData
9bf86ebb
PR
1/* Move constant computations out of loops.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This is the loop optimization pass of the compiler.
22 It finds invariant computations within loops and moves them
23 to the beginning of the loop. Then it identifies basic and
24 general induction variables. Strength reduction is applied to the general
25 induction variables, and induction variable elimination is applied to
26 the basic induction variables.
27
28 It also finds cases where
29 a register is set within the loop by zero-extending a narrower value
30 and changes these to zero the entire register once before the loop
31 and merely copy the low part within the loop.
32
33 Most of the complexity is in heuristics to decide when it is worth
34 while to do these things. */
35
36#include <stdio.h>
37#include "config.h"
38#include "rtl.h"
39#include "obstack.h"
40#include "expr.h"
41#include "insn-config.h"
42#include "insn-flags.h"
43#include "regs.h"
44#include "hard-reg-set.h"
45#include "recog.h"
46#include "flags.h"
47#include "real.h"
48#include "loop.h"
49
50/* Vector mapping INSN_UIDs to luids.
51 The luids are like uids but increase monotonically always.
52 We use them to see whether a jump comes from outside a given loop. */
53
54int *uid_luid;
55
56/* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
57 number the insn is contained in. */
58
59int *uid_loop_num;
60
61/* 1 + largest uid of any insn. */
62
63int max_uid_for_loop;
64
65/* 1 + luid of last insn. */
66
67static int max_luid;
68
69/* Number of loops detected in current function. Used as index to the
70 next few tables. */
71
72static int max_loop_num;
73
74/* Indexed by loop number, contains the first and last insn of each loop. */
75
76static rtx *loop_number_loop_starts, *loop_number_loop_ends;
77
78/* For each loop, gives the containing loop number, -1 if none. */
79
80int *loop_outer_loop;
81
82/* Indexed by loop number, contains a nonzero value if the "loop" isn't
83 really a loop (an insn outside the loop branches into it). */
84
85static char *loop_invalid;
86
87/* Indexed by loop number, links together all LABEL_REFs which refer to
88 code labels outside the loop. Used by routines that need to know all
89 loop exits, such as final_biv_value and final_giv_value.
90
91 This does not include loop exits due to return instructions. This is
92 because all bivs and givs are pseudos, and hence must be dead after a
93 return, so the presense of a return does not affect any of the
94 optimizations that use this info. It is simpler to just not include return
95 instructions on this list. */
96
97rtx *loop_number_exit_labels;
98
99/* Holds the number of loop iterations. It is zero if the number could not be
100 calculated. Must be unsigned since the number of iterations can
101 be as high as 2^wordsize-1. For loops with a wider iterator, this number
102 will will be zero if the number of loop iterations is too large for an
103 unsigned integer to hold. */
104
105unsigned HOST_WIDE_INT loop_n_iterations;
106
107/* Nonzero if there is a subroutine call in the current loop.
108 (unknown_address_altered is also nonzero in this case.) */
109
110static int loop_has_call;
111
112/* Nonzero if there is a volatile memory reference in the current
113 loop. */
114
115static int loop_has_volatile;
116
117/* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
118 current loop. A continue statement will generate a branch to
119 NEXT_INSN (loop_continue). */
120
121static rtx loop_continue;
122
123/* Indexed by register number, contains the number of times the reg
124 is set during the loop being scanned.
125 During code motion, a negative value indicates a reg that has been
126 made a candidate; in particular -2 means that it is an candidate that
127 we know is equal to a constant and -1 means that it is an candidate
128 not known equal to a constant.
129 After code motion, regs moved have 0 (which is accurate now)
130 while the failed candidates have the original number of times set.
131
132 Therefore, at all times, == 0 indicates an invariant register;
133 < 0 a conditionally invariant one. */
134
135static short *n_times_set;
136
137/* Original value of n_times_set; same except that this value
138 is not set negative for a reg whose sets have been made candidates
139 and not set to 0 for a reg that is moved. */
140
141static short *n_times_used;
142
143/* Index by register number, 1 indicates that the register
144 cannot be moved or strength reduced. */
145
146static char *may_not_optimize;
147
148/* Nonzero means reg N has already been moved out of one loop.
149 This reduces the desire to move it out of another. */
150
151static char *moved_once;
152
153/* Array of MEMs that are stored in this loop. If there are too many to fit
154 here, we just turn on unknown_address_altered. */
155
156#define NUM_STORES 20
157static rtx loop_store_mems[NUM_STORES];
158
159/* Index of first available slot in above array. */
160static int loop_store_mems_idx;
161
162/* Nonzero if we don't know what MEMs were changed in the current loop.
163 This happens if the loop contains a call (in which case `loop_has_call'
164 will also be set) or if we store into more than NUM_STORES MEMs. */
165
166static int unknown_address_altered;
167
168/* Count of movable (i.e. invariant) instructions discovered in the loop. */
169static int num_movables;
170
171/* Count of memory write instructions discovered in the loop. */
172static int num_mem_sets;
173
174/* Number of loops contained within the current one, including itself. */
175static int loops_enclosed;
176
177/* Bound on pseudo register number before loop optimization.
178 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
179int max_reg_before_loop;
180
181/* This obstack is used in product_cheap_p to allocate its rtl. It
182 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
183 If we used the same obstack that it did, we would be deallocating
184 that array. */
185
186static struct obstack temp_obstack;
187
188/* This is where the pointer to the obstack being used for RTL is stored. */
189
190extern struct obstack *rtl_obstack;
191
192#define obstack_chunk_alloc xmalloc
193#define obstack_chunk_free free
194
195extern char *oballoc ();
196\f
197/* During the analysis of a loop, a chain of `struct movable's
198 is made to record all the movable insns found.
199 Then the entire chain can be scanned to decide which to move. */
200
201struct movable
202{
203 rtx insn; /* A movable insn */
204 rtx set_src; /* The expression this reg is set from. */
205 rtx set_dest; /* The destination of this SET. */
206 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
207 of any registers used within the LIBCALL. */
208 int consec; /* Number of consecutive following insns
209 that must be moved with this one. */
210 int regno; /* The register it sets */
211 short lifetime; /* lifetime of that register;
212 may be adjusted when matching movables
213 that load the same value are found. */
214 short savings; /* Number of insns we can move for this reg,
215 including other movables that force this
216 or match this one. */
217 unsigned int cond : 1; /* 1 if only conditionally movable */
218 unsigned int force : 1; /* 1 means MUST move this insn */
219 unsigned int global : 1; /* 1 means reg is live outside this loop */
220 /* If PARTIAL is 1, GLOBAL means something different:
221 that the reg is live outside the range from where it is set
222 to the following label. */
223 unsigned int done : 1; /* 1 inhibits further processing of this */
224
225 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
226 In particular, moving it does not make it
227 invariant. */
228 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
229 load SRC, rather than copying INSN. */
230 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
231 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
232 that we should avoid changing when clearing
233 the rest of the reg. */
234 struct movable *match; /* First entry for same value */
235 struct movable *forces; /* An insn that must be moved if this is */
236 struct movable *next;
237};
238
239FILE *loop_dump_stream;
240
241/* Forward declarations. */
242
243static void find_and_verify_loops ();
244static void mark_loop_jump ();
245static void prescan_loop ();
246static int reg_in_basic_block_p ();
247static int consec_sets_invariant_p ();
248static rtx libcall_other_reg ();
249static int labels_in_range_p ();
250static void count_loop_regs_set ();
251static void note_addr_stored ();
252static int loop_reg_used_before_p ();
253static void scan_loop ();
254static void replace_call_address ();
255static rtx skip_consec_insns ();
256static int libcall_benefit ();
257static void ignore_some_movables ();
258static void force_movables ();
259static void combine_movables ();
260static int rtx_equal_for_loop_p ();
261static void move_movables ();
262static void strength_reduce ();
263static int valid_initial_value_p ();
264static void find_mem_givs ();
265static void record_biv ();
266static void check_final_value ();
267static void record_giv ();
268static void update_giv_derive ();
269static int basic_induction_var ();
270static rtx simplify_giv_expr ();
271static int general_induction_var ();
272static int consec_sets_giv ();
273static int check_dbra_loop ();
274static rtx express_from ();
275static int combine_givs_p ();
276static void combine_givs ();
277static int product_cheap_p ();
278static int maybe_eliminate_biv ();
279static int maybe_eliminate_biv_1 ();
280static int last_use_this_basic_block ();
281static void record_initial ();
282static void update_reg_last_use ();
283\f
284/* Relative gain of eliminating various kinds of operations. */
285int add_cost;
286#if 0
287int shift_cost;
288int mult_cost;
289#endif
290
291/* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
292 copy the value of the strength reduced giv to its original register. */
293int copy_cost;
294
295void
296init_loop ()
297{
298 char *free_point = (char *) oballoc (1);
299 rtx reg = gen_rtx (REG, word_mode, 0);
300 rtx pow2 = GEN_INT (32);
301 rtx lea;
302 int i;
303
304 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
305
306 /* We multiply by 2 to reconcile the difference in scale between
307 these two ways of computing costs. Otherwise the cost of a copy
308 will be far less than the cost of an add. */
309
310 copy_cost = 2 * 2;
311
312 /* Free the objects we just allocated. */
313 obfree (free_point);
314
315 /* Initialize the obstack used for rtl in product_cheap_p. */
316 gcc_obstack_init (&temp_obstack);
317}
318\f
319/* Entry point of this file. Perform loop optimization
320 on the current function. F is the first insn of the function
321 and DUMPFILE is a stream for output of a trace of actions taken
322 (or 0 if none should be output). */
323
324void
325loop_optimize (f, dumpfile)
326 /* f is the first instruction of a chain of insns for one function */
327 rtx f;
328 FILE *dumpfile;
329{
330 register rtx insn;
331 register int i;
332 rtx end;
333 rtx last_insn;
334
335 loop_dump_stream = dumpfile;
336
337 init_recog_no_volatile ();
338 init_alias_analysis ();
339
340 max_reg_before_loop = max_reg_num ();
341
342 moved_once = (char *) alloca (max_reg_before_loop);
343 bzero (moved_once, max_reg_before_loop);
344
345 regs_may_share = 0;
346
347 /* Count the number of loops. */
348
349 max_loop_num = 0;
350 for (insn = f; insn; insn = NEXT_INSN (insn))
351 {
352 if (GET_CODE (insn) == NOTE
353 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
354 max_loop_num++;
355 }
356
357 /* Don't waste time if no loops. */
358 if (max_loop_num == 0)
359 return;
360
361 /* Get size to use for tables indexed by uids.
362 Leave some space for labels allocated by find_and_verify_loops. */
363 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
364
365 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
366 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
367
368 bzero (uid_luid, max_uid_for_loop * sizeof (int));
369 bzero (uid_loop_num, max_uid_for_loop * sizeof (int));
370
371 /* Allocate tables for recording each loop. We set each entry, so they need
372 not be zeroed. */
373 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
374 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
375 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
376 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
377 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
378
379 /* Find and process each loop.
380 First, find them, and record them in order of their beginnings. */
381 find_and_verify_loops (f);
382
383 /* Now find all register lifetimes. This must be done after
384 find_and_verify_loops, because it might reorder the insns in the
385 function. */
386 reg_scan (f, max_reg_num (), 1);
387
388 /* See if we went too far. */
389 if (get_max_uid () > max_uid_for_loop)
390 abort ();
391
392 /* Compute the mapping from uids to luids.
393 LUIDs are numbers assigned to insns, like uids,
394 except that luids increase monotonically through the code.
395 Don't assign luids to line-number NOTEs, so that the distance in luids
396 between two insns is not affected by -g. */
397
398 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
399 {
400 last_insn = insn;
401 if (GET_CODE (insn) != NOTE
402 || NOTE_LINE_NUMBER (insn) <= 0)
403 uid_luid[INSN_UID (insn)] = ++i;
404 else
405 /* Give a line number note the same luid as preceding insn. */
406 uid_luid[INSN_UID (insn)] = i;
407 }
408
409 max_luid = i + 1;
410
411 /* Don't leave gaps in uid_luid for insns that have been
412 deleted. It is possible that the first or last insn
413 using some register has been deleted by cross-jumping.
414 Make sure that uid_luid for that former insn's uid
415 points to the general area where that insn used to be. */
416 for (i = 0; i < max_uid_for_loop; i++)
417 {
418 uid_luid[0] = uid_luid[i];
419 if (uid_luid[0] != 0)
420 break;
421 }
422 for (i = 0; i < max_uid_for_loop; i++)
423 if (uid_luid[i] == 0)
424 uid_luid[i] = uid_luid[i - 1];
425
426 /* Create a mapping from loops to BLOCK tree nodes. */
427 if (flag_unroll_loops && write_symbols != NO_DEBUG)
428 find_loop_tree_blocks ();
429
430 /* Now scan the loops, last ones first, since this means inner ones are done
431 before outer ones. */
432 for (i = max_loop_num-1; i >= 0; i--)
433 if (! loop_invalid[i] && loop_number_loop_ends[i])
434 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
435 max_reg_num ());
436
437 /* If debugging and unrolling loops, we must replicate the tree nodes
438 corresponding to the blocks inside the loop, so that the original one
439 to one mapping will remain. */
440 if (flag_unroll_loops && write_symbols != NO_DEBUG)
441 unroll_block_trees ();
442}
443\f
444/* Optimize one loop whose start is LOOP_START and end is END.
445 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
446 NOTE_INSN_LOOP_END. */
447
448/* ??? Could also move memory writes out of loops if the destination address
449 is invariant, the source is invariant, the memory write is not volatile,
450 and if we can prove that no read inside the loop can read this address
451 before the write occurs. If there is a read of this address after the
452 write, then we can also mark the memory read as invariant. */
453
454static void
455scan_loop (loop_start, end, nregs)
456 rtx loop_start, end;
457 int nregs;
458{
459 register int i;
460 register rtx p;
461 /* 1 if we are scanning insns that could be executed zero times. */
462 int maybe_never = 0;
463 /* 1 if we are scanning insns that might never be executed
464 due to a subroutine call which might exit before they are reached. */
465 int call_passed = 0;
466 /* For a rotated loop that is entered near the bottom,
467 this is the label at the top. Otherwise it is zero. */
468 rtx loop_top = 0;
469 /* Jump insn that enters the loop, or 0 if control drops in. */
470 rtx loop_entry_jump = 0;
471 /* Place in the loop where control enters. */
472 rtx scan_start;
473 /* Number of insns in the loop. */
474 int insn_count;
475 int in_libcall = 0;
476 int tem;
477 rtx temp;
478 /* The SET from an insn, if it is the only SET in the insn. */
479 rtx set, set1;
480 /* Chain describing insns movable in current loop. */
481 struct movable *movables = 0;
482 /* Last element in `movables' -- so we can add elements at the end. */
483 struct movable *last_movable = 0;
484 /* Ratio of extra register life span we can justify
485 for saving an instruction. More if loop doesn't call subroutines
486 since in that case saving an insn makes more difference
487 and more registers are available. */
488 int threshold;
489 /* If we have calls, contains the insn in which a register was used
490 if it was used exactly once; contains const0_rtx if it was used more
491 than once. */
492 rtx *reg_single_usage = 0;
493
494 n_times_set = (short *) alloca (nregs * sizeof (short));
495 n_times_used = (short *) alloca (nregs * sizeof (short));
496 may_not_optimize = (char *) alloca (nregs);
497
498 /* Determine whether this loop starts with a jump down to a test at
499 the end. This will occur for a small number of loops with a test
500 that is too complex to duplicate in front of the loop.
501
502 We search for the first insn or label in the loop, skipping NOTEs.
503 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
504 (because we might have a loop executed only once that contains a
505 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
506 (in case we have a degenerate loop).
507
508 Note that if we mistakenly think that a loop is entered at the top
509 when, in fact, it is entered at the exit test, the only effect will be
510 slightly poorer optimization. Making the opposite error can generate
511 incorrect code. Since very few loops now start with a jump to the
512 exit test, the code here to detect that case is very conservative. */
513
514 for (p = NEXT_INSN (loop_start);
515 p != end
516 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
517 && (GET_CODE (p) != NOTE
518 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
519 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
520 p = NEXT_INSN (p))
521 ;
522
523 scan_start = p;
524
525 /* Set up variables describing this loop. */
526 prescan_loop (loop_start, end);
527 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
528
529 /* If loop has a jump before the first label,
530 the true entry is the target of that jump.
531 Start scan from there.
532 But record in LOOP_TOP the place where the end-test jumps
533 back to so we can scan that after the end of the loop. */
534 if (GET_CODE (p) == JUMP_INSN)
535 {
536 loop_entry_jump = p;
537
538 /* Loop entry must be unconditional jump (and not a RETURN) */
539 if (simplejump_p (p)
540 && JUMP_LABEL (p) != 0
541 /* Check to see whether the jump actually
542 jumps out of the loop (meaning it's no loop).
543 This case can happen for things like
544 do {..} while (0). If this label was generated previously
545 by loop, we can't tell anything about it and have to reject
546 the loop. */
547 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
548 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
549 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
550 {
551 loop_top = next_label (scan_start);
552 scan_start = JUMP_LABEL (p);
553 }
554 }
555
556 /* If SCAN_START was an insn created by loop, we don't know its luid
557 as required by loop_reg_used_before_p. So skip such loops. (This
558 test may never be true, but it's best to play it safe.)
559
560 Also, skip loops where we do not start scanning at a label. This
561 test also rejects loops starting with a JUMP_INSN that failed the
562 test above. */
563
564 if (INSN_UID (scan_start) >= max_uid_for_loop
565 || GET_CODE (scan_start) != CODE_LABEL)
566 {
567 if (loop_dump_stream)
568 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
569 INSN_UID (loop_start), INSN_UID (end));
570 return;
571 }
572
573 /* Count number of times each reg is set during this loop.
574 Set may_not_optimize[I] if it is not safe to move out
575 the setting of register I. If this loop has calls, set
576 reg_single_usage[I]. */
577
578 bzero (n_times_set, nregs * sizeof (short));
579 bzero (may_not_optimize, nregs);
580
581 if (loop_has_call)
582 {
583 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
584 bzero (reg_single_usage, nregs * sizeof (rtx));
585 }
586
587 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
588 may_not_optimize, reg_single_usage, &insn_count, nregs);
589
590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
591 may_not_optimize[i] = 1, n_times_set[i] = 1;
592 bcopy (n_times_set, n_times_used, nregs * sizeof (short));
593
594 if (loop_dump_stream)
595 {
596 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
597 INSN_UID (loop_start), INSN_UID (end), insn_count);
598 if (loop_continue)
599 fprintf (loop_dump_stream, "Continue at insn %d.\n",
600 INSN_UID (loop_continue));
601 }
602
603 /* Scan through the loop finding insns that are safe to move.
604 Set n_times_set negative for the reg being set, so that
605 this reg will be considered invariant for subsequent insns.
606 We consider whether subsequent insns use the reg
607 in deciding whether it is worth actually moving.
608
609 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
610 and therefore it is possible that the insns we are scanning
611 would never be executed. At such times, we must make sure
612 that it is safe to execute the insn once instead of zero times.
613 When MAYBE_NEVER is 0, all insns will be executed at least once
614 so that is not a problem. */
615
616 p = scan_start;
617 while (1)
618 {
619 p = NEXT_INSN (p);
620 /* At end of a straight-in loop, we are done.
621 At end of a loop entered at the bottom, scan the top. */
622 if (p == scan_start)
623 break;
624 if (p == end)
625 {
626 if (loop_top != 0)
627 p = NEXT_INSN (loop_top);
628 else
629 break;
630 if (p == scan_start)
631 break;
632 }
633
634 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
635 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
636 in_libcall = 1;
637 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
638 && find_reg_note (p, REG_RETVAL, NULL_RTX))
639 in_libcall = 0;
640
641 if (GET_CODE (p) == INSN
642 && (set = single_set (p))
643 && GET_CODE (SET_DEST (set)) == REG
644 && ! may_not_optimize[REGNO (SET_DEST (set))])
645 {
646 int tem1 = 0;
647 int tem2 = 0;
648 int move_insn = 0;
649 rtx src = SET_SRC (set);
650 rtx dependencies = 0;
651
652 /* Figure out what to use as a source of this insn. If a REG_EQUIV
653 note is given or if a REG_EQUAL note with a constant operand is
654 specified, use it as the source and mark that we should move
655 this insn by calling emit_move_insn rather that duplicating the
656 insn.
657
658 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
659 is present. */
660 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
661 if (temp)
662 src = XEXP (temp, 0), move_insn = 1;
663 else
664 {
665 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
666 if (temp && CONSTANT_P (XEXP (temp, 0)))
667 src = XEXP (temp, 0), move_insn = 1;
668 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
669 {
670 src = XEXP (temp, 0);
671 /* A libcall block can use regs that don't appear in
672 the equivalent expression. To move the libcall,
673 we must move those regs too. */
674 dependencies = libcall_other_reg (p, src);
675 }
676 }
677
678 /* Don't try to optimize a register that was made
679 by loop-optimization for an inner loop.
680 We don't know its life-span, so we can't compute the benefit. */
681 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
682 ;
683 /* In order to move a register, we need to have one of three cases:
684 (1) it is used only in the same basic block as the set
685 (2) it is not a user variable and it is not used in the
686 exit test (this can cause the variable to be used
687 before it is set just like a user-variable).
688 (3) the set is guaranteed to be executed once the loop starts,
689 and the reg is not used until after that. */
690 else if (! ((! maybe_never
691 && ! loop_reg_used_before_p (set, p, loop_start,
692 scan_start, end))
693 || (! REG_USERVAR_P (SET_DEST (PATTERN (p)))
694 && ! REG_LOOP_TEST_P (SET_DEST (PATTERN (p))))
695 || reg_in_basic_block_p (p, SET_DEST (PATTERN (p)))))
696 ;
697 else if ((tem = invariant_p (src))
698 && (dependencies == 0
699 || (tem2 = invariant_p (dependencies)) != 0)
700 && (n_times_set[REGNO (SET_DEST (set))] == 1
701 || (tem1
702 = consec_sets_invariant_p (SET_DEST (set),
703 n_times_set[REGNO (SET_DEST (set))],
704 p)))
705 /* If the insn can cause a trap (such as divide by zero),
706 can't move it unless it's guaranteed to be executed
707 once loop is entered. Even a function call might
708 prevent the trap insn from being reached
709 (since it might exit!) */
710 && ! ((maybe_never || call_passed)
711 && may_trap_p (src)))
712 {
713 register struct movable *m;
714 register int regno = REGNO (SET_DEST (set));
715
716 /* A potential lossage is where we have a case where two insns
717 can be combined as long as they are both in the loop, but
718 we move one of them outside the loop. For large loops,
719 this can lose. The most common case of this is the address
720 of a function being called.
721
722 Therefore, if this register is marked as being used exactly
723 once if we are in a loop with calls (a "large loop"), see if
724 we can replace the usage of this register with the source
725 of this SET. If we can, delete this insn.
726
727 Don't do this if P has a REG_RETVAL note or if we have
728 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
729
730 if (reg_single_usage && reg_single_usage[regno] != 0
731 && reg_single_usage[regno] != const0_rtx
732 && regno_first_uid[regno] == INSN_UID (p)
733 && (regno_last_uid[regno]
734 == INSN_UID (reg_single_usage[regno]))
735 && n_times_set[REGNO (SET_DEST (set))] == 1
736 && ! side_effects_p (SET_SRC (set))
737 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
738#ifdef SMALL_REGISTER_CLASSES
739 && ! (GET_CODE (SET_SRC (set)) == REG
740 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
741#endif
742 /* This test is not redundant; SET_SRC (set) might be
743 a call-clobbered register and the life of REGNO
744 might span a call. */
745 && ! modified_between_p (SET_SRC (set), p,
746 reg_single_usage[regno])
747 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
748 reg_single_usage[regno]))
749 {
750 /* Replace any usage in a REG_EQUAL note. */
751 REG_NOTES (reg_single_usage[regno])
752 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
753 SET_DEST (set), SET_SRC (set));
754
755 PUT_CODE (p, NOTE);
756 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
757 NOTE_SOURCE_FILE (p) = 0;
758 n_times_set[regno] = 0;
759 continue;
760 }
761
762 m = (struct movable *) alloca (sizeof (struct movable));
763 m->next = 0;
764 m->insn = p;
765 m->set_src = src;
766 m->dependencies = dependencies;
767 m->set_dest = SET_DEST (set);
768 m->force = 0;
769 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
770 m->done = 0;
771 m->forces = 0;
772 m->partial = 0;
773 m->move_insn = move_insn;
774 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
775 m->savemode = VOIDmode;
776 m->regno = regno;
777 /* Set M->cond if either invariant_p or consec_sets_invariant_p
778 returned 2 (only conditionally invariant). */
779 m->cond = ((tem | tem1 | tem2) > 1);
780 m->global = (uid_luid[regno_last_uid[regno]] > INSN_LUID (end)
781 || uid_luid[regno_first_uid[regno]] < INSN_LUID (loop_start));
782 m->match = 0;
783 m->lifetime = (uid_luid[regno_last_uid[regno]]
784 - uid_luid[regno_first_uid[regno]]);
785 m->savings = n_times_used[regno];
786 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
787 m->savings += libcall_benefit (p);
788 n_times_set[regno] = move_insn ? -2 : -1;
789 /* Add M to the end of the chain MOVABLES. */
790 if (movables == 0)
791 movables = m;
792 else
793 last_movable->next = m;
794 last_movable = m;
795
796 if (m->consec > 0)
797 {
798 /* Skip this insn, not checking REG_LIBCALL notes. */
799 p = NEXT_INSN (p);
800 /* Skip the consecutive insns, if there are any. */
801 p = skip_consec_insns (p, m->consec);
802 /* Back up to the last insn of the consecutive group. */
803 p = prev_nonnote_insn (p);
804
805 /* We must now reset m->move_insn, m->is_equiv, and possibly
806 m->set_src to correspond to the effects of all the
807 insns. */
808 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
809 if (temp)
810 m->set_src = XEXP (temp, 0), m->move_insn = 1;
811 else
812 {
813 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
814 if (temp && CONSTANT_P (XEXP (temp, 0)))
815 m->set_src = XEXP (temp, 0), m->move_insn = 1;
816 else
817 m->move_insn = 0;
818
819 }
820 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
821 }
822 }
823 /* If this register is always set within a STRICT_LOW_PART
824 or set to zero, then its high bytes are constant.
825 So clear them outside the loop and within the loop
826 just load the low bytes.
827 We must check that the machine has an instruction to do so.
828 Also, if the value loaded into the register
829 depends on the same register, this cannot be done. */
830 else if (SET_SRC (set) == const0_rtx
831 && GET_CODE (NEXT_INSN (p)) == INSN
832 && (set1 = single_set (NEXT_INSN (p)))
833 && GET_CODE (set1) == SET
834 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
835 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
836 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
837 == SET_DEST (set))
838 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
839 {
840 register int regno = REGNO (SET_DEST (set));
841 if (n_times_set[regno] == 2)
842 {
843 register struct movable *m;
844 m = (struct movable *) alloca (sizeof (struct movable));
845 m->next = 0;
846 m->insn = p;
847 m->set_dest = SET_DEST (set);
848 m->dependencies = 0;
849 m->force = 0;
850 m->consec = 0;
851 m->done = 0;
852 m->forces = 0;
853 m->move_insn = 0;
854 m->partial = 1;
855 /* If the insn may not be executed on some cycles,
856 we can't clear the whole reg; clear just high part.
857 Not even if the reg is used only within this loop.
858 Consider this:
859 while (1)
860 while (s != t) {
861 if (foo ()) x = *s;
862 use (x);
863 }
864 Clearing x before the inner loop could clobber a value
865 being saved from the last time around the outer loop.
866 However, if the reg is not used outside this loop
867 and all uses of the register are in the same
868 basic block as the store, there is no problem.
869
870 If this insn was made by loop, we don't know its
871 INSN_LUID and hence must make a conservative
872 assumption. */
873 m->global = (INSN_UID (p) >= max_uid_for_loop
874 || (uid_luid[regno_last_uid[regno]]
875 > INSN_LUID (end))
876 || (uid_luid[regno_first_uid[regno]]
877 < INSN_LUID (p))
878 || (labels_in_range_p
879 (p, uid_luid[regno_first_uid[regno]])));
880 if (maybe_never && m->global)
881 m->savemode = GET_MODE (SET_SRC (set1));
882 else
883 m->savemode = VOIDmode;
884 m->regno = regno;
885 m->cond = 0;
886 m->match = 0;
887 m->lifetime = (uid_luid[regno_last_uid[regno]]
888 - uid_luid[regno_first_uid[regno]]);
889 m->savings = 1;
890 n_times_set[regno] = -1;
891 /* Add M to the end of the chain MOVABLES. */
892 if (movables == 0)
893 movables = m;
894 else
895 last_movable->next = m;
896 last_movable = m;
897 }
898 }
899 }
900 /* Past a call insn, we get to insns which might not be executed
901 because the call might exit. This matters for insns that trap.
902 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
903 so they don't count. */
904 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
905 call_passed = 1;
906 /* Past a label or a jump, we get to insns for which we
907 can't count on whether or how many times they will be
908 executed during each iteration. Therefore, we can
909 only move out sets of trivial variables
910 (those not used after the loop). */
911 /* This code appears in three places, once in scan_loop, and twice
912 in strength_reduce. */
913 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
914 /* If we enter the loop in the middle, and scan around to the
915 beginning, don't set maybe_never for that. This must be an
916 unconditional jump, otherwise the code at the top of the
917 loop might never be executed. Unconditional jumps are
918 followed a by barrier then loop end. */
919 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
920 && NEXT_INSN (NEXT_INSN (p)) == end
921 && simplejump_p (p)))
922 maybe_never = 1;
923 /* At the virtual top of a converted loop, insns are again known to
924 be executed: logically, the loop begins here even though the exit
925 code has been duplicated. */
926 else if (GET_CODE (p) == NOTE
927 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
928 maybe_never = call_passed = 0;
929 }
930
931 /* If one movable subsumes another, ignore that other. */
932
933 ignore_some_movables (movables);
934
935 /* For each movable insn, see if the reg that it loads
936 leads when it dies right into another conditionally movable insn.
937 If so, record that the second insn "forces" the first one,
938 since the second can be moved only if the first is. */
939
940 force_movables (movables);
941
942 /* See if there are multiple movable insns that load the same value.
943 If there are, make all but the first point at the first one
944 through the `match' field, and add the priorities of them
945 all together as the priority of the first. */
946
947 combine_movables (movables, nregs);
948
949 /* Now consider each movable insn to decide whether it is worth moving.
950 Store 0 in n_times_set for each reg that is moved. */
951
952 move_movables (movables, threshold,
953 insn_count, loop_start, end, nregs);
954
955 /* Now candidates that still are negative are those not moved.
956 Change n_times_set to indicate that those are not actually invariant. */
957 for (i = 0; i < nregs; i++)
958 if (n_times_set[i] < 0)
959 n_times_set[i] = n_times_used[i];
960
961 if (flag_strength_reduce)
962 strength_reduce (scan_start, end, loop_top,
963 insn_count, loop_start, end);
964}
965\f
966/* Add elements to *OUTPUT to record all the pseudo-regs
967 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
968
969void
970record_excess_regs (in_this, not_in_this, output)
971 rtx in_this, not_in_this;
972 rtx *output;
973{
974 enum rtx_code code;
975 char *fmt;
976 int i;
977
978 code = GET_CODE (in_this);
979
980 switch (code)
981 {
982 case PC:
983 case CC0:
984 case CONST_INT:
985 case CONST_DOUBLE:
986 case CONST:
987 case SYMBOL_REF:
988 case LABEL_REF:
989 return;
990
991 case REG:
992 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
993 && ! reg_mentioned_p (in_this, not_in_this))
994 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
995 return;
996 }
997
998 fmt = GET_RTX_FORMAT (code);
999 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1000 {
1001 int j;
1002
1003 switch (fmt[i])
1004 {
1005 case 'E':
1006 for (j = 0; j < XVECLEN (in_this, i); j++)
1007 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1008 break;
1009
1010 case 'e':
1011 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1012 break;
1013 }
1014 }
1015}
1016\f
1017/* Check what regs are referred to in the libcall block ending with INSN,
1018 aside from those mentioned in the equivalent value.
1019 If there are none, return 0.
1020 If there are one or more, return an EXPR_LIST containing all of them. */
1021
1022static rtx
1023libcall_other_reg (insn, equiv)
1024 rtx insn, equiv;
1025{
1026 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1027 rtx p = XEXP (note, 0);
1028 rtx output = 0;
1029
1030 /* First, find all the regs used in the libcall block
1031 that are not mentioned as inputs to the result. */
1032
1033 while (p != insn)
1034 {
1035 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1036 || GET_CODE (p) == CALL_INSN)
1037 record_excess_regs (PATTERN (p), equiv, &output);
1038 p = NEXT_INSN (p);
1039 }
1040
1041 return output;
1042}
1043\f
1044/* Return 1 if all uses of REG
1045 are between INSN and the end of the basic block. */
1046
1047static int
1048reg_in_basic_block_p (insn, reg)
1049 rtx insn, reg;
1050{
1051 int regno = REGNO (reg);
1052 rtx p;
1053
1054 if (regno_first_uid[regno] != INSN_UID (insn))
1055 return 0;
1056
1057 /* Search this basic block for the already recorded last use of the reg. */
1058 for (p = insn; p; p = NEXT_INSN (p))
1059 {
1060 switch (GET_CODE (p))
1061 {
1062 case NOTE:
1063 break;
1064
1065 case INSN:
1066 case CALL_INSN:
1067 /* Ordinary insn: if this is the last use, we win. */
1068 if (regno_last_uid[regno] == INSN_UID (p))
1069 return 1;
1070 break;
1071
1072 case JUMP_INSN:
1073 /* Jump insn: if this is the last use, we win. */
1074 if (regno_last_uid[regno] == INSN_UID (p))
1075 return 1;
1076 /* Otherwise, it's the end of the basic block, so we lose. */
1077 return 0;
1078
1079 case CODE_LABEL:
1080 case BARRIER:
1081 /* It's the end of the basic block, so we lose. */
1082 return 0;
1083 }
1084 }
1085
1086 /* The "last use" doesn't follow the "first use"?? */
1087 abort ();
1088}
1089\f
1090/* Compute the benefit of eliminating the insns in the block whose
1091 last insn is LAST. This may be a group of insns used to compute a
1092 value directly or can contain a library call. */
1093
1094static int
1095libcall_benefit (last)
1096 rtx last;
1097{
1098 rtx insn;
1099 int benefit = 0;
1100
1101 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1102 insn != last; insn = NEXT_INSN (insn))
1103 {
1104 if (GET_CODE (insn) == CALL_INSN)
1105 benefit += 10; /* Assume at least this many insns in a library
1106 routine. */
1107 else if (GET_CODE (insn) == INSN
1108 && GET_CODE (PATTERN (insn)) != USE
1109 && GET_CODE (PATTERN (insn)) != CLOBBER)
1110 benefit++;
1111 }
1112
1113 return benefit;
1114}
1115\f
1116/* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1117
1118static rtx
1119skip_consec_insns (insn, count)
1120 rtx insn;
1121 int count;
1122{
1123 for (; count > 0; count--)
1124 {
1125 rtx temp;
1126
1127 /* If first insn of libcall sequence, skip to end. */
1128 /* Do this at start of loop, since INSN is guaranteed to
1129 be an insn here. */
1130 if (GET_CODE (insn) != NOTE
1131 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1132 insn = XEXP (temp, 0);
1133
1134 do insn = NEXT_INSN (insn);
1135 while (GET_CODE (insn) == NOTE);
1136 }
1137
1138 return insn;
1139}
1140
1141/* Ignore any movable whose insn falls within a libcall
1142 which is part of another movable.
1143 We make use of the fact that the movable for the libcall value
1144 was made later and so appears later on the chain. */
1145
1146static void
1147ignore_some_movables (movables)
1148 struct movable *movables;
1149{
1150 register struct movable *m, *m1;
1151
1152 for (m = movables; m; m = m->next)
1153 {
1154 /* Is this a movable for the value of a libcall? */
1155 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1156 if (note)
1157 {
1158 rtx insn;
1159 /* Check for earlier movables inside that range,
1160 and mark them invalid. We cannot use LUIDs here because
1161 insns created by loop.c for prior loops don't have LUIDs.
1162 Rather than reject all such insns from movables, we just
1163 explicitly check each insn in the libcall (since invariant
1164 libcalls aren't that common). */
1165 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1166 for (m1 = movables; m1 != m; m1 = m1->next)
1167 if (m1->insn == insn)
1168 m1->done = 1;
1169 }
1170 }
1171}
1172
1173/* For each movable insn, see if the reg that it loads
1174 leads when it dies right into another conditionally movable insn.
1175 If so, record that the second insn "forces" the first one,
1176 since the second can be moved only if the first is. */
1177
1178static void
1179force_movables (movables)
1180 struct movable *movables;
1181{
1182 register struct movable *m, *m1;
1183 for (m1 = movables; m1; m1 = m1->next)
1184 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1185 if (!m1->partial && !m1->done)
1186 {
1187 int regno = m1->regno;
1188 for (m = m1->next; m; m = m->next)
1189 /* ??? Could this be a bug? What if CSE caused the
1190 register of M1 to be used after this insn?
1191 Since CSE does not update regno_last_uid,
1192 this insn M->insn might not be where it dies.
1193 But very likely this doesn't matter; what matters is
1194 that M's reg is computed from M1's reg. */
1195 if (INSN_UID (m->insn) == regno_last_uid[regno]
1196 && !m->done)
1197 break;
1198 if (m != 0 && m->set_src == m1->set_dest
1199 /* If m->consec, m->set_src isn't valid. */
1200 && m->consec == 0)
1201 m = 0;
1202
1203 /* Increase the priority of the moving the first insn
1204 since it permits the second to be moved as well. */
1205 if (m != 0)
1206 {
1207 m->forces = m1;
1208 m1->lifetime += m->lifetime;
1209 m1->savings += m1->savings;
1210 }
1211 }
1212}
1213\f
1214/* Find invariant expressions that are equal and can be combined into
1215 one register. */
1216
1217static void
1218combine_movables (movables, nregs)
1219 struct movable *movables;
1220 int nregs;
1221{
1222 register struct movable *m;
1223 char *matched_regs = (char *) alloca (nregs);
1224 enum machine_mode mode;
1225
1226 /* Regs that are set more than once are not allowed to match
1227 or be matched. I'm no longer sure why not. */
1228 /* Perhaps testing m->consec_sets would be more appropriate here? */
1229
1230 for (m = movables; m; m = m->next)
1231 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1232 {
1233 register struct movable *m1;
1234 int regno = m->regno;
1235 rtx reg_note, reg_note1;
1236
1237 bzero (matched_regs, nregs);
1238 matched_regs[regno] = 1;
1239
1240 for (m1 = movables; m1; m1 = m1->next)
1241 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1242 /* A reg used outside the loop mustn't be eliminated. */
1243 && !m1->global
1244 /* A reg used for zero-extending mustn't be eliminated. */
1245 && !m1->partial
1246 && (matched_regs[m1->regno]
1247 ||
1248 (
1249 /* Can combine regs with different modes loaded from the
1250 same constant only if the modes are the same or
1251 if both are integer modes with M wider or the same
1252 width as M1. The check for integer is redundant, but
1253 safe, since the only case of differing destination
1254 modes with equal sources is when both sources are
1255 VOIDmode, i.e., CONST_INT. */
1256 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1257 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1258 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1259 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1260 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1261 /* See if the source of M1 says it matches M. */
1262 && ((GET_CODE (m1->set_src) == REG
1263 && matched_regs[REGNO (m1->set_src)])
1264 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1265 movables))))
1266 && ((m->dependencies == m1->dependencies)
1267 || rtx_equal_p (m->dependencies, m1->dependencies)))
1268 {
1269 m->lifetime += m1->lifetime;
1270 m->savings += m1->savings;
1271 m1->done = 1;
1272 m1->match = m;
1273 matched_regs[m1->regno] = 1;
1274 }
1275 }
1276
1277 /* Now combine the regs used for zero-extension.
1278 This can be done for those not marked `global'
1279 provided their lives don't overlap. */
1280
1281 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1282 mode = GET_MODE_WIDER_MODE (mode))
1283 {
1284 register struct movable *m0 = 0;
1285
1286 /* Combine all the registers for extension from mode MODE.
1287 Don't combine any that are used outside this loop. */
1288 for (m = movables; m; m = m->next)
1289 if (m->partial && ! m->global
1290 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1291 {
1292 register struct movable *m1;
1293 int first = uid_luid[regno_first_uid[m->regno]];
1294 int last = uid_luid[regno_last_uid[m->regno]];
1295
1296 if (m0 == 0)
1297 {
1298 /* First one: don't check for overlap, just record it. */
1299 m0 = m;
1300 continue;
1301 }
1302
1303 /* Make sure they extend to the same mode.
1304 (Almost always true.) */
1305 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1306 continue;
1307
1308 /* We already have one: check for overlap with those
1309 already combined together. */
1310 for (m1 = movables; m1 != m; m1 = m1->next)
1311 if (m1 == m0 || (m1->partial && m1->match == m0))
1312 if (! (uid_luid[regno_first_uid[m1->regno]] > last
1313 || uid_luid[regno_last_uid[m1->regno]] < first))
1314 goto overlap;
1315
1316 /* No overlap: we can combine this with the others. */
1317 m0->lifetime += m->lifetime;
1318 m0->savings += m->savings;
1319 m->done = 1;
1320 m->match = m0;
1321
1322 overlap: ;
1323 }
1324 }
1325}
1326\f
1327/* Return 1 if regs X and Y will become the same if moved. */
1328
1329static int
1330regs_match_p (x, y, movables)
1331 rtx x, y;
1332 struct movable *movables;
1333{
1334 int xn = REGNO (x);
1335 int yn = REGNO (y);
1336 struct movable *mx, *my;
1337
1338 for (mx = movables; mx; mx = mx->next)
1339 if (mx->regno == xn)
1340 break;
1341
1342 for (my = movables; my; my = my->next)
1343 if (my->regno == yn)
1344 break;
1345
1346 return (mx && my
1347 && ((mx->match == my->match && mx->match != 0)
1348 || mx->match == my
1349 || mx == my->match));
1350}
1351
1352/* Return 1 if X and Y are identical-looking rtx's.
1353 This is the Lisp function EQUAL for rtx arguments.
1354
1355 If two registers are matching movables or a movable register and an
1356 equivalent constant, consider them equal. */
1357
1358static int
1359rtx_equal_for_loop_p (x, y, movables)
1360 rtx x, y;
1361 struct movable *movables;
1362{
1363 register int i;
1364 register int j;
1365 register struct movable *m;
1366 register enum rtx_code code;
1367 register char *fmt;
1368
1369 if (x == y)
1370 return 1;
1371 if (x == 0 || y == 0)
1372 return 0;
1373
1374 code = GET_CODE (x);
1375
1376 /* If we have a register and a constant, they may sometimes be
1377 equal. */
1378 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1379 && CONSTANT_P (y))
1380 for (m = movables; m; m = m->next)
1381 if (m->move_insn && m->regno == REGNO (x)
1382 && rtx_equal_p (m->set_src, y))
1383 return 1;
1384
1385 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1386 && CONSTANT_P (x))
1387 for (m = movables; m; m = m->next)
1388 if (m->move_insn && m->regno == REGNO (y)
1389 && rtx_equal_p (m->set_src, x))
1390 return 1;
1391
1392 /* Otherwise, rtx's of different codes cannot be equal. */
1393 if (code != GET_CODE (y))
1394 return 0;
1395
1396 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1397 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1398
1399 if (GET_MODE (x) != GET_MODE (y))
1400 return 0;
1401
1402 /* These three types of rtx's can be compared nonrecursively. */
1403 if (code == REG)
1404 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1405
1406 if (code == LABEL_REF)
1407 return XEXP (x, 0) == XEXP (y, 0);
1408 if (code == SYMBOL_REF)
1409 return XSTR (x, 0) == XSTR (y, 0);
1410
1411 /* Compare the elements. If any pair of corresponding elements
1412 fail to match, return 0 for the whole things. */
1413
1414 fmt = GET_RTX_FORMAT (code);
1415 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1416 {
1417 switch (fmt[i])
1418 {
1419 case 'w':
1420 if (XWINT (x, i) != XWINT (y, i))
1421 return 0;
1422 break;
1423
1424 case 'i':
1425 if (XINT (x, i) != XINT (y, i))
1426 return 0;
1427 break;
1428
1429 case 'E':
1430 /* Two vectors must have the same length. */
1431 if (XVECLEN (x, i) != XVECLEN (y, i))
1432 return 0;
1433
1434 /* And the corresponding elements must match. */
1435 for (j = 0; j < XVECLEN (x, i); j++)
1436 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1437 return 0;
1438 break;
1439
1440 case 'e':
1441 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1442 return 0;
1443 break;
1444
1445 case 's':
1446 if (strcmp (XSTR (x, i), XSTR (y, i)))
1447 return 0;
1448 break;
1449
1450 case 'u':
1451 /* These are just backpointers, so they don't matter. */
1452 break;
1453
1454 case '0':
1455 break;
1456
1457 /* It is believed that rtx's at this level will never
1458 contain anything but integers and other rtx's,
1459 except for within LABEL_REFs and SYMBOL_REFs. */
1460 default:
1461 abort ();
1462 }
1463 }
1464 return 1;
1465}
1466\f
1467/* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1468 insns in INSNS which use thet reference. */
1469
1470static void
1471add_label_notes (x, insns)
1472 rtx x;
1473 rtx insns;
1474{
1475 enum rtx_code code = GET_CODE (x);
1476 int i, j;
1477 char *fmt;
1478 rtx insn;
1479
1480 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1481 {
1482 rtx next = next_real_insn (XEXP (x, 0));
1483
1484 /* Don't record labels that refer to dispatch tables.
1485 This is not necessary, since the tablejump references the same label.
1486 And if we did record them, flow.c would make worse code. */
1487 if (next == 0
1488 || ! (GET_CODE (next) == JUMP_INSN
1489 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1490 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1491 {
1492 for (insn = insns; insn; insn = NEXT_INSN (insn))
1493 if (reg_mentioned_p (XEXP (x, 0), insn))
1494 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1495 REG_NOTES (insn));
1496 }
1497 return;
1498 }
1499
1500 fmt = GET_RTX_FORMAT (code);
1501 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1502 {
1503 if (fmt[i] == 'e')
1504 add_label_notes (XEXP (x, i), insns);
1505 else if (fmt[i] == 'E')
1506 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1507 add_label_notes (XVECEXP (x, i, j), insns);
1508 }
1509}
1510\f
1511/* Scan MOVABLES, and move the insns that deserve to be moved.
1512 If two matching movables are combined, replace one reg with the
1513 other throughout. */
1514
1515static void
1516move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1517 struct movable *movables;
1518 int threshold;
1519 int insn_count;
1520 rtx loop_start;
1521 rtx end;
1522 int nregs;
1523{
1524 rtx new_start = 0;
1525 register struct movable *m;
1526 register rtx p;
1527 /* Map of pseudo-register replacements to handle combining
1528 when we move several insns that load the same value
1529 into different pseudo-registers. */
1530 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1531 char *already_moved = (char *) alloca (nregs);
1532
1533 bzero (already_moved, nregs);
1534 bzero (reg_map, nregs * sizeof (rtx));
1535
1536 num_movables = 0;
1537
1538 for (m = movables; m; m = m->next)
1539 {
1540 /* Describe this movable insn. */
1541
1542 if (loop_dump_stream)
1543 {
1544 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1545 INSN_UID (m->insn), m->regno, m->lifetime);
1546 if (m->consec > 0)
1547 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1548 if (m->cond)
1549 fprintf (loop_dump_stream, "cond ");
1550 if (m->force)
1551 fprintf (loop_dump_stream, "force ");
1552 if (m->global)
1553 fprintf (loop_dump_stream, "global ");
1554 if (m->done)
1555 fprintf (loop_dump_stream, "done ");
1556 if (m->move_insn)
1557 fprintf (loop_dump_stream, "move-insn ");
1558 if (m->match)
1559 fprintf (loop_dump_stream, "matches %d ",
1560 INSN_UID (m->match->insn));
1561 if (m->forces)
1562 fprintf (loop_dump_stream, "forces %d ",
1563 INSN_UID (m->forces->insn));
1564 }
1565
1566 /* Count movables. Value used in heuristics in strength_reduce. */
1567 num_movables++;
1568
1569 /* Ignore the insn if it's already done (it matched something else).
1570 Otherwise, see if it is now safe to move. */
1571
1572 if (!m->done
1573 && (! m->cond
1574 || (1 == invariant_p (m->set_src)
1575 && (m->dependencies == 0
1576 || 1 == invariant_p (m->dependencies))
1577 && (m->consec == 0
1578 || 1 == consec_sets_invariant_p (m->set_dest,
1579 m->consec + 1,
1580 m->insn))))
1581 && (! m->forces || m->forces->done))
1582 {
1583 register int regno;
1584 register rtx p;
1585 int savings = m->savings;
1586
1587 /* We have an insn that is safe to move.
1588 Compute its desirability. */
1589
1590 p = m->insn;
1591 regno = m->regno;
1592
1593 if (loop_dump_stream)
1594 fprintf (loop_dump_stream, "savings %d ", savings);
1595
1596 if (moved_once[regno])
1597 {
1598 insn_count *= 2;
1599
1600 if (loop_dump_stream)
1601 fprintf (loop_dump_stream, "halved since already moved ");
1602 }
1603
1604 /* An insn MUST be moved if we already moved something else
1605 which is safe only if this one is moved too: that is,
1606 if already_moved[REGNO] is nonzero. */
1607
1608 /* An insn is desirable to move if the new lifetime of the
1609 register is no more than THRESHOLD times the old lifetime.
1610 If it's not desirable, it means the loop is so big
1611 that moving won't speed things up much,
1612 and it is liable to make register usage worse. */
1613
1614 /* It is also desirable to move if it can be moved at no
1615 extra cost because something else was already moved. */
1616
1617 if (already_moved[regno]
1618 || (threshold * savings * m->lifetime) >= insn_count
1619 || (m->forces && m->forces->done
1620 && n_times_used[m->forces->regno] == 1))
1621 {
1622 int count;
1623 register struct movable *m1;
1624 rtx first;
1625
1626 /* Now move the insns that set the reg. */
1627
1628 if (m->partial && m->match)
1629 {
1630 rtx newpat, i1;
1631 rtx r1, r2;
1632 /* Find the end of this chain of matching regs.
1633 Thus, we load each reg in the chain from that one reg.
1634 And that reg is loaded with 0 directly,
1635 since it has ->match == 0. */
1636 for (m1 = m; m1->match; m1 = m1->match);
1637 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1638 SET_DEST (PATTERN (m1->insn)));
1639 i1 = emit_insn_before (newpat, loop_start);
1640
1641 /* Mark the moved, invariant reg as being allowed to
1642 share a hard reg with the other matching invariant. */
1643 REG_NOTES (i1) = REG_NOTES (m->insn);
1644 r1 = SET_DEST (PATTERN (m->insn));
1645 r2 = SET_DEST (PATTERN (m1->insn));
1646 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1647 gen_rtx (EXPR_LIST, VOIDmode, r2,
1648 regs_may_share));
1649 delete_insn (m->insn);
1650
1651 if (new_start == 0)
1652 new_start = i1;
1653
1654 if (loop_dump_stream)
1655 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1656 }
1657 /* If we are to re-generate the item being moved with a
1658 new move insn, first delete what we have and then emit
1659 the move insn before the loop. */
1660 else if (m->move_insn)
1661 {
1662 rtx i1, temp;
1663
1664 for (count = m->consec; count >= 0; count--)
1665 {
1666 /* If this is the first insn of a library call sequence,
1667 skip to the end. */
1668 if (GET_CODE (p) != NOTE
1669 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1670 p = XEXP (temp, 0);
1671
1672 /* If this is the last insn of a libcall sequence, then
1673 delete every insn in the sequence except the last.
1674 The last insn is handled in the normal manner. */
1675 if (GET_CODE (p) != NOTE
1676 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1677 {
1678 temp = XEXP (temp, 0);
1679 while (temp != p)
1680 temp = delete_insn (temp);
1681 }
1682
1683 p = delete_insn (p);
1684 }
1685
1686 start_sequence ();
1687 emit_move_insn (m->set_dest, m->set_src);
1688 temp = get_insns ();
1689 end_sequence ();
1690
1691 add_label_notes (m->set_src, temp);
1692
1693 i1 = emit_insns_before (temp, loop_start);
1694 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1695 REG_NOTES (i1)
1696 = gen_rtx (EXPR_LIST,
1697 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1698 m->set_src, REG_NOTES (i1));
1699
1700 if (loop_dump_stream)
1701 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1702
1703 /* The more regs we move, the less we like moving them. */
1704 threshold -= 3;
1705 }
1706 else
1707 {
1708 for (count = m->consec; count >= 0; count--)
1709 {
1710 rtx i1, temp;
1711
1712 /* If first insn of libcall sequence, skip to end. */
1713 /* Do this at start of loop, since p is guaranteed to
1714 be an insn here. */
1715 if (GET_CODE (p) != NOTE
1716 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1717 p = XEXP (temp, 0);
1718
1719 /* If last insn of libcall sequence, move all
1720 insns except the last before the loop. The last
1721 insn is handled in the normal manner. */
1722 if (GET_CODE (p) != NOTE
1723 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1724 {
1725 rtx fn_address = 0;
1726 rtx fn_reg = 0;
1727 rtx fn_address_insn = 0;
1728
1729 first = 0;
1730 for (temp = XEXP (temp, 0); temp != p;
1731 temp = NEXT_INSN (temp))
1732 {
1733 rtx body;
1734 rtx n;
1735 rtx next;
1736
1737 if (GET_CODE (temp) == NOTE)
1738 continue;
1739
1740 body = PATTERN (temp);
1741
1742 /* Find the next insn after TEMP,
1743 not counting USE or NOTE insns. */
1744 for (next = NEXT_INSN (temp); next != p;
1745 next = NEXT_INSN (next))
1746 if (! (GET_CODE (next) == INSN
1747 && GET_CODE (PATTERN (next)) == USE)
1748 && GET_CODE (next) != NOTE)
1749 break;
1750
1751 /* If that is the call, this may be the insn
1752 that loads the function address.
1753
1754 Extract the function address from the insn
1755 that loads it into a register.
1756 If this insn was cse'd, we get incorrect code.
1757
1758 So emit a new move insn that copies the
1759 function address into the register that the
1760 call insn will use. flow.c will delete any
1761 redundant stores that we have created. */
1762 if (GET_CODE (next) == CALL_INSN
1763 && GET_CODE (body) == SET
1764 && GET_CODE (SET_DEST (body)) == REG
1765 && (n = find_reg_note (temp, REG_EQUAL,
1766 NULL_RTX)))
1767 {
1768 fn_reg = SET_SRC (body);
1769 if (GET_CODE (fn_reg) != REG)
1770 fn_reg = SET_DEST (body);
1771 fn_address = XEXP (n, 0);
1772 fn_address_insn = temp;
1773 }
1774 /* We have the call insn.
1775 If it uses the register we suspect it might,
1776 load it with the correct address directly. */
1777 if (GET_CODE (temp) == CALL_INSN
1778 && fn_address != 0
1779 && reg_referenced_p (fn_reg, body))
1780 emit_insn_after (gen_move_insn (fn_reg,
1781 fn_address),
1782 fn_address_insn);
1783
1784 if (GET_CODE (temp) == CALL_INSN)
1785 i1 = emit_call_insn_before (body, loop_start);
1786 else
1787 i1 = emit_insn_before (body, loop_start);
1788 if (first == 0)
1789 first = i1;
1790 if (temp == fn_address_insn)
1791 fn_address_insn = i1;
1792 REG_NOTES (i1) = REG_NOTES (temp);
1793 delete_insn (temp);
1794 }
1795 }
1796 if (m->savemode != VOIDmode)
1797 {
1798 /* P sets REG to zero; but we should clear only
1799 the bits that are not covered by the mode
1800 m->savemode. */
1801 rtx reg = m->set_dest;
1802 rtx sequence;
1803 rtx tem;
1804
1805 start_sequence ();
1806 tem = expand_binop
1807 (GET_MODE (reg), and_optab, reg,
1808 GEN_INT ((((HOST_WIDE_INT) 1
1809 << GET_MODE_BITSIZE (m->savemode)))
1810 - 1),
1811 reg, 1, OPTAB_LIB_WIDEN);
1812 if (tem == 0)
1813 abort ();
1814 if (tem != reg)
1815 emit_move_insn (reg, tem);
1816 sequence = gen_sequence ();
1817 end_sequence ();
1818 i1 = emit_insn_before (sequence, loop_start);
1819 }
1820 else if (GET_CODE (p) == CALL_INSN)
1821 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1822 else
1823 i1 = emit_insn_before (PATTERN (p), loop_start);
1824
1825 REG_NOTES (i1) = REG_NOTES (p);
1826
1827 if (new_start == 0)
1828 new_start = i1;
1829
1830 if (loop_dump_stream)
1831 fprintf (loop_dump_stream, " moved to %d",
1832 INSN_UID (i1));
1833
1834#if 0
1835 /* This isn't needed because REG_NOTES is copied
1836 below and is wrong since P might be a PARALLEL. */
1837 if (REG_NOTES (i1) == 0
1838 && ! m->partial /* But not if it's a zero-extend clr. */
1839 && ! m->global /* and not if used outside the loop
1840 (since it might get set outside). */
1841 && CONSTANT_P (SET_SRC (PATTERN (p))))
1842 REG_NOTES (i1)
1843 = gen_rtx (EXPR_LIST, REG_EQUAL,
1844 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1845#endif
1846
1847 /* If library call, now fix the REG_NOTES that contain
1848 insn pointers, namely REG_LIBCALL on FIRST
1849 and REG_RETVAL on I1. */
1850 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1851 {
1852 XEXP (temp, 0) = first;
1853 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1854 XEXP (temp, 0) = i1;
1855 }
1856
1857 delete_insn (p);
1858 do p = NEXT_INSN (p);
1859 while (p && GET_CODE (p) == NOTE);
1860 }
1861
1862 /* The more regs we move, the less we like moving them. */
1863 threshold -= 3;
1864 }
1865
1866 /* Any other movable that loads the same register
1867 MUST be moved. */
1868 already_moved[regno] = 1;
1869
1870 /* This reg has been moved out of one loop. */
1871 moved_once[regno] = 1;
1872
1873 /* The reg set here is now invariant. */
1874 if (! m->partial)
1875 n_times_set[regno] = 0;
1876
1877 m->done = 1;
1878
1879 /* Change the length-of-life info for the register
1880 to say it lives at least the full length of this loop.
1881 This will help guide optimizations in outer loops. */
1882
1883 if (uid_luid[regno_first_uid[regno]] > INSN_LUID (loop_start))
1884 /* This is the old insn before all the moved insns.
1885 We can't use the moved insn because it is out of range
1886 in uid_luid. Only the old insns have luids. */
1887 regno_first_uid[regno] = INSN_UID (loop_start);
1888 if (uid_luid[regno_last_uid[regno]] < INSN_LUID (end))
1889 regno_last_uid[regno] = INSN_UID (end);
1890
1891 /* Combine with this moved insn any other matching movables. */
1892
1893 if (! m->partial)
1894 for (m1 = movables; m1; m1 = m1->next)
1895 if (m1->match == m)
1896 {
1897 rtx temp;
1898
1899 /* Schedule the reg loaded by M1
1900 for replacement so that shares the reg of M.
1901 If the modes differ (only possible in restricted
1902 circumstances, make a SUBREG. */
1903 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
1904 reg_map[m1->regno] = m->set_dest;
1905 else
1906 reg_map[m1->regno]
1907 = gen_lowpart_common (GET_MODE (m1->set_dest),
1908 m->set_dest);
1909
1910 /* Get rid of the matching insn
1911 and prevent further processing of it. */
1912 m1->done = 1;
1913
1914 /* if library call, delete all insn except last, which
1915 is deleted below */
1916 if (temp = find_reg_note (m1->insn, REG_RETVAL,
1917 NULL_RTX))
1918 {
1919 for (temp = XEXP (temp, 0); temp != m1->insn;
1920 temp = NEXT_INSN (temp))
1921 delete_insn (temp);
1922 }
1923 delete_insn (m1->insn);
1924
1925 /* Any other movable that loads the same register
1926 MUST be moved. */
1927 already_moved[m1->regno] = 1;
1928
1929 /* The reg merged here is now invariant,
1930 if the reg it matches is invariant. */
1931 if (! m->partial)
1932 n_times_set[m1->regno] = 0;
1933 }
1934 }
1935 else if (loop_dump_stream)
1936 fprintf (loop_dump_stream, "not desirable");
1937 }
1938 else if (loop_dump_stream && !m->match)
1939 fprintf (loop_dump_stream, "not safe");
1940
1941 if (loop_dump_stream)
1942 fprintf (loop_dump_stream, "\n");
1943 }
1944
1945 if (new_start == 0)
1946 new_start = loop_start;
1947
1948 /* Go through all the instructions in the loop, making
1949 all the register substitutions scheduled in REG_MAP. */
1950 for (p = new_start; p != end; p = NEXT_INSN (p))
1951 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1952 || GET_CODE (p) == CALL_INSN)
1953 {
1954 replace_regs (PATTERN (p), reg_map, nregs, 0);
1955 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
1956 INSN_CODE (p) = -1;
1957 }
1958}
1959\f
1960#if 0
1961/* Scan X and replace the address of any MEM in it with ADDR.
1962 REG is the address that MEM should have before the replacement. */
1963
1964static void
1965replace_call_address (x, reg, addr)
1966 rtx x, reg, addr;
1967{
1968 register enum rtx_code code;
1969 register int i;
1970 register char *fmt;
1971
1972 if (x == 0)
1973 return;
1974 code = GET_CODE (x);
1975 switch (code)
1976 {
1977 case PC:
1978 case CC0:
1979 case CONST_INT:
1980 case CONST_DOUBLE:
1981 case CONST:
1982 case SYMBOL_REF:
1983 case LABEL_REF:
1984 case REG:
1985 return;
1986
1987 case SET:
1988 /* Short cut for very common case. */
1989 replace_call_address (XEXP (x, 1), reg, addr);
1990 return;
1991
1992 case CALL:
1993 /* Short cut for very common case. */
1994 replace_call_address (XEXP (x, 0), reg, addr);
1995 return;
1996
1997 case MEM:
1998 /* If this MEM uses a reg other than the one we expected,
1999 something is wrong. */
2000 if (XEXP (x, 0) != reg)
2001 abort ();
2002 XEXP (x, 0) = addr;
2003 return;
2004 }
2005
2006 fmt = GET_RTX_FORMAT (code);
2007 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2008 {
2009 if (fmt[i] == 'e')
2010 replace_call_address (XEXP (x, i), reg, addr);
2011 if (fmt[i] == 'E')
2012 {
2013 register int j;
2014 for (j = 0; j < XVECLEN (x, i); j++)
2015 replace_call_address (XVECEXP (x, i, j), reg, addr);
2016 }
2017 }
2018}
2019#endif
2020\f
2021/* Return the number of memory refs to addresses that vary
2022 in the rtx X. */
2023
2024static int
2025count_nonfixed_reads (x)
2026 rtx x;
2027{
2028 register enum rtx_code code;
2029 register int i;
2030 register char *fmt;
2031 int value;
2032
2033 if (x == 0)
2034 return 0;
2035
2036 code = GET_CODE (x);
2037 switch (code)
2038 {
2039 case PC:
2040 case CC0:
2041 case CONST_INT:
2042 case CONST_DOUBLE:
2043 case CONST:
2044 case SYMBOL_REF:
2045 case LABEL_REF:
2046 case REG:
2047 return 0;
2048
2049 case MEM:
2050 return ((invariant_p (XEXP (x, 0)) != 1)
2051 + count_nonfixed_reads (XEXP (x, 0)));
2052 }
2053
2054 value = 0;
2055 fmt = GET_RTX_FORMAT (code);
2056 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2057 {
2058 if (fmt[i] == 'e')
2059 value += count_nonfixed_reads (XEXP (x, i));
2060 if (fmt[i] == 'E')
2061 {
2062 register int j;
2063 for (j = 0; j < XVECLEN (x, i); j++)
2064 value += count_nonfixed_reads (XVECEXP (x, i, j));
2065 }
2066 }
2067 return value;
2068}
2069
2070\f
2071#if 0
2072/* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2073 Replace it with an instruction to load just the low bytes
2074 if the machine supports such an instruction,
2075 and insert above LOOP_START an instruction to clear the register. */
2076
2077static void
2078constant_high_bytes (p, loop_start)
2079 rtx p, loop_start;
2080{
2081 register rtx new;
2082 register int insn_code_number;
2083
2084 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2085 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2086
2087 new = gen_rtx (SET, VOIDmode,
2088 gen_rtx (STRICT_LOW_PART, VOIDmode,
2089 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2090 SET_DEST (PATTERN (p)),
2091 0)),
2092 XEXP (SET_SRC (PATTERN (p)), 0));
2093 insn_code_number = recog (new, p);
2094
2095 if (insn_code_number)
2096 {
2097 register int i;
2098
2099 /* Clear destination register before the loop. */
2100 emit_insn_before (gen_rtx (SET, VOIDmode,
2101 SET_DEST (PATTERN (p)),
2102 const0_rtx),
2103 loop_start);
2104
2105 /* Inside the loop, just load the low part. */
2106 PATTERN (p) = new;
2107 }
2108}
2109#endif
2110\f
2111/* Scan a loop setting the variables `unknown_address_altered',
2112 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2113 and `loop_has_volatile'.
2114 Also, fill in the array `loop_store_mems'. */
2115
2116static void
2117prescan_loop (start, end)
2118 rtx start, end;
2119{
2120 register int level = 1;
2121 register rtx insn;
2122
2123 unknown_address_altered = 0;
2124 loop_has_call = 0;
2125 loop_has_volatile = 0;
2126 loop_store_mems_idx = 0;
2127
2128 num_mem_sets = 0;
2129 loops_enclosed = 1;
2130 loop_continue = 0;
2131
2132 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2133 insn = NEXT_INSN (insn))
2134 {
2135 if (GET_CODE (insn) == NOTE)
2136 {
2137 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2138 {
2139 ++level;
2140 /* Count number of loops contained in this one. */
2141 loops_enclosed++;
2142 }
2143 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2144 {
2145 --level;
2146 if (level == 0)
2147 {
2148 end = insn;
2149 break;
2150 }
2151 }
2152 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2153 {
2154 if (level == 1)
2155 loop_continue = insn;
2156 }
2157 }
2158 else if (GET_CODE (insn) == CALL_INSN)
2159 {
2160 unknown_address_altered = 1;
2161 loop_has_call = 1;
2162 }
2163 else
2164 {
2165 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2166 {
2167 if (volatile_refs_p (PATTERN (insn)))
2168 loop_has_volatile = 1;
2169
2170 note_stores (PATTERN (insn), note_addr_stored);
2171 }
2172 }
2173 }
2174}
2175\f
2176/* Scan the function looking for loops. Record the start and end of each loop.
2177 Also mark as invalid loops any loops that contain a setjmp or are branched
2178 to from outside the loop. */
2179
2180static void
2181find_and_verify_loops (f)
2182 rtx f;
2183{
2184 rtx insn, label;
2185 int current_loop = -1;
2186 int next_loop = -1;
2187 int loop;
2188
2189 /* If there are jumps to undefined labels,
2190 treat them as jumps out of any/all loops.
2191 This also avoids writing past end of tables when there are no loops. */
2192 uid_loop_num[0] = -1;
2193
2194 /* Find boundaries of loops, mark which loops are contained within
2195 loops, and invalidate loops that have setjmp. */
2196
2197 for (insn = f; insn; insn = NEXT_INSN (insn))
2198 {
2199 if (GET_CODE (insn) == NOTE)
2200 switch (NOTE_LINE_NUMBER (insn))
2201 {
2202 case NOTE_INSN_LOOP_BEG:
2203 loop_number_loop_starts[++next_loop] = insn;
2204 loop_number_loop_ends[next_loop] = 0;
2205 loop_outer_loop[next_loop] = current_loop;
2206 loop_invalid[next_loop] = 0;
2207 loop_number_exit_labels[next_loop] = 0;
2208 current_loop = next_loop;
2209 break;
2210
2211 case NOTE_INSN_SETJMP:
2212 /* In this case, we must invalidate our current loop and any
2213 enclosing loop. */
2214 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2215 {
2216 loop_invalid[loop] = 1;
2217 if (loop_dump_stream)
2218 fprintf (loop_dump_stream,
2219 "\nLoop at %d ignored due to setjmp.\n",
2220 INSN_UID (loop_number_loop_starts[loop]));
2221 }
2222 break;
2223
2224 case NOTE_INSN_LOOP_END:
2225 if (current_loop == -1)
2226 abort ();
2227
2228 loop_number_loop_ends[current_loop] = insn;
2229 current_loop = loop_outer_loop[current_loop];
2230 break;
2231
2232 }
2233
2234 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2235 enclosing loop, but this doesn't matter. */
2236 uid_loop_num[INSN_UID (insn)] = current_loop;
2237 }
2238
2239 /* Any loop containing a label used in an initializer must be invalidated,
2240 because it can be jumped into from anywhere. */
2241
2242 for (label = forced_labels; label; label = XEXP (label, 1))
2243 {
2244 int loop_num;
2245
2246 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2247 loop_num != -1;
2248 loop_num = loop_outer_loop[loop_num])
2249 loop_invalid[loop_num] = 1;
2250 }
2251
2252 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2253 loop that it is not contained within, that loop is marked invalid.
2254 If any INSN or CALL_INSN uses a label's address, then the loop containing
2255 that label is marked invalid, because it could be jumped into from
2256 anywhere.
2257
2258 Also look for blocks of code ending in an unconditional branch that
2259 exits the loop. If such a block is surrounded by a conditional
2260 branch around the block, move the block elsewhere (see below) and
2261 invert the jump to point to the code block. This may eliminate a
2262 label in our loop and will simplify processing by both us and a
2263 possible second cse pass. */
2264
2265 for (insn = f; insn; insn = NEXT_INSN (insn))
2266 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2267 {
2268 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2269
2270 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2271 {
2272 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2273 if (note)
2274 {
2275 int loop_num;
2276
2277 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2278 loop_num != -1;
2279 loop_num = loop_outer_loop[loop_num])
2280 loop_invalid[loop_num] = 1;
2281 }
2282 }
2283
2284 if (GET_CODE (insn) != JUMP_INSN)
2285 continue;
2286
2287 mark_loop_jump (PATTERN (insn), this_loop_num);
2288
2289 /* See if this is an unconditional branch outside the loop. */
2290 if (this_loop_num != -1
2291 && (GET_CODE (PATTERN (insn)) == RETURN
2292 || (simplejump_p (insn)
2293 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2294 != this_loop_num)))
2295 && get_max_uid () < max_uid_for_loop)
2296 {
2297 rtx p;
2298 rtx our_next = next_real_insn (insn);
2299
2300 /* Go backwards until we reach the start of the loop, a label,
2301 or a JUMP_INSN. */
2302 for (p = PREV_INSN (insn);
2303 GET_CODE (p) != CODE_LABEL
2304 && ! (GET_CODE (p) == NOTE
2305 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2306 && GET_CODE (p) != JUMP_INSN;
2307 p = PREV_INSN (p))
2308 ;
2309
2310 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2311 we have a block of code to try to move.
2312
2313 We look backward and then forward from the target of INSN
2314 to find a BARRIER at the same loop depth as the target.
2315 If we find such a BARRIER, we make a new label for the start
2316 of the block, invert the jump in P and point it to that label,
2317 and move the block of code to the spot we found. */
2318
2319 if (GET_CODE (p) == JUMP_INSN
2320 && JUMP_LABEL (p) != 0
2321 /* Just ignore jumps to labels that were never emitted.
2322 These always indicate compilation errors. */
2323 && INSN_UID (JUMP_LABEL (p)) != 0
2324 && condjump_p (p)
2325 && ! simplejump_p (p)
2326 && next_real_insn (JUMP_LABEL (p)) == our_next)
2327 {
2328 rtx target
2329 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2330 int target_loop_num = uid_loop_num[INSN_UID (target)];
2331 rtx loc;
2332
2333 for (loc = target; loc; loc = PREV_INSN (loc))
2334 if (GET_CODE (loc) == BARRIER
2335 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2336 break;
2337
2338 if (loc == 0)
2339 for (loc = target; loc; loc = NEXT_INSN (loc))
2340 if (GET_CODE (loc) == BARRIER
2341 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2342 break;
2343
2344 if (loc)
2345 {
2346 rtx cond_label = JUMP_LABEL (p);
2347 rtx new_label = get_label_after (p);
2348
2349 /* Ensure our label doesn't go away. */
2350 LABEL_NUSES (cond_label)++;
2351
2352 /* Verify that uid_loop_num is large enough and that
2353 we can invert P. */
2354 if (invert_jump (p, new_label))
2355 {
2356 rtx q, r;
2357
2358 /* Include the BARRIER after INSN and copy the
2359 block after LOC. */
2360 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2361 reorder_insns (new_label, NEXT_INSN (insn), loc);
2362
2363 /* All those insns are now in TARGET_LOOP_NUM. */
2364 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2365 q = NEXT_INSN (q))
2366 uid_loop_num[INSN_UID (q)] = target_loop_num;
2367
2368 /* The label jumped to by INSN is no longer a loop exit.
2369 Unless INSN does not have a label (e.g., it is a
2370 RETURN insn), search loop_number_exit_labels to find
2371 its label_ref, and remove it. Also turn off
2372 LABEL_OUTSIDE_LOOP_P bit. */
2373 if (JUMP_LABEL (insn))
2374 {
2375 for (q = 0,
2376 r = loop_number_exit_labels[this_loop_num];
2377 r; q = r, r = LABEL_NEXTREF (r))
2378 if (XEXP (r, 0) == JUMP_LABEL (insn))
2379 {
2380 LABEL_OUTSIDE_LOOP_P (r) = 0;
2381 if (q)
2382 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2383 else
2384 loop_number_exit_labels[this_loop_num]
2385 = LABEL_NEXTREF (r);
2386 break;
2387 }
2388
2389 /* If we didn't find it, then something is wrong. */
2390 if (! r)
2391 abort ();
2392 }
2393
2394 /* P is now a jump outside the loop, so it must be put
2395 in loop_number_exit_labels, and marked as such.
2396 The easiest way to do this is to just call
2397 mark_loop_jump again for P. */
2398 mark_loop_jump (PATTERN (p), this_loop_num);
2399
2400 /* If INSN now jumps to the insn after it,
2401 delete INSN. */
2402 if (JUMP_LABEL (insn) != 0
2403 && (next_real_insn (JUMP_LABEL (insn))
2404 == next_real_insn (insn)))
2405 delete_insn (insn);
2406 }
2407
2408 /* Continue the loop after where the conditional
2409 branch used to jump, since the only branch insn
2410 in the block (if it still remains) is an inter-loop
2411 branch and hence needs no processing. */
2412 insn = NEXT_INSN (cond_label);
2413
2414 if (--LABEL_NUSES (cond_label) == 0)
2415 delete_insn (cond_label);
2416 }
2417 }
2418 }
2419 }
2420}
2421
2422/* If any label in X jumps to a loop different from LOOP_NUM and any of the
2423 loops it is contained in, mark the target loop invalid.
2424
2425 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2426
2427static void
2428mark_loop_jump (x, loop_num)
2429 rtx x;
2430 int loop_num;
2431{
2432 int dest_loop;
2433 int outer_loop;
2434 int i;
2435
2436 switch (GET_CODE (x))
2437 {
2438 case PC:
2439 case USE:
2440 case CLOBBER:
2441 case REG:
2442 case MEM:
2443 case CONST_INT:
2444 case CONST_DOUBLE:
2445 case RETURN:
2446 return;
2447
2448 case CONST:
2449 /* There could be a label reference in here. */
2450 mark_loop_jump (XEXP (x, 0), loop_num);
2451 return;
2452
2453 case PLUS:
2454 case MINUS:
2455 case MULT:
2456 case LSHIFT:
2457 mark_loop_jump (XEXP (x, 0), loop_num);
2458 mark_loop_jump (XEXP (x, 1), loop_num);
2459 return;
2460
2461 case SIGN_EXTEND:
2462 case ZERO_EXTEND:
2463 mark_loop_jump (XEXP (x, 0), loop_num);
2464 return;
2465
2466 case LABEL_REF:
2467 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2468
2469 /* Link together all labels that branch outside the loop. This
2470 is used by final_[bg]iv_value and the loop unrolling code. Also
2471 mark this LABEL_REF so we know that this branch should predict
2472 false. */
2473
2474 if (dest_loop != loop_num && loop_num != -1)
2475 {
2476 LABEL_OUTSIDE_LOOP_P (x) = 1;
2477 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2478 loop_number_exit_labels[loop_num] = x;
2479 }
2480
2481 /* If this is inside a loop, but not in the current loop or one enclosed
2482 by it, it invalidates at least one loop. */
2483
2484 if (dest_loop == -1)
2485 return;
2486
2487 /* We must invalidate every nested loop containing the target of this
2488 label, except those that also contain the jump insn. */
2489
2490 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2491 {
2492 /* Stop when we reach a loop that also contains the jump insn. */
2493 for (outer_loop = loop_num; outer_loop != -1;
2494 outer_loop = loop_outer_loop[outer_loop])
2495 if (dest_loop == outer_loop)
2496 return;
2497
2498 /* If we get here, we know we need to invalidate a loop. */
2499 if (loop_dump_stream && ! loop_invalid[dest_loop])
2500 fprintf (loop_dump_stream,
2501 "\nLoop at %d ignored due to multiple entry points.\n",
2502 INSN_UID (loop_number_loop_starts[dest_loop]));
2503
2504 loop_invalid[dest_loop] = 1;
2505 }
2506 return;
2507
2508 case SET:
2509 /* If this is not setting pc, ignore. */
2510 if (SET_DEST (x) == pc_rtx)
2511 mark_loop_jump (SET_SRC (x), loop_num);
2512 return;
2513
2514 case IF_THEN_ELSE:
2515 mark_loop_jump (XEXP (x, 1), loop_num);
2516 mark_loop_jump (XEXP (x, 2), loop_num);
2517 return;
2518
2519 case PARALLEL:
2520 case ADDR_VEC:
2521 for (i = 0; i < XVECLEN (x, 0); i++)
2522 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2523 return;
2524
2525 case ADDR_DIFF_VEC:
2526 for (i = 0; i < XVECLEN (x, 1); i++)
2527 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2528 return;
2529
2530 default:
2531 /* Nothing else should occur in a JUMP_INSN. */
2532 abort ();
2533 }
2534}
2535\f
2536/* Return nonzero if there is a label in the range from
2537 insn INSN to and including the insn whose luid is END
2538 INSN must have an assigned luid (i.e., it must not have
2539 been previously created by loop.c). */
2540
2541static int
2542labels_in_range_p (insn, end)
2543 rtx insn;
2544 int end;
2545{
2546 while (insn && INSN_LUID (insn) <= end)
2547 {
2548 if (GET_CODE (insn) == CODE_LABEL)
2549 return 1;
2550 insn = NEXT_INSN (insn);
2551 }
2552
2553 return 0;
2554}
2555
2556/* Record that a memory reference X is being set. */
2557
2558static void
2559note_addr_stored (x)
2560 rtx x;
2561{
2562 register int i;
2563
2564 if (x == 0 || GET_CODE (x) != MEM)
2565 return;
2566
2567 /* Count number of memory writes.
2568 This affects heuristics in strength_reduce. */
2569 num_mem_sets++;
2570
2571 if (unknown_address_altered)
2572 return;
2573
2574 for (i = 0; i < loop_store_mems_idx; i++)
2575 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2576 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2577 {
2578 /* We are storing at the same address as previously noted. Save the
2579 wider reference, treating BLKmode as wider. */
2580 if (GET_MODE (x) == BLKmode
2581 || (GET_MODE_SIZE (GET_MODE (x))
2582 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i]))))
2583 loop_store_mems[i] = x;
2584 break;
2585 }
2586
2587 if (i == NUM_STORES)
2588 unknown_address_altered = 1;
2589
2590 else if (i == loop_store_mems_idx)
2591 loop_store_mems[loop_store_mems_idx++] = x;
2592}
2593\f
2594/* Return nonzero if the rtx X is invariant over the current loop.
2595
2596 The value is 2 if we refer to something only conditionally invariant.
2597
2598 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2599 Otherwise, a memory ref is invariant if it does not conflict with
2600 anything stored in `loop_store_mems'. */
2601
2602int
2603invariant_p (x)
2604 register rtx x;
2605{
2606 register int i;
2607 register enum rtx_code code;
2608 register char *fmt;
2609 int conditional = 0;
2610
2611 if (x == 0)
2612 return 1;
2613 code = GET_CODE (x);
2614 switch (code)
2615 {
2616 case CONST_INT:
2617 case CONST_DOUBLE:
2618 case SYMBOL_REF:
2619 case CONST:
2620 return 1;
2621
2622 case LABEL_REF:
2623 /* A LABEL_REF is normally invariant, however, if we are unrolling
2624 loops, and this label is inside the loop, then it isn't invariant.
2625 This is because each unrolled copy of the loop body will have
2626 a copy of this label. If this was invariant, then an insn loading
2627 the address of this label into a register might get moved outside
2628 the loop, and then each loop body would end up using the same label.
2629
2630 We don't know the loop bounds here though, so just fail for all
2631 labels. */
2632 if (flag_unroll_loops)
2633 return 0;
2634 else
2635 return 1;
2636
2637 case PC:
2638 case CC0:
2639 case UNSPEC_VOLATILE:
2640 return 0;
2641
2642 case REG:
2643 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2644 since the reg might be set by initialization within the loop. */
2645 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
2646 return 1;
2647 if (loop_has_call
2648 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2649 return 0;
2650 if (n_times_set[REGNO (x)] < 0)
2651 return 2;
2652 return n_times_set[REGNO (x)] == 0;
2653
2654 case MEM:
2655 /* Read-only items (such as constants in a constant pool) are
2656 invariant if their address is. */
2657 if (RTX_UNCHANGING_P (x))
2658 break;
2659
2660 /* If we filled the table (or had a subroutine call), any location
2661 in memory could have been clobbered. */
2662 if (unknown_address_altered
2663 /* Don't mess with volatile memory references. */
2664 || MEM_VOLATILE_P (x))
2665 return 0;
2666
2667 /* See if there is any dependence between a store and this load. */
2668 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2669 if (true_dependence (loop_store_mems[i], x))
2670 return 0;
2671
2672 /* It's not invalidated by a store in memory
2673 but we must still verify the address is invariant. */
2674 break;
2675
2676 case ASM_OPERANDS:
2677 /* Don't mess with insns declared volatile. */
2678 if (MEM_VOLATILE_P (x))
2679 return 0;
2680 }
2681
2682 fmt = GET_RTX_FORMAT (code);
2683 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2684 {
2685 if (fmt[i] == 'e')
2686 {
2687 int tem = invariant_p (XEXP (x, i));
2688 if (tem == 0)
2689 return 0;
2690 if (tem == 2)
2691 conditional = 1;
2692 }
2693 else if (fmt[i] == 'E')
2694 {
2695 register int j;
2696 for (j = 0; j < XVECLEN (x, i); j++)
2697 {
2698 int tem = invariant_p (XVECEXP (x, i, j));
2699 if (tem == 0)
2700 return 0;
2701 if (tem == 2)
2702 conditional = 1;
2703 }
2704
2705 }
2706 }
2707
2708 return 1 + conditional;
2709}
2710
2711\f
2712/* Return nonzero if all the insns in the loop that set REG
2713 are INSN and the immediately following insns,
2714 and if each of those insns sets REG in an invariant way
2715 (not counting uses of REG in them).
2716
2717 The value is 2 if some of these insns are only conditionally invariant.
2718
2719 We assume that INSN itself is the first set of REG
2720 and that its source is invariant. */
2721
2722static int
2723consec_sets_invariant_p (reg, n_sets, insn)
2724 int n_sets;
2725 rtx reg, insn;
2726{
2727 register rtx p = insn;
2728 register int regno = REGNO (reg);
2729 rtx temp;
2730 /* Number of sets we have to insist on finding after INSN. */
2731 int count = n_sets - 1;
2732 int old = n_times_set[regno];
2733 int value = 0;
2734 int this;
2735
2736 /* If N_SETS hit the limit, we can't rely on its value. */
2737 if (n_sets == 127)
2738 return 0;
2739
2740 n_times_set[regno] = 0;
2741
2742 while (count > 0)
2743 {
2744 register enum rtx_code code;
2745 rtx set;
2746
2747 p = NEXT_INSN (p);
2748 code = GET_CODE (p);
2749
2750 /* If library call, skip to end of of it. */
2751 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2752 p = XEXP (temp, 0);
2753
2754 this = 0;
2755 if (code == INSN
2756 && (set = single_set (p))
2757 && GET_CODE (SET_DEST (set)) == REG
2758 && REGNO (SET_DEST (set)) == regno)
2759 {
2760 this = invariant_p (SET_SRC (set));
2761 if (this != 0)
2762 value |= this;
2763 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2764 {
2765 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
2766 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
2767 notes are OK. */
2768 this = (CONSTANT_P (XEXP (temp, 0))
2769 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
2770 && invariant_p (XEXP (temp, 0))));
2771 if (this != 0)
2772 value |= this;
2773 }
2774 }
2775 if (this != 0)
2776 count--;
2777 else if (code != NOTE)
2778 {
2779 n_times_set[regno] = old;
2780 return 0;
2781 }
2782 }
2783
2784 n_times_set[regno] = old;
2785 /* If invariant_p ever returned 2, we return 2. */
2786 return 1 + (value & 2);
2787}
2788
2789#if 0
2790/* I don't think this condition is sufficient to allow INSN
2791 to be moved, so we no longer test it. */
2792
2793/* Return 1 if all insns in the basic block of INSN and following INSN
2794 that set REG are invariant according to TABLE. */
2795
2796static int
2797all_sets_invariant_p (reg, insn, table)
2798 rtx reg, insn;
2799 short *table;
2800{
2801 register rtx p = insn;
2802 register int regno = REGNO (reg);
2803
2804 while (1)
2805 {
2806 register enum rtx_code code;
2807 p = NEXT_INSN (p);
2808 code = GET_CODE (p);
2809 if (code == CODE_LABEL || code == JUMP_INSN)
2810 return 1;
2811 if (code == INSN && GET_CODE (PATTERN (p)) == SET
2812 && GET_CODE (SET_DEST (PATTERN (p))) == REG
2813 && REGNO (SET_DEST (PATTERN (p))) == regno)
2814 {
2815 if (!invariant_p (SET_SRC (PATTERN (p)), table))
2816 return 0;
2817 }
2818 }
2819}
2820#endif /* 0 */
2821\f
2822/* Look at all uses (not sets) of registers in X. For each, if it is
2823 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
2824 a different insn, set USAGE[REGNO] to const0_rtx. */
2825
2826static void
2827find_single_use_in_loop (insn, x, usage)
2828 rtx insn;
2829 rtx x;
2830 rtx *usage;
2831{
2832 enum rtx_code code = GET_CODE (x);
2833 char *fmt = GET_RTX_FORMAT (code);
2834 int i, j;
2835
2836 if (code == REG)
2837 usage[REGNO (x)]
2838 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
2839 ? const0_rtx : insn;
2840
2841 else if (code == SET)
2842 {
2843 /* Don't count SET_DEST if it is a REG; otherwise count things
2844 in SET_DEST because if a register is partially modified, it won't
2845 show up as a potential movable so we don't care how USAGE is set
2846 for it. */
2847 if (GET_CODE (SET_DEST (x)) != REG)
2848 find_single_use_in_loop (insn, SET_DEST (x), usage);
2849 find_single_use_in_loop (insn, SET_SRC (x), usage);
2850 }
2851 else
2852 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2853 {
2854 if (fmt[i] == 'e' && XEXP (x, i) != 0)
2855 find_single_use_in_loop (insn, XEXP (x, i), usage);
2856 else if (fmt[i] == 'E')
2857 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2858 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
2859 }
2860}
2861\f
2862/* Increment N_TIMES_SET at the index of each register
2863 that is modified by an insn between FROM and TO.
2864 If the value of an element of N_TIMES_SET becomes 127 or more,
2865 stop incrementing it, to avoid overflow.
2866
2867 Store in SINGLE_USAGE[I] the single insn in which register I is
2868 used, if it is only used once. Otherwise, it is set to 0 (for no
2869 uses) or const0_rtx for more than one use. This parameter may be zero,
2870 in which case this processing is not done.
2871
2872 Store in *COUNT_PTR the number of actual instruction
2873 in the loop. We use this to decide what is worth moving out. */
2874
2875/* last_set[n] is nonzero iff reg n has been set in the current basic block.
2876 In that case, it is the insn that last set reg n. */
2877
2878static void
2879count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
2880 register rtx from, to;
2881 char *may_not_move;
2882 rtx *single_usage;
2883 int *count_ptr;
2884 int nregs;
2885{
2886 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
2887 register rtx insn;
2888 register int count = 0;
2889 register rtx dest;
2890
2891 bzero (last_set, nregs * sizeof (rtx));
2892 for (insn = from; insn != to; insn = NEXT_INSN (insn))
2893 {
2894 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2895 {
2896 ++count;
2897
2898 /* If requested, record registers that have exactly one use. */
2899 if (single_usage)
2900 {
2901 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
2902
2903 /* Include uses in REG_EQUAL notes. */
2904 if (REG_NOTES (insn))
2905 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
2906 }
2907
2908 if (GET_CODE (PATTERN (insn)) == CLOBBER
2909 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
2910 /* Don't move a reg that has an explicit clobber.
2911 We might do so sometimes, but it's not worth the pain. */
2912 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
2913
2914 if (GET_CODE (PATTERN (insn)) == SET
2915 || GET_CODE (PATTERN (insn)) == CLOBBER)
2916 {
2917 dest = SET_DEST (PATTERN (insn));
2918 while (GET_CODE (dest) == SUBREG
2919 || GET_CODE (dest) == ZERO_EXTRACT
2920 || GET_CODE (dest) == SIGN_EXTRACT
2921 || GET_CODE (dest) == STRICT_LOW_PART)
2922 dest = XEXP (dest, 0);
2923 if (GET_CODE (dest) == REG)
2924 {
2925 register int regno = REGNO (dest);
2926 /* If this is the first setting of this reg
2927 in current basic block, and it was set before,
2928 it must be set in two basic blocks, so it cannot
2929 be moved out of the loop. */
2930 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2931 may_not_move[regno] = 1;
2932 /* If this is not first setting in current basic block,
2933 see if reg was used in between previous one and this.
2934 If so, neither one can be moved. */
2935 if (last_set[regno] != 0
2936 && reg_used_between_p (dest, last_set[regno], insn))
2937 may_not_move[regno] = 1;
2938 if (n_times_set[regno] < 127)
2939 ++n_times_set[regno];
2940 last_set[regno] = insn;
2941 }
2942 }
2943 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2944 {
2945 register int i;
2946 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2947 {
2948 register rtx x = XVECEXP (PATTERN (insn), 0, i);
2949 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
2950 /* Don't move a reg that has an explicit clobber.
2951 It's not worth the pain to try to do it correctly. */
2952 may_not_move[REGNO (XEXP (x, 0))] = 1;
2953
2954 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2955 {
2956 dest = SET_DEST (x);
2957 while (GET_CODE (dest) == SUBREG
2958 || GET_CODE (dest) == ZERO_EXTRACT
2959 || GET_CODE (dest) == SIGN_EXTRACT
2960 || GET_CODE (dest) == STRICT_LOW_PART)
2961 dest = XEXP (dest, 0);
2962 if (GET_CODE (dest) == REG)
2963 {
2964 register int regno = REGNO (dest);
2965 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2966 may_not_move[regno] = 1;
2967 if (last_set[regno] != 0
2968 && reg_used_between_p (dest, last_set[regno], insn))
2969 may_not_move[regno] = 1;
2970 if (n_times_set[regno] < 127)
2971 ++n_times_set[regno];
2972 last_set[regno] = insn;
2973 }
2974 }
2975 }
2976 }
2977 }
2978 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
2979 bzero (last_set, nregs * sizeof (rtx));
2980 }
2981 *count_ptr = count;
2982}
2983\f
2984/* Given a loop that is bounded by LOOP_START and LOOP_END
2985 and that is entered at SCAN_START,
2986 return 1 if the register set in SET contained in insn INSN is used by
2987 any insn that precedes INSN in cyclic order starting
2988 from the loop entry point.
2989
2990 We don't want to use INSN_LUID here because if we restrict INSN to those
2991 that have a valid INSN_LUID, it means we cannot move an invariant out
2992 from an inner loop past two loops. */
2993
2994static int
2995loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
2996 rtx set, insn, loop_start, scan_start, loop_end;
2997{
2998 rtx reg = SET_DEST (set);
2999 rtx p;
3000
3001 /* Scan forward checking for register usage. If we hit INSN, we
3002 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3003 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3004 {
3005 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3006 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3007 return 1;
3008
3009 if (p == loop_end)
3010 p = loop_start;
3011 }
3012
3013 return 0;
3014}
3015\f
3016/* A "basic induction variable" or biv is a pseudo reg that is set
3017 (within this loop) only by incrementing or decrementing it. */
3018/* A "general induction variable" or giv is a pseudo reg whose
3019 value is a linear function of a biv. */
3020
3021/* Bivs are recognized by `basic_induction_var';
3022 Givs by `general_induct_var'. */
3023
3024/* Indexed by register number, indicates whether or not register is an
3025 induction variable, and if so what type. */
3026
3027enum iv_mode *reg_iv_type;
3028
3029/* Indexed by register number, contains pointer to `struct induction'
3030 if register is an induction variable. This holds general info for
3031 all induction variables. */
3032
3033struct induction **reg_iv_info;
3034
3035/* Indexed by register number, contains pointer to `struct iv_class'
3036 if register is a basic induction variable. This holds info describing
3037 the class (a related group) of induction variables that the biv belongs
3038 to. */
3039
3040struct iv_class **reg_biv_class;
3041
3042/* The head of a list which links together (via the next field)
3043 every iv class for the current loop. */
3044
3045struct iv_class *loop_iv_list;
3046
3047/* Communication with routines called via `note_stores'. */
3048
3049static rtx note_insn;
3050
3051/* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3052
3053static rtx addr_placeholder;
3054
3055/* ??? Unfinished optimizations, and possible future optimizations,
3056 for the strength reduction code. */
3057
3058/* ??? There is one more optimization you might be interested in doing: to
3059 allocate pseudo registers for frequently-accessed memory locations.
3060 If the same memory location is referenced each time around, it might
3061 be possible to copy it into a register before and out after.
3062 This is especially useful when the memory location is a variable which
3063 is in a stack slot because somewhere its address is taken. If the
3064 loop doesn't contain a function call and the variable isn't volatile,
3065 it is safe to keep the value in a register for the duration of the
3066 loop. One tricky thing is that the copying of the value back from the
3067 register has to be done on all exits from the loop. You need to check that
3068 all the exits from the loop go to the same place. */
3069
3070/* ??? The interaction of biv elimination, and recognition of 'constant'
3071 bivs, may cause problems. */
3072
3073/* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3074 performance problems.
3075
3076 Perhaps don't eliminate things that can be combined with an addressing
3077 mode. Find all givs that have the same biv, mult_val, and add_val;
3078 then for each giv, check to see if its only use dies in a following
3079 memory address. If so, generate a new memory address and check to see
3080 if it is valid. If it is valid, then store the modified memory address,
3081 otherwise, mark the giv as not done so that it will get its own iv. */
3082
3083/* ??? Could try to optimize branches when it is known that a biv is always
3084 positive. */
3085
3086/* ??? When replace a biv in a compare insn, we should replace with closest
3087 giv so that an optimized branch can still be recognized by the combiner,
3088 e.g. the VAX acb insn. */
3089
3090/* ??? Many of the checks involving uid_luid could be simplified if regscan
3091 was rerun in loop_optimize whenever a register was added or moved.
3092 Also, some of the optimizations could be a little less conservative. */
3093\f
3094/* Perform strength reduction and induction variable elimination. */
3095
3096/* Pseudo registers created during this function will be beyond the last
3097 valid index in several tables including n_times_set and regno_last_uid.
3098 This does not cause a problem here, because the added registers cannot be
3099 givs outside of their loop, and hence will never be reconsidered.
3100 But scan_loop must check regnos to make sure they are in bounds. */
3101
3102static void
3103strength_reduce (scan_start, end, loop_top, insn_count,
3104 loop_start, loop_end)
3105 rtx scan_start;
3106 rtx end;
3107 rtx loop_top;
3108 int insn_count;
3109 rtx loop_start;
3110 rtx loop_end;
3111{
3112 rtx p;
3113 rtx set;
3114 rtx inc_val;
3115 rtx mult_val;
3116 rtx dest_reg;
3117 /* This is 1 if current insn is not executed at least once for every loop
3118 iteration. */
3119 int not_every_iteration = 0;
3120 /* This is 1 if current insn may be executed more than once for every
3121 loop iteration. */
3122 int maybe_multiple = 0;
3123 /* Temporary list pointers for traversing loop_iv_list. */
3124 struct iv_class *bl, **backbl;
3125 /* Ratio of extra register life span we can justify
3126 for saving an instruction. More if loop doesn't call subroutines
3127 since in that case saving an insn makes more difference
3128 and more registers are available. */
3129 /* ??? could set this to last value of threshold in move_movables */
3130 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3131 /* Map of pseudo-register replacements. */
3132 rtx *reg_map;
3133 int call_seen;
3134 rtx test;
3135 rtx end_insert_before;
3136
3137 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3138 * sizeof (enum iv_mode *));
3139 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3140 reg_iv_info = (struct induction **)
3141 alloca (max_reg_before_loop * sizeof (struct induction *));
3142 bzero ((char *) reg_iv_info, (max_reg_before_loop
3143 * sizeof (struct induction *)));
3144 reg_biv_class = (struct iv_class **)
3145 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3146 bzero ((char *) reg_biv_class, (max_reg_before_loop
3147 * sizeof (struct iv_class *)));
3148
3149 loop_iv_list = 0;
3150 addr_placeholder = gen_reg_rtx (Pmode);
3151
3152 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3153 must be put before this insn, so that they will appear in the right
3154 order (i.e. loop order).
3155
3156 If loop_end is the end of the current function, then emit a
3157 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3158 dummy note insn. */
3159 if (NEXT_INSN (loop_end) != 0)
3160 end_insert_before = NEXT_INSN (loop_end);
3161 else
3162 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3163
3164 /* Scan through loop to find all possible bivs. */
3165
3166 p = scan_start;
3167 while (1)
3168 {
3169 p = NEXT_INSN (p);
3170 /* At end of a straight-in loop, we are done.
3171 At end of a loop entered at the bottom, scan the top. */
3172 if (p == scan_start)
3173 break;
3174 if (p == end)
3175 {
3176 if (loop_top != 0)
3177 p = NEXT_INSN (loop_top);
3178 else
3179 break;
3180 if (p == scan_start)
3181 break;
3182 }
3183
3184 if (GET_CODE (p) == INSN
3185 && (set = single_set (p))
3186 && GET_CODE (SET_DEST (set)) == REG)
3187 {
3188 dest_reg = SET_DEST (set);
3189 if (REGNO (dest_reg) < max_reg_before_loop
3190 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3191 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3192 {
3193 if (basic_induction_var (SET_SRC (set), dest_reg, p,
3194 &inc_val, &mult_val))
3195 {
3196 /* It is a possible basic induction variable.
3197 Create and initialize an induction structure for it. */
3198
3199 struct induction *v
3200 = (struct induction *) alloca (sizeof (struct induction));
3201
3202 record_biv (v, p, dest_reg, inc_val, mult_val,
3203 not_every_iteration, maybe_multiple);
3204 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3205 }
3206 else if (REGNO (dest_reg) < max_reg_before_loop)
3207 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3208 }
3209 }
3210
3211 /* Past CODE_LABEL, we get to insns that may be executed multiple
3212 times. The only way we can be sure that they can't is if every
3213 every jump insn between here and the end of the loop either
3214 returns, exits the loop, or is a forward jump. */
3215
3216 if (GET_CODE (p) == CODE_LABEL)
3217 {
3218 rtx insn = p;
3219
3220 maybe_multiple = 0;
3221
3222 while (1)
3223 {
3224 insn = NEXT_INSN (insn);
3225 if (insn == scan_start)
3226 break;
3227 if (insn == end)
3228 {
3229 if (loop_top != 0)
3230 insn = NEXT_INSN (loop_top);
3231 else
3232 break;
3233 if (insn == scan_start)
3234 break;
3235 }
3236
3237 if (GET_CODE (insn) == JUMP_INSN
3238 && GET_CODE (PATTERN (insn)) != RETURN
3239 && (! condjump_p (insn)
3240 || (JUMP_LABEL (insn) != 0
3241 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3242 || INSN_UID (insn) >= max_uid_for_loop
3243 || (INSN_LUID (JUMP_LABEL (insn))
3244 < INSN_LUID (insn))))))
3245 {
3246 maybe_multiple = 1;
3247 break;
3248 }
3249 }
3250 }
3251
3252 /* Past a label or a jump, we get to insns for which we can't count
3253 on whether or how many times they will be executed during each
3254 iteration. */
3255 /* This code appears in three places, once in scan_loop, and twice
3256 in strength_reduce. */
3257 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3258 /* If we enter the loop in the middle, and scan around to the
3259 beginning, don't set not_every_iteration for that.
3260 This can be any kind of jump, since we want to know if insns
3261 will be executed if the loop is executed. */
3262 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3263 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3264 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3265 not_every_iteration = 1;
3266
3267 /* At the virtual top of a converted loop, insns are again known to
3268 be executed each iteration: logically, the loop begins here
3269 even though the exit code has been duplicated. */
3270
3271 else if (GET_CODE (p) == NOTE
3272 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3273 not_every_iteration = 0;
3274
3275 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3276 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3277 or not an insn is known to be executed each iteration of the
3278 loop, whether or not any iterations are known to occur.
3279
3280 Therefore, if we have just passed a label and have no more labels
3281 between here and the test insn of the loop, we know these insns
3282 will be executed each iteration. This can also happen if we
3283 have just passed a jump, for example, when there are nested loops. */
3284
3285 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3286 && no_labels_between_p (p, loop_end))
3287 not_every_iteration = 0;
3288 }
3289
3290 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3291 Make a sanity check against n_times_set. */
3292 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3293 {
3294 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3295 /* Above happens if register modified by subreg, etc. */
3296 /* Make sure it is not recognized as a basic induction var: */
3297 || n_times_set[bl->regno] != bl->biv_count
3298 /* If never incremented, it is invariant that we decided not to
3299 move. So leave it alone. */
3300 || ! bl->incremented)
3301 {
3302 if (loop_dump_stream)
3303 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3304 bl->regno,
3305 (reg_iv_type[bl->regno] != BASIC_INDUCT
3306 ? "not induction variable"
3307 : (! bl->incremented ? "never incremented"
3308 : "count error")));
3309
3310 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3311 *backbl = bl->next;
3312 }
3313 else
3314 {
3315 backbl = &bl->next;
3316
3317 if (loop_dump_stream)
3318 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3319 }
3320 }
3321
3322 /* Exit if there are no bivs. */
3323 if (! loop_iv_list)
3324 {
3325 /* Can still unroll the loop anyways, but indicate that there is no
3326 strength reduction info available. */
3327 if (flag_unroll_loops)
3328 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3329
3330 return;
3331 }
3332
3333 /* Find initial value for each biv by searching backwards from loop_start,
3334 halting at first label. Also record any test condition. */
3335
3336 call_seen = 0;
3337 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3338 {
3339 note_insn = p;
3340
3341 if (GET_CODE (p) == CALL_INSN)
3342 call_seen = 1;
3343
3344 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3345 || GET_CODE (p) == CALL_INSN)
3346 note_stores (PATTERN (p), record_initial);
3347
3348 /* Record any test of a biv that branches around the loop if no store
3349 between it and the start of loop. We only care about tests with
3350 constants and registers and only certain of those. */
3351 if (GET_CODE (p) == JUMP_INSN
3352 && JUMP_LABEL (p) != 0
3353 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3354 && (test = get_condition_for_loop (p)) != 0
3355 && GET_CODE (XEXP (test, 0)) == REG
3356 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3357 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3358 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3359 && bl->init_insn == 0)
3360 {
3361 /* If an NE test, we have an initial value! */
3362 if (GET_CODE (test) == NE)
3363 {
3364 bl->init_insn = p;
3365 bl->init_set = gen_rtx (SET, VOIDmode,
3366 XEXP (test, 0), XEXP (test, 1));
3367 }
3368 else
3369 bl->initial_test = test;
3370 }
3371 }
3372
3373 /* Look at the each biv and see if we can say anything better about its
3374 initial value from any initializing insns set up above. (This is done
3375 in two passes to avoid missing SETs in a PARALLEL.) */
3376 for (bl = loop_iv_list; bl; bl = bl->next)
3377 {
3378 rtx src;
3379
3380 if (! bl->init_insn)
3381 continue;
3382
3383 src = SET_SRC (bl->init_set);
3384
3385 if (loop_dump_stream)
3386 fprintf (loop_dump_stream,
3387 "Biv %d initialized at insn %d: initial value ",
3388 bl->regno, INSN_UID (bl->init_insn));
3389
3390 if (valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3391 {
3392 bl->initial_value = src;
3393
3394 if (loop_dump_stream)
3395 {
3396 if (GET_CODE (src) == CONST_INT)
3397 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3398 else
3399 {
3400 print_rtl (loop_dump_stream, src);
3401 fprintf (loop_dump_stream, "\n");
3402 }
3403 }
3404 }
3405 else
3406 {
3407 /* Biv initial value is not simple move,
3408 so let it keep initial value of "itself". */
3409
3410 if (loop_dump_stream)
3411 fprintf (loop_dump_stream, "is complex\n");
3412 }
3413 }
3414
3415 /* Search the loop for general induction variables. */
3416
3417 /* A register is a giv if: it is only set once, it is a function of a
3418 biv and a constant (or invariant), and it is not a biv. */
3419
3420 not_every_iteration = 0;
3421 p = scan_start;
3422 while (1)
3423 {
3424 p = NEXT_INSN (p);
3425 /* At end of a straight-in loop, we are done.
3426 At end of a loop entered at the bottom, scan the top. */
3427 if (p == scan_start)
3428 break;
3429 if (p == end)
3430 {
3431 if (loop_top != 0)
3432 p = NEXT_INSN (loop_top);
3433 else
3434 break;
3435 if (p == scan_start)
3436 break;
3437 }
3438
3439 /* Look for a general induction variable in a register. */
3440 if (GET_CODE (p) == INSN
3441 && (set = single_set (p))
3442 && GET_CODE (SET_DEST (set)) == REG
3443 && ! may_not_optimize[REGNO (SET_DEST (set))])
3444 {
3445 rtx src_reg;
3446 rtx add_val;
3447 rtx mult_val;
3448 int benefit;
3449 rtx regnote = 0;
3450
3451 dest_reg = SET_DEST (set);
3452 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3453 continue;
3454
3455 if (/* SET_SRC is a giv. */
3456 ((benefit = general_induction_var (SET_SRC (set),
3457 &src_reg, &add_val,
3458 &mult_val))
3459 /* Equivalent expression is a giv. */
3460 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3461 && (benefit = general_induction_var (XEXP (regnote, 0),
3462 &src_reg,
3463 &add_val, &mult_val))))
3464 /* Don't try to handle any regs made by loop optimization.
3465 We have nothing on them in regno_first_uid, etc. */
3466 && REGNO (dest_reg) < max_reg_before_loop
3467 /* Don't recognize a BASIC_INDUCT_VAR here. */
3468 && dest_reg != src_reg
3469 /* This must be the only place where the register is set. */
3470 && (n_times_set[REGNO (dest_reg)] == 1
3471 /* or all sets must be consecutive and make a giv. */
3472 || (benefit = consec_sets_giv (benefit, p,
3473 src_reg, dest_reg,
3474 &add_val, &mult_val))))
3475 {
3476 int count;
3477 struct induction *v
3478 = (struct induction *) alloca (sizeof (struct induction));
3479 rtx temp;
3480
3481 /* If this is a library call, increase benefit. */
3482 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3483 benefit += libcall_benefit (p);
3484
3485 /* Skip the consecutive insns, if there are any. */
3486 for (count = n_times_set[REGNO (dest_reg)] - 1;
3487 count > 0; count--)
3488 {
3489 /* If first insn of libcall sequence, skip to end.
3490 Do this at start of loop, since INSN is guaranteed to
3491 be an insn here. */
3492 if (GET_CODE (p) != NOTE
3493 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3494 p = XEXP (temp, 0);
3495
3496 do p = NEXT_INSN (p);
3497 while (GET_CODE (p) == NOTE);
3498 }
3499
3500 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3501 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3502 loop_end);
3503
3504 }
3505 }
3506
3507#ifndef DONT_REDUCE_ADDR
3508 /* Look for givs which are memory addresses. */
3509 /* This resulted in worse code on a VAX 8600. I wonder if it
3510 still does. */
3511 if (GET_CODE (p) == INSN)
3512 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3513 loop_end);
3514#endif
3515
3516 /* Update the status of whether giv can derive other givs. This can
3517 change when we pass a label or an insn that updates a biv. */
3518 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3519 || GET_CODE (p) == CODE_LABEL)
3520 update_giv_derive (p);
3521
3522 /* Past a label or a jump, we get to insns for which we can't count
3523 on whether or how many times they will be executed during each
3524 iteration. */
3525 /* This code appears in three places, once in scan_loop, and twice
3526 in strength_reduce. */
3527 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3528 /* If we enter the loop in the middle, and scan around
3529 to the beginning, don't set not_every_iteration for that.
3530 This can be any kind of jump, since we want to know if insns
3531 will be executed if the loop is executed. */
3532 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3533 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3534 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3535 not_every_iteration = 1;
3536
3537 /* At the virtual top of a converted loop, insns are again known to
3538 be executed each iteration: logically, the loop begins here
3539 even though the exit code has been duplicated. */
3540
3541 else if (GET_CODE (p) == NOTE
3542 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3543 not_every_iteration = 0;
3544
3545 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3546 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3547 or not an insn is known to be executed each iteration of the
3548 loop, whether or not any iterations are known to occur.
3549
3550 Therefore, if we have just passed a label and have no more labels
3551 between here and the test insn of the loop, we know these insns
3552 will be executed each iteration. */
3553
3554 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3555 && no_labels_between_p (p, loop_end))
3556 not_every_iteration = 0;
3557 }
3558
3559 /* Try to calculate and save the number of loop iterations. This is
3560 set to zero if the actual number can not be calculated. This must
3561 be called after all giv's have been identified, since otherwise it may
3562 fail if the iteration variable is a giv. */
3563
3564 loop_n_iterations = loop_iterations (loop_start, loop_end);
3565
3566 /* Now for each giv for which we still don't know whether or not it is
3567 replaceable, check to see if it is replaceable because its final value
3568 can be calculated. This must be done after loop_iterations is called,
3569 so that final_giv_value will work correctly. */
3570
3571 for (bl = loop_iv_list; bl; bl = bl->next)
3572 {
3573 struct induction *v;
3574
3575 for (v = bl->giv; v; v = v->next_iv)
3576 if (! v->replaceable && ! v->not_replaceable)
3577 check_final_value (v, loop_start, loop_end);
3578 }
3579
3580 /* Try to prove that the loop counter variable (if any) is always
3581 nonnegative; if so, record that fact with a REG_NONNEG note
3582 so that "decrement and branch until zero" insn can be used. */
3583 check_dbra_loop (loop_end, insn_count, loop_start);
3584
3585 /* Create reg_map to hold substitutions for replaceable giv regs. */
3586 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3587 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3588
3589 /* Examine each iv class for feasibility of strength reduction/induction
3590 variable elimination. */
3591
3592 for (bl = loop_iv_list; bl; bl = bl->next)
3593 {
3594 struct induction *v;
3595 int benefit;
3596 int all_reduced;
3597 rtx final_value = 0;
3598
3599 /* Test whether it will be possible to eliminate this biv
3600 provided all givs are reduced. This is possible if either
3601 the reg is not used outside the loop, or we can compute
3602 what its final value will be.
3603
3604 For architectures with a decrement_and_branch_until_zero insn,
3605 don't do this if we put a REG_NONNEG note on the endtest for
3606 this biv. */
3607
3608 /* Compare against bl->init_insn rather than loop_start.
3609 We aren't concerned with any uses of the biv between
3610 init_insn and loop_start since these won't be affected
3611 by the value of the biv elsewhere in the function, so
3612 long as init_insn doesn't use the biv itself.
3613 March 14, 1989 -- self@bayes.arc.nasa.gov */
3614
3615 if ((uid_luid[regno_last_uid[bl->regno]] < INSN_LUID (loop_end)
3616 && bl->init_insn
3617 && INSN_UID (bl->init_insn) < max_uid_for_loop
3618 && uid_luid[regno_first_uid[bl->regno]] >= INSN_LUID (bl->init_insn)
3619#ifdef HAVE_decrement_and_branch_until_zero
3620 && ! bl->nonneg
3621#endif
3622 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3623 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3624#ifdef HAVE_decrement_and_branch_until_zero
3625 && ! bl->nonneg
3626#endif
3627 ))
3628 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3629 threshold, insn_count);
3630 else
3631 {
3632 if (loop_dump_stream)
3633 {
3634 fprintf (loop_dump_stream,
3635 "Cannot eliminate biv %d.\n",
3636 bl->regno);
3637 fprintf (loop_dump_stream,
3638 "First use: insn %d, last use: insn %d.\n",
3639 regno_first_uid[bl->regno],
3640 regno_last_uid[bl->regno]);
3641 }
3642 }
3643
3644 /* Combine all giv's for this iv_class. */
3645 combine_givs (bl);
3646
3647 /* This will be true at the end, if all givs which depend on this
3648 biv have been strength reduced.
3649 We can't (currently) eliminate the biv unless this is so. */
3650 all_reduced = 1;
3651
3652 /* Check each giv in this class to see if we will benefit by reducing
3653 it. Skip giv's combined with others. */
3654 for (v = bl->giv; v; v = v->next_iv)
3655 {
3656 struct induction *tv;
3657
3658 if (v->ignore || v->same)
3659 continue;
3660
3661 benefit = v->benefit;
3662
3663 /* Reduce benefit if not replaceable, since we will insert
3664 a move-insn to replace the insn that calculates this giv.
3665 Don't do this unless the giv is a user variable, since it
3666 will often be marked non-replaceable because of the duplication
3667 of the exit code outside the loop. In such a case, the copies
3668 we insert are dead and will be deleted. So they don't have
3669 a cost. Similar situations exist. */
3670 /* ??? The new final_[bg]iv_value code does a much better job
3671 of finding replaceable giv's, and hence this code may no longer
3672 be necessary. */
3673 if (! v->replaceable && ! bl->eliminable
3674 && REG_USERVAR_P (v->dest_reg))
3675 benefit -= copy_cost;
3676
3677 /* Decrease the benefit to count the add-insns that we will
3678 insert to increment the reduced reg for the giv. */
3679 benefit -= add_cost * bl->biv_count;
3680
3681 /* Decide whether to strength-reduce this giv or to leave the code
3682 unchanged (recompute it from the biv each time it is used).
3683 This decision can be made independently for each giv. */
3684
3685 /* ??? Perhaps attempt to guess whether autoincrement will handle
3686 some of the new add insns; if so, can increase BENEFIT
3687 (undo the subtraction of add_cost that was done above). */
3688
3689 /* If an insn is not to be strength reduced, then set its ignore
3690 flag, and clear all_reduced. */
3691
3692 if (v->lifetime * threshold * benefit < insn_count)
3693 {
3694 if (loop_dump_stream)
3695 fprintf (loop_dump_stream,
3696 "giv of insn %d not worth while, %d vs %d.\n",
3697 INSN_UID (v->insn),
3698 v->lifetime * threshold * benefit, insn_count);
3699 v->ignore = 1;
3700 all_reduced = 0;
3701 }
3702 else
3703 {
3704 /* Check that we can increment the reduced giv without a
3705 multiply insn. If not, reject it. */
3706
3707 for (tv = bl->biv; tv; tv = tv->next_iv)
3708 if (tv->mult_val == const1_rtx
3709 && ! product_cheap_p (tv->add_val, v->mult_val))
3710 {
3711 if (loop_dump_stream)
3712 fprintf (loop_dump_stream,
3713 "giv of insn %d: would need a multiply.\n",
3714 INSN_UID (v->insn));
3715 v->ignore = 1;
3716 all_reduced = 0;
3717 break;
3718 }
3719 }
3720 }
3721
3722 /* Reduce each giv that we decided to reduce. */
3723
3724 for (v = bl->giv; v; v = v->next_iv)
3725 {
3726 struct induction *tv;
3727 if (! v->ignore && v->same == 0)
3728 {
3729 v->new_reg = gen_reg_rtx (v->mode);
3730
3731 /* For each place where the biv is incremented,
3732 add an insn to increment the new, reduced reg for the giv. */
3733 for (tv = bl->biv; tv; tv = tv->next_iv)
3734 {
3735 if (tv->mult_val == const1_rtx)
3736 emit_iv_add_mult (tv->add_val, v->mult_val,
3737 v->new_reg, v->new_reg, tv->insn);
3738 else /* tv->mult_val == const0_rtx */
3739 /* A multiply is acceptable here
3740 since this is presumed to be seldom executed. */
3741 emit_iv_add_mult (tv->add_val, v->mult_val,
3742 v->add_val, v->new_reg, tv->insn);
3743 }
3744
3745 /* Add code at loop start to initialize giv's reduced reg. */
3746
3747 emit_iv_add_mult (bl->initial_value, v->mult_val,
3748 v->add_val, v->new_reg, loop_start);
3749 }
3750 }
3751
3752 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
3753 as not reduced.
3754
3755 For each giv register that can be reduced now: if replaceable,
3756 substitute reduced reg wherever the old giv occurs;
3757 else add new move insn "giv_reg = reduced_reg".
3758
3759 Also check for givs whose first use is their definition and whose
3760 last use is the definition of another giv. If so, it is likely
3761 dead and should not be used to eliminate a biv. */
3762 for (v = bl->giv; v; v = v->next_iv)
3763 {
3764 if (v->same && v->same->ignore)
3765 v->ignore = 1;
3766
3767 if (v->ignore)
3768 continue;
3769
3770 if (v->giv_type == DEST_REG
3771 && regno_first_uid[REGNO (v->dest_reg)] == INSN_UID (v->insn))
3772 {
3773 struct induction *v1;
3774
3775 for (v1 = bl->giv; v1; v1 = v1->next_iv)
3776 if (regno_last_uid[REGNO (v->dest_reg)] == INSN_UID (v1->insn))
3777 v->maybe_dead = 1;
3778 }
3779
3780 /* Update expression if this was combined, in case other giv was
3781 replaced. */
3782 if (v->same)
3783 v->new_reg = replace_rtx (v->new_reg,
3784 v->same->dest_reg, v->same->new_reg);
3785
3786 if (v->giv_type == DEST_ADDR)
3787 /* Store reduced reg as the address in the memref where we found
3788 this giv. */
3789 *v->location = v->new_reg;
3790 else if (v->replaceable)
3791 {
3792 reg_map[REGNO (v->dest_reg)] = v->new_reg;
3793
3794#if 0
3795 /* I can no longer duplicate the original problem. Perhaps
3796 this is unnecessary now? */
3797
3798 /* Replaceable; it isn't strictly necessary to delete the old
3799 insn and emit a new one, because v->dest_reg is now dead.
3800
3801 However, especially when unrolling loops, the special
3802 handling for (set REG0 REG1) in the second cse pass may
3803 make v->dest_reg live again. To avoid this problem, emit
3804 an insn to set the original giv reg from the reduced giv.
3805 We can not delete the original insn, since it may be part
3806 of a LIBCALL, and the code in flow that eliminates dead
3807 libcalls will fail if it is deleted. */
3808 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3809 v->insn);
3810#endif
3811 }
3812 else
3813 {
3814 /* Not replaceable; emit an insn to set the original giv reg from
3815 the reduced giv, same as above. */
3816 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3817 v->insn);
3818 }
3819
3820 /* When a loop is reversed, givs which depend on the reversed
3821 biv, and which are live outside the loop, must be set to their
3822 correct final value. This insn is only needed if the giv is
3823 not replaceable. The correct final value is the same as the
3824 value that the giv starts the reversed loop with. */
3825 if (bl->reversed && ! v->replaceable)
3826 emit_iv_add_mult (bl->initial_value, v->mult_val,
3827 v->add_val, v->dest_reg, end_insert_before);
3828 else if (v->final_value)
3829 {
3830 rtx insert_before;
3831
3832 /* If the loop has multiple exits, emit the insn before the
3833 loop to ensure that it will always be executed no matter
3834 how the loop exits. Otherwise, emit the insn after the loop,
3835 since this is slightly more efficient. */
3836 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3837 insert_before = loop_start;
3838 else
3839 insert_before = end_insert_before;
3840 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
3841 insert_before);
3842
3843#if 0
3844 /* If the insn to set the final value of the giv was emitted
3845 before the loop, then we must delete the insn inside the loop
3846 that sets it. If this is a LIBCALL, then we must delete
3847 every insn in the libcall. Note, however, that
3848 final_giv_value will only succeed when there are multiple
3849 exits if the giv is dead at each exit, hence it does not
3850 matter that the original insn remains because it is dead
3851 anyways. */
3852 /* Delete the insn inside the loop that sets the giv since
3853 the giv is now set before (or after) the loop. */
3854 delete_insn (v->insn);
3855#endif
3856 }
3857
3858 if (loop_dump_stream)
3859 {
3860 fprintf (loop_dump_stream, "giv at %d reduced to ",
3861 INSN_UID (v->insn));
3862 print_rtl (loop_dump_stream, v->new_reg);
3863 fprintf (loop_dump_stream, "\n");
3864 }
3865 }
3866
3867 /* All the givs based on the biv bl have been reduced if they
3868 merit it. */
3869
3870 /* For each giv not marked as maybe dead that has been combined with a
3871 second giv, clear any "maybe dead" mark on that second giv.
3872 v->new_reg will either be or refer to the register of the giv it
3873 combined with.
3874
3875 Doing this clearing avoids problems in biv elimination where a
3876 giv's new_reg is a complex value that can't be put in the insn but
3877 the giv combined with (with a reg as new_reg) is marked maybe_dead.
3878 Since the register will be used in either case, we'd prefer it be
3879 used from the simpler giv. */
3880
3881 for (v = bl->giv; v; v = v->next_iv)
3882 if (! v->maybe_dead && v->same)
3883 v->same->maybe_dead = 0;
3884
3885 /* Try to eliminate the biv, if it is a candidate.
3886 This won't work if ! all_reduced,
3887 since the givs we planned to use might not have been reduced.
3888
3889 We have to be careful that we didn't initially think we could eliminate
3890 this biv because of a giv that we now think may be dead and shouldn't
3891 be used as a biv replacement.
3892
3893 Also, there is the possibility that we may have a giv that looks
3894 like it can be used to eliminate a biv, but the resulting insn
3895 isn't valid. This can happen, for example, on the 88k, where a
3896 JUMP_INSN can compare a register only with zero. Attempts to
3897 replace it with a compare with a constant will fail.
3898
3899 Note that in cases where this call fails, we may have replaced some
3900 of the occurrences of the biv with a giv, but no harm was done in
3901 doing so in the rare cases where it can occur. */
3902
3903 if (all_reduced == 1 && bl->eliminable
3904 && maybe_eliminate_biv (bl, loop_start, end, 1,
3905 threshold, insn_count))
3906
3907 {
3908 /* ?? If we created a new test to bypass the loop entirely,
3909 or otherwise drop straight in, based on this test, then
3910 we might want to rewrite it also. This way some later
3911 pass has more hope of removing the initialization of this
3912 biv entirely. */
3913
3914 /* If final_value != 0, then the biv may be used after loop end
3915 and we must emit an insn to set it just in case.
3916
3917 Reversed bivs already have an insn after the loop setting their
3918 value, so we don't need another one. We can't calculate the
3919 proper final value for such a biv here anyways. */
3920 if (final_value != 0 && ! bl->reversed)
3921 {
3922 rtx insert_before;
3923
3924 /* If the loop has multiple exits, emit the insn before the
3925 loop to ensure that it will always be executed no matter
3926 how the loop exits. Otherwise, emit the insn after the
3927 loop, since this is slightly more efficient. */
3928 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3929 insert_before = loop_start;
3930 else
3931 insert_before = end_insert_before;
3932
3933 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
3934 end_insert_before);
3935 }
3936
3937#if 0
3938 /* Delete all of the instructions inside the loop which set
3939 the biv, as they are all dead. If is safe to delete them,
3940 because an insn setting a biv will never be part of a libcall. */
3941 /* However, deleting them will invalidate the regno_last_uid info,
3942 so keeping them around is more convenient. Final_biv_value
3943 will only succeed when there are multiple exits if the biv
3944 is dead at each exit, hence it does not matter that the original
3945 insn remains, because it is dead anyways. */
3946 for (v = bl->biv; v; v = v->next_iv)
3947 delete_insn (v->insn);
3948#endif
3949
3950 if (loop_dump_stream)
3951 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
3952 bl->regno);
3953 }
3954 }
3955
3956 /* Go through all the instructions in the loop, making all the
3957 register substitutions scheduled in REG_MAP. */
3958
3959 for (p = loop_start; p != end; p = NEXT_INSN (p))
3960 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3961 || GET_CODE (p) == CALL_INSN)
3962 {
3963 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
3964 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
3965 INSN_CODE (p) = -1;
3966 }
3967
3968 /* Unroll loops from within strength reduction so that we can use the
3969 induction variable information that strength_reduce has already
3970 collected. */
3971
3972 if (flag_unroll_loops)
3973 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
3974
3975 if (loop_dump_stream)
3976 fprintf (loop_dump_stream, "\n");
3977}
3978\f
3979/* Return 1 if X is a valid source for an initial value (or as value being
3980 compared against in an initial test).
3981
3982 X must be either a register or constant and must not be clobbered between
3983 the current insn and the start of the loop.
3984
3985 INSN is the insn containing X. */
3986
3987static int
3988valid_initial_value_p (x, insn, call_seen, loop_start)
3989 rtx x;
3990 rtx insn;
3991 int call_seen;
3992 rtx loop_start;
3993{
3994 if (CONSTANT_P (x))
3995 return 1;
3996
3997 /* Only consider pseudos we know about initialized in insns whose luids
3998 we know. */
3999 if (GET_CODE (x) != REG
4000 || REGNO (x) >= max_reg_before_loop)
4001 return 0;
4002
4003 /* Don't use call-clobbered registers across a call which clobbers it. On
4004 some machines, don't use any hard registers at all. */
4005 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4006#ifndef SMALL_REGISTER_CLASSES
4007 && call_used_regs[REGNO (x)] && call_seen
4008#endif
4009 )
4010 return 0;
4011
4012 /* Don't use registers that have been clobbered before the start of the
4013 loop. */
4014 if (reg_set_between_p (x, insn, loop_start))
4015 return 0;
4016
4017 return 1;
4018}
4019\f
4020/* Scan X for memory refs and check each memory address
4021 as a possible giv. INSN is the insn whose pattern X comes from.
4022 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4023 every loop iteration. */
4024
4025static void
4026find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4027 rtx x;
4028 rtx insn;
4029 int not_every_iteration;
4030 rtx loop_start, loop_end;
4031{
4032 register int i, j;
4033 register enum rtx_code code;
4034 register char *fmt;
4035
4036 if (x == 0)
4037 return;
4038
4039 code = GET_CODE (x);
4040 switch (code)
4041 {
4042 case REG:
4043 case CONST_INT:
4044 case CONST:
4045 case CONST_DOUBLE:
4046 case SYMBOL_REF:
4047 case LABEL_REF:
4048 case PC:
4049 case CC0:
4050 case ADDR_VEC:
4051 case ADDR_DIFF_VEC:
4052 case USE:
4053 case CLOBBER:
4054 return;
4055
4056 case MEM:
4057 {
4058 rtx src_reg;
4059 rtx add_val;
4060 rtx mult_val;
4061 int benefit;
4062
4063 benefit = general_induction_var (XEXP (x, 0),
4064 &src_reg, &add_val, &mult_val);
4065
4066 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4067 Such a giv isn't useful. */
4068 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4069 {
4070 /* Found one; record it. */
4071 struct induction *v
4072 = (struct induction *) oballoc (sizeof (struct induction));
4073
4074 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4075 add_val, benefit, DEST_ADDR, not_every_iteration,
4076 &XEXP (x, 0), loop_start, loop_end);
4077
4078 v->mem_mode = GET_MODE (x);
4079 }
4080 return;
4081 }
4082 }
4083
4084 /* Recursively scan the subexpressions for other mem refs. */
4085
4086 fmt = GET_RTX_FORMAT (code);
4087 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4088 if (fmt[i] == 'e')
4089 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4090 loop_end);
4091 else if (fmt[i] == 'E')
4092 for (j = 0; j < XVECLEN (x, i); j++)
4093 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4094 loop_start, loop_end);
4095}
4096\f
4097/* Fill in the data about one biv update.
4098 V is the `struct induction' in which we record the biv. (It is
4099 allocated by the caller, with alloca.)
4100 INSN is the insn that sets it.
4101 DEST_REG is the biv's reg.
4102
4103 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4104 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4105 being set to INC_VAL.
4106
4107 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4108 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4109 can be executed more than once per iteration. If MAYBE_MULTIPLE
4110 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4111 executed exactly once per iteration. */
4112
4113static void
4114record_biv (v, insn, dest_reg, inc_val, mult_val,
4115 not_every_iteration, maybe_multiple)
4116 struct induction *v;
4117 rtx insn;
4118 rtx dest_reg;
4119 rtx inc_val;
4120 rtx mult_val;
4121 int not_every_iteration;
4122 int maybe_multiple;
4123{
4124 struct iv_class *bl;
4125
4126 v->insn = insn;
4127 v->src_reg = dest_reg;
4128 v->dest_reg = dest_reg;
4129 v->mult_val = mult_val;
4130 v->add_val = inc_val;
4131 v->mode = GET_MODE (dest_reg);
4132 v->always_computable = ! not_every_iteration;
4133 v->maybe_multiple = maybe_multiple;
4134
4135 /* Add this to the reg's iv_class, creating a class
4136 if this is the first incrementation of the reg. */
4137
4138 bl = reg_biv_class[REGNO (dest_reg)];
4139 if (bl == 0)
4140 {
4141 /* Create and initialize new iv_class. */
4142
4143 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4144
4145 bl->regno = REGNO (dest_reg);
4146 bl->biv = 0;
4147 bl->giv = 0;
4148 bl->biv_count = 0;
4149 bl->giv_count = 0;
4150
4151 /* Set initial value to the reg itself. */
4152 bl->initial_value = dest_reg;
4153 /* We haven't seen the initializing insn yet */
4154 bl->init_insn = 0;
4155 bl->init_set = 0;
4156 bl->initial_test = 0;
4157 bl->incremented = 0;
4158 bl->eliminable = 0;
4159 bl->nonneg = 0;
4160 bl->reversed = 0;
4161 bl->total_benefit = 0;
4162
4163 /* Add this class to loop_iv_list. */
4164 bl->next = loop_iv_list;
4165 loop_iv_list = bl;
4166
4167 /* Put it in the array of biv register classes. */
4168 reg_biv_class[REGNO (dest_reg)] = bl;
4169 }
4170
4171 /* Update IV_CLASS entry for this biv. */
4172 v->next_iv = bl->biv;
4173 bl->biv = v;
4174 bl->biv_count++;
4175 if (mult_val == const1_rtx)
4176 bl->incremented = 1;
4177
4178 if (loop_dump_stream)
4179 {
4180 fprintf (loop_dump_stream,
4181 "Insn %d: possible biv, reg %d,",
4182 INSN_UID (insn), REGNO (dest_reg));
4183 if (GET_CODE (inc_val) == CONST_INT)
4184 fprintf (loop_dump_stream, " const = %d\n",
4185 INTVAL (inc_val));
4186 else
4187 {
4188 fprintf (loop_dump_stream, " const = ");
4189 print_rtl (loop_dump_stream, inc_val);
4190 fprintf (loop_dump_stream, "\n");
4191 }
4192 }
4193}
4194\f
4195/* Fill in the data about one giv.
4196 V is the `struct induction' in which we record the giv. (It is
4197 allocated by the caller, with alloca.)
4198 INSN is the insn that sets it.
4199 BENEFIT estimates the savings from deleting this insn.
4200 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4201 into a register or is used as a memory address.
4202
4203 SRC_REG is the biv reg which the giv is computed from.
4204 DEST_REG is the giv's reg (if the giv is stored in a reg).
4205 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4206 LOCATION points to the place where this giv's value appears in INSN. */
4207
4208static void
4209record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4210 type, not_every_iteration, location, loop_start, loop_end)
4211 struct induction *v;
4212 rtx insn;
4213 rtx src_reg;
4214 rtx dest_reg;
4215 rtx mult_val, add_val;
4216 int benefit;
4217 enum g_types type;
4218 int not_every_iteration;
4219 rtx *location;
4220 rtx loop_start, loop_end;
4221{
4222 struct induction *b;
4223 struct iv_class *bl;
4224 rtx set = single_set (insn);
4225 rtx p;
4226
4227 v->insn = insn;
4228 v->src_reg = src_reg;
4229 v->giv_type = type;
4230 v->dest_reg = dest_reg;
4231 v->mult_val = mult_val;
4232 v->add_val = add_val;
4233 v->benefit = benefit;
4234 v->location = location;
4235 v->cant_derive = 0;
4236 v->combined_with = 0;
4237 v->maybe_multiple = 0;
4238 v->maybe_dead = 0;
4239 v->derive_adjustment = 0;
4240 v->same = 0;
4241 v->ignore = 0;
4242 v->new_reg = 0;
4243 v->final_value = 0;
4244
4245 /* The v->always_computable field is used in update_giv_derive, to
4246 determine whether a giv can be used to derive another giv. For a
4247 DEST_REG giv, INSN computes a new value for the giv, so its value
4248 isn't computable if INSN insn't executed every iteration.
4249 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4250 it does not compute a new value. Hence the value is always computable
4251 regardless of whether INSN is executed each iteration. */
4252
4253 if (type == DEST_ADDR)
4254 v->always_computable = 1;
4255 else
4256 v->always_computable = ! not_every_iteration;
4257
4258 if (type == DEST_ADDR)
4259 {
4260 v->mode = GET_MODE (*location);
4261 v->lifetime = 1;
4262 v->times_used = 1;
4263 }
4264 else /* type == DEST_REG */
4265 {
4266 v->mode = GET_MODE (SET_DEST (set));
4267
4268 v->lifetime = (uid_luid[regno_last_uid[REGNO (dest_reg)]]
4269 - uid_luid[regno_first_uid[REGNO (dest_reg)]]);
4270
4271 v->times_used = n_times_used[REGNO (dest_reg)];
4272
4273 /* If the lifetime is zero, it means that this register is
4274 really a dead store. So mark this as a giv that can be
4275 ignored. This will not prevent the biv from being eliminated. */
4276 if (v->lifetime == 0)
4277 v->ignore = 1;
4278
4279 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4280 reg_iv_info[REGNO (dest_reg)] = v;
4281 }
4282
4283 /* Add the giv to the class of givs computed from one biv. */
4284
4285 bl = reg_biv_class[REGNO (src_reg)];
4286 if (bl)
4287 {
4288 v->next_iv = bl->giv;
4289 bl->giv = v;
4290 /* Don't count DEST_ADDR. This is supposed to count the number of
4291 insns that calculate givs. */
4292 if (type == DEST_REG)
4293 bl->giv_count++;
4294 bl->total_benefit += benefit;
4295 }
4296 else
4297 /* Fatal error, biv missing for this giv? */
4298 abort ();
4299
4300 if (type == DEST_ADDR)
4301 v->replaceable = 1;
4302 else
4303 {
4304 /* The giv can be replaced outright by the reduced register only if all
4305 of the following conditions are true:
4306 - the insn that sets the giv is always executed on any iteration
4307 on which the giv is used at all
4308 (there are two ways to deduce this:
4309 either the insn is executed on every iteration,
4310 or all uses follow that insn in the same basic block),
4311 - the giv is not used outside the loop
4312 - no assignments to the biv occur during the giv's lifetime. */
4313
4314 if (regno_first_uid[REGNO (dest_reg)] == INSN_UID (insn)
4315 /* Previous line always fails if INSN was moved by loop opt. */
4316 && uid_luid[regno_last_uid[REGNO (dest_reg)]] < INSN_LUID (loop_end)
4317 && (! not_every_iteration
4318 || last_use_this_basic_block (dest_reg, insn)))
4319 {
4320 /* Now check that there are no assignments to the biv within the
4321 giv's lifetime. This requires two separate checks. */
4322
4323 /* Check each biv update, and fail if any are between the first
4324 and last use of the giv.
4325
4326 If this loop contains an inner loop that was unrolled, then
4327 the insn modifying the biv may have been emitted by the loop
4328 unrolling code, and hence does not have a valid luid. Just
4329 mark the biv as not replaceable in this case. It is not very
4330 useful as a biv, because it is used in two different loops.
4331 It is very unlikely that we would be able to optimize the giv
4332 using this biv anyways. */
4333
4334 v->replaceable = 1;
4335 for (b = bl->biv; b; b = b->next_iv)
4336 {
4337 if (INSN_UID (b->insn) >= max_uid_for_loop
4338 || ((uid_luid[INSN_UID (b->insn)]
4339 >= uid_luid[regno_first_uid[REGNO (dest_reg)]])
4340 && (uid_luid[INSN_UID (b->insn)]
4341 <= uid_luid[regno_last_uid[REGNO (dest_reg)]])))
4342 {
4343 v->replaceable = 0;
4344 v->not_replaceable = 1;
4345 break;
4346 }
4347 }
4348
4349 /* Check each insn between the first and last use of the giv,
4350 and fail if any of them are branches that jump to a named label
4351 outside this range, but still inside the loop. This catches
4352 cases of spaghetti code where the execution order of insns
4353 is not linear, and hence the above test fails. For example,
4354 in the following code, j is not replaceable:
4355 for (i = 0; i < 100; ) {
4356 L0: j = 4*i; goto L1;
4357 L2: k = j; goto L3;
4358 L1: i++; goto L2;
4359 L3: ; }
4360 printf ("k = %d\n", k); }
4361 This test is conservative, but this test succeeds rarely enough
4362 that it isn't a problem. See also check_final_value below. */
4363
4364 if (v->replaceable)
4365 for (p = insn;
4366 INSN_UID (p) >= max_uid_for_loop
4367 || INSN_LUID (p) < uid_luid[regno_last_uid[REGNO (dest_reg)]];
4368 p = NEXT_INSN (p))
4369 {
4370 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4371 && LABEL_NAME (JUMP_LABEL (p))
4372 && ((INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start)
4373 && (INSN_LUID (JUMP_LABEL (p))
4374 < uid_luid[regno_first_uid[REGNO (dest_reg)]]))
4375 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end)
4376 && (INSN_LUID (JUMP_LABEL (p))
4377 > uid_luid[regno_last_uid[REGNO (dest_reg)]]))))
4378 {
4379 v->replaceable = 0;
4380 v->not_replaceable = 1;
4381
4382 if (loop_dump_stream)
4383 fprintf (loop_dump_stream,
4384 "Found branch outside giv lifetime.\n");
4385
4386 break;
4387 }
4388 }
4389 }
4390 else
4391 {
4392 /* May still be replaceable, we don't have enough info here to
4393 decide. */
4394 v->replaceable = 0;
4395 v->not_replaceable = 0;
4396 }
4397 }
4398
4399 if (loop_dump_stream)
4400 {
4401 if (type == DEST_REG)
4402 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4403 INSN_UID (insn), REGNO (dest_reg));
4404 else
4405 fprintf (loop_dump_stream, "Insn %d: dest address",
4406 INSN_UID (insn));
4407
4408 fprintf (loop_dump_stream, " src reg %d benefit %d",
4409 REGNO (src_reg), v->benefit);
4410 fprintf (loop_dump_stream, " used %d lifetime %d",
4411 v->times_used, v->lifetime);
4412
4413 if (v->replaceable)
4414 fprintf (loop_dump_stream, " replaceable");
4415
4416 if (GET_CODE (mult_val) == CONST_INT)
4417 fprintf (loop_dump_stream, " mult %d",
4418 INTVAL (mult_val));
4419 else
4420 {
4421 fprintf (loop_dump_stream, " mult ");
4422 print_rtl (loop_dump_stream, mult_val);
4423 }
4424
4425 if (GET_CODE (add_val) == CONST_INT)
4426 fprintf (loop_dump_stream, " add %d",
4427 INTVAL (add_val));
4428 else
4429 {
4430 fprintf (loop_dump_stream, " add ");
4431 print_rtl (loop_dump_stream, add_val);
4432 }
4433 }
4434
4435 if (loop_dump_stream)
4436 fprintf (loop_dump_stream, "\n");
4437
4438}
4439
4440
4441/* All this does is determine whether a giv can be made replaceable because
4442 its final value can be calculated. This code can not be part of record_giv
4443 above, because final_giv_value requires that the number of loop iterations
4444 be known, and that can not be accurately calculated until after all givs
4445 have been identified. */
4446
4447static void
4448check_final_value (v, loop_start, loop_end)
4449 struct induction *v;
4450 rtx loop_start, loop_end;
4451{
4452 struct iv_class *bl;
4453 rtx final_value = 0;
4454 rtx tem;
4455
4456 bl = reg_biv_class[REGNO (v->src_reg)];
4457
4458 /* DEST_ADDR givs will never reach here, because they are always marked
4459 replaceable above in record_giv. */
4460
4461 /* The giv can be replaced outright by the reduced register only if all
4462 of the following conditions are true:
4463 - the insn that sets the giv is always executed on any iteration
4464 on which the giv is used at all
4465 (there are two ways to deduce this:
4466 either the insn is executed on every iteration,
4467 or all uses follow that insn in the same basic block),
4468 - its final value can be calculated (this condition is different
4469 than the one above in record_giv)
4470 - no assignments to the biv occur during the giv's lifetime. */
4471
4472#if 0
4473 /* This is only called now when replaceable is known to be false. */
4474 /* Clear replaceable, so that it won't confuse final_giv_value. */
4475 v->replaceable = 0;
4476#endif
4477
4478 if ((final_value = final_giv_value (v, loop_start, loop_end))
4479 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4480 {
4481 int biv_increment_seen = 0;
4482 rtx p = v->insn;
4483 rtx last_giv_use;
4484
4485 v->replaceable = 1;
4486
4487 /* When trying to determine whether or not a biv increment occurs
4488 during the lifetime of the giv, we can ignore uses of the variable
4489 outside the loop because final_value is true. Hence we can not
4490 use regno_last_uid and regno_first_uid as above in record_giv. */
4491
4492 /* Search the loop to determine whether any assignments to the
4493 biv occur during the giv's lifetime. Start with the insn
4494 that sets the giv, and search around the loop until we come
4495 back to that insn again.
4496
4497 Also fail if there is a jump within the giv's lifetime that jumps
4498 to somewhere outside the lifetime but still within the loop. This
4499 catches spaghetti code where the execution order is not linear, and
4500 hence the above test fails. Here we assume that the giv lifetime
4501 does not extend from one iteration of the loop to the next, so as
4502 to make the test easier. Since the lifetime isn't known yet,
4503 this requires two loops. See also record_giv above. */
4504
4505 last_giv_use = v->insn;
4506
4507 while (1)
4508 {
4509 p = NEXT_INSN (p);
4510 if (p == loop_end)
4511 p = NEXT_INSN (loop_start);
4512 if (p == v->insn)
4513 break;
4514
4515 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4516 || GET_CODE (p) == CALL_INSN)
4517 {
4518 if (biv_increment_seen)
4519 {
4520 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4521 {
4522 v->replaceable = 0;
4523 v->not_replaceable = 1;
4524 break;
4525 }
4526 }
4527 else if (GET_CODE (PATTERN (p)) == SET
4528 && SET_DEST (PATTERN (p)) == v->src_reg)
4529 biv_increment_seen = 1;
4530 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4531 last_giv_use = p;
4532 }
4533 }
4534
4535 /* Now that the lifetime of the giv is known, check for branches
4536 from within the lifetime to outside the lifetime if it is still
4537 replaceable. */
4538
4539 if (v->replaceable)
4540 {
4541 p = v->insn;
4542 while (1)
4543 {
4544 p = NEXT_INSN (p);
4545 if (p == loop_end)
4546 p = NEXT_INSN (loop_start);
4547 if (p == last_giv_use)
4548 break;
4549
4550 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4551 && LABEL_NAME (JUMP_LABEL (p))
4552 && ((INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4553 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4554 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4555 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4556 {
4557 v->replaceable = 0;
4558 v->not_replaceable = 1;
4559
4560 if (loop_dump_stream)
4561 fprintf (loop_dump_stream,
4562 "Found branch outside giv lifetime.\n");
4563
4564 break;
4565 }
4566 }
4567 }
4568
4569 /* If it is replaceable, then save the final value. */
4570 if (v->replaceable)
4571 v->final_value = final_value;
4572 }
4573
4574 if (loop_dump_stream && v->replaceable)
4575 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4576 INSN_UID (v->insn), REGNO (v->dest_reg));
4577}
4578\f
4579/* Update the status of whether a giv can derive other givs.
4580
4581 We need to do something special if there is or may be an update to the biv
4582 between the time the giv is defined and the time it is used to derive
4583 another giv.
4584
4585 In addition, a giv that is only conditionally set is not allowed to
4586 derive another giv once a label has been passed.
4587
4588 The cases we look at are when a label or an update to a biv is passed. */
4589
4590static void
4591update_giv_derive (p)
4592 rtx p;
4593{
4594 struct iv_class *bl;
4595 struct induction *biv, *giv;
4596 rtx tem;
4597 int dummy;
4598
4599 /* Search all IV classes, then all bivs, and finally all givs.
4600
4601 There are three cases we are concerned with. First we have the situation
4602 of a giv that is only updated conditionally. In that case, it may not
4603 derive any givs after a label is passed.
4604
4605 The second case is when a biv update occurs, or may occur, after the
4606 definition of a giv. For certain biv updates (see below) that are
4607 known to occur between the giv definition and use, we can adjust the
4608 giv definition. For others, or when the biv update is conditional,
4609 we must prevent the giv from deriving any other givs. There are two
4610 sub-cases within this case.
4611
4612 If this is a label, we are concerned with any biv update that is done
4613 conditionally, since it may be done after the giv is defined followed by
4614 a branch here (actually, we need to pass both a jump and a label, but
4615 this extra tracking doesn't seem worth it).
4616
4617 If this is a jump, we are concerned about any biv update that may be
4618 executed multiple times. We are actually only concerned about
4619 backward jumps, but it is probably not worth performing the test
4620 on the jump again here.
4621
4622 If this is a biv update, we must adjust the giv status to show that a
4623 subsequent biv update was performed. If this adjustment cannot be done,
4624 the giv cannot derive further givs. */
4625
4626 for (bl = loop_iv_list; bl; bl = bl->next)
4627 for (biv = bl->biv; biv; biv = biv->next_iv)
4628 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
4629 || biv->insn == p)
4630 {
4631 for (giv = bl->giv; giv; giv = giv->next_iv)
4632 {
4633 /* If cant_derive is already true, there is no point in
4634 checking all of these conditions again. */
4635 if (giv->cant_derive)
4636 continue;
4637
4638 /* If this giv is conditionally set and we have passed a label,
4639 it cannot derive anything. */
4640 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
4641 giv->cant_derive = 1;
4642
4643 /* Skip givs that have mult_val == 0, since
4644 they are really invariants. Also skip those that are
4645 replaceable, since we know their lifetime doesn't contain
4646 any biv update. */
4647 else if (giv->mult_val == const0_rtx || giv->replaceable)
4648 continue;
4649
4650 /* The only way we can allow this giv to derive another
4651 is if this is a biv increment and we can form the product
4652 of biv->add_val and giv->mult_val. In this case, we will
4653 be able to compute a compensation. */
4654 else if (biv->insn == p)
4655 {
4656 tem = 0;
4657
4658 if (biv->mult_val == const1_rtx)
4659 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
4660 biv->add_val,
4661 giv->mult_val),
4662 &dummy);
4663
4664 if (tem && giv->derive_adjustment)
4665 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
4666 giv->derive_adjustment),
4667 &dummy);
4668 if (tem)
4669 giv->derive_adjustment = tem;
4670 else
4671 giv->cant_derive = 1;
4672 }
4673 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
4674 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
4675 giv->cant_derive = 1;
4676 }
4677 }
4678}
4679\f
4680/* Check whether an insn is an increment legitimate for a basic induction var.
4681 X is the source of insn P.
4682 DEST_REG is the putative biv, also the destination of the insn.
4683 We accept patterns of these forms:
4684 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
4685 REG = INVARIANT + REG
4686
4687 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
4688 and store the additive term into *INC_VAL.
4689
4690 If X is an assignment of an invariant into DEST_REG, we set
4691 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
4692
4693 We also want to detect a BIV when it corresponds to a variable
4694 whose mode was promoted via PROMOTED_MODE. In that case, an increment
4695 of the variable may be a PLUS that adds a SUBREG of that variable to
4696 an invariant and then sign- or zero-extends the result of the PLUS
4697 into the variable.
4698
4699 Most GIVs in such cases will be in the promoted mode, since that is the
4700 probably the natural computation mode (and almost certainly the mode
4701 used for addresses) on the machine. So we view the pseudo-reg containing
4702 the variable as the BIV, as if it were simply incremented.
4703
4704 Note that treating the entire pseudo as a BIV will result in making
4705 simple increments to any GIVs based on it. However, if the variable
4706 overflows in its declared mode but not its promoted mode, the result will
4707 be incorrect. This is acceptable if the variable is signed, since
4708 overflows in such cases are undefined, but not if it is unsigned, since
4709 those overflows are defined. So we only check for SIGN_EXTEND and
4710 not ZERO_EXTEND.
4711
4712 If we cannot find a biv, we return 0. */
4713
4714static int
4715basic_induction_var (x, dest_reg, p, inc_val, mult_val)
4716 register rtx x;
4717 rtx p;
4718 rtx dest_reg;
4719 rtx *inc_val;
4720 rtx *mult_val;
4721{
4722 register enum rtx_code code;
4723 rtx arg;
4724 rtx insn, set = 0;
4725
4726 code = GET_CODE (x);
4727 switch (code)
4728 {
4729 case PLUS:
4730 if (XEXP (x, 0) == dest_reg
4731 || (GET_CODE (XEXP (x, 0)) == SUBREG
4732 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
4733 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
4734 arg = XEXP (x, 1);
4735 else if (XEXP (x, 1) == dest_reg
4736 || (GET_CODE (XEXP (x, 1)) == SUBREG
4737 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
4738 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
4739 arg = XEXP (x, 0);
4740 else
4741 return 0;
4742
4743 if (invariant_p (arg) != 1)
4744 return 0;
4745
4746 *inc_val = convert_to_mode (GET_MODE (dest_reg), arg, 0);;
4747 *mult_val = const1_rtx;
4748 return 1;
4749
4750 case SUBREG:
4751 /* If this is a SUBREG for a promoted variable, check the inner
4752 value. */
4753 if (SUBREG_PROMOTED_VAR_P (x))
4754 return basic_induction_var (SUBREG_REG (x), dest_reg, p,
4755 inc_val, mult_val);
4756
4757 case REG:
4758 /* If this register is assigned in the previous insn, look at its
4759 source, but don't go outside the loop or past a label. */
4760
4761 for (insn = PREV_INSN (p);
4762 (insn && GET_CODE (insn) == NOTE
4763 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4764 insn = PREV_INSN (insn))
4765 ;
4766
4767 if (insn)
4768 set = single_set (insn);
4769
4770 if (set != 0 && SET_DEST (set) == x)
4771 return basic_induction_var (SET_SRC (set), dest_reg, insn,
4772 inc_val, mult_val);
4773 /* ... fall through ... */
4774
4775 /* Can accept constant setting of biv only when inside inner most loop.
4776 Otherwise, a biv of an inner loop may be incorrectly recognized
4777 as a biv of the outer loop,
4778 causing code to be moved INTO the inner loop. */
4779 case MEM:
4780 if (invariant_p (x) != 1)
4781 return 0;
4782 case CONST_INT:
4783 case SYMBOL_REF:
4784 case CONST:
4785 if (loops_enclosed == 1)
4786 {
4787 *inc_val = convert_to_mode (GET_MODE (dest_reg), x, 0);;
4788 *mult_val = const0_rtx;
4789 return 1;
4790 }
4791 else
4792 return 0;
4793
4794 case SIGN_EXTEND:
4795 return basic_induction_var (XEXP (x, 0), dest_reg, p,
4796 inc_val, mult_val);
4797 case ASHIFTRT:
4798 /* Similar, since this can be a sign extension. */
4799 for (insn = PREV_INSN (p);
4800 (insn && GET_CODE (insn) == NOTE
4801 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4802 insn = PREV_INSN (insn))
4803 ;
4804
4805 if (insn)
4806 set = single_set (insn);
4807
4808 if (set && SET_DEST (set) == XEXP (x, 0)
4809 && GET_CODE (XEXP (x, 1)) == CONST_INT
4810 && INTVAL (XEXP (x, 1)) >= 0
4811 && GET_CODE (SET_SRC (set)) == ASHIFT
4812 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
4813 return basic_induction_var (XEXP (SET_SRC (set), 0), dest_reg, insn,
4814 inc_val, mult_val);
4815 return 0;
4816
4817 default:
4818 return 0;
4819 }
4820}
4821\f
4822/* A general induction variable (giv) is any quantity that is a linear
4823 function of a basic induction variable,
4824 i.e. giv = biv * mult_val + add_val.
4825 The coefficients can be any loop invariant quantity.
4826 A giv need not be computed directly from the biv;
4827 it can be computed by way of other givs. */
4828
4829/* Determine whether X computes a giv.
4830 If it does, return a nonzero value
4831 which is the benefit from eliminating the computation of X;
4832 set *SRC_REG to the register of the biv that it is computed from;
4833 set *ADD_VAL and *MULT_VAL to the coefficients,
4834 such that the value of X is biv * mult + add; */
4835
4836static int
4837general_induction_var (x, src_reg, add_val, mult_val)
4838 rtx x;
4839 rtx *src_reg;
4840 rtx *add_val;
4841 rtx *mult_val;
4842{
4843 rtx orig_x = x;
4844 int benefit = 0;
4845 char *storage;
4846
4847 /* If this is an invariant, forget it, it isn't a giv. */
4848 if (invariant_p (x) == 1)
4849 return 0;
4850
4851 /* See if the expression could be a giv and get its form.
4852 Mark our place on the obstack in case we don't find a giv. */
4853 storage = (char *) oballoc (0);
4854 x = simplify_giv_expr (x, &benefit);
4855 if (x == 0)
4856 {
4857 obfree (storage);
4858 return 0;
4859 }
4860
4861 switch (GET_CODE (x))
4862 {
4863 case USE:
4864 case CONST_INT:
4865 /* Since this is now an invariant and wasn't before, it must be a giv
4866 with MULT_VAL == 0. It doesn't matter which BIV we associate this
4867 with. */
4868 *src_reg = loop_iv_list->biv->dest_reg;
4869 *mult_val = const0_rtx;
4870 *add_val = x;
4871 break;
4872
4873 case REG:
4874 /* This is equivalent to a BIV. */
4875 *src_reg = x;
4876 *mult_val = const1_rtx;
4877 *add_val = const0_rtx;
4878 break;
4879
4880 case PLUS:
4881 /* Either (plus (biv) (invar)) or
4882 (plus (mult (biv) (invar_1)) (invar_2)). */
4883 if (GET_CODE (XEXP (x, 0)) == MULT)
4884 {
4885 *src_reg = XEXP (XEXP (x, 0), 0);
4886 *mult_val = XEXP (XEXP (x, 0), 1);
4887 }
4888 else
4889 {
4890 *src_reg = XEXP (x, 0);
4891 *mult_val = const1_rtx;
4892 }
4893 *add_val = XEXP (x, 1);
4894 break;
4895
4896 case MULT:
4897 /* ADD_VAL is zero. */
4898 *src_reg = XEXP (x, 0);
4899 *mult_val = XEXP (x, 1);
4900 *add_val = const0_rtx;
4901 break;
4902
4903 default:
4904 abort ();
4905 }
4906
4907 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
4908 unless they are CONST_INT). */
4909 if (GET_CODE (*add_val) == USE)
4910 *add_val = XEXP (*add_val, 0);
4911 if (GET_CODE (*mult_val) == USE)
4912 *mult_val = XEXP (*mult_val, 0);
4913
4914 benefit += rtx_cost (orig_x, SET);
4915
4916 /* Always return some benefit if this is a giv so it will be detected
4917 as such. This allows elimination of bivs that might otherwise
4918 not be eliminated. */
4919 return benefit == 0 ? 1 : benefit;
4920}
4921\f
4922/* Given an expression, X, try to form it as a linear function of a biv.
4923 We will canonicalize it to be of the form
4924 (plus (mult (BIV) (invar_1))
4925 (invar_2))
4926 with possible degeneracies.
4927
4928 The invariant expressions must each be of a form that can be used as a
4929 machine operand. We surround then with a USE rtx (a hack, but localized
4930 and certainly unambiguous!) if not a CONST_INT for simplicity in this
4931 routine; it is the caller's responsibility to strip them.
4932
4933 If no such canonicalization is possible (i.e., two biv's are used or an
4934 expression that is neither invariant nor a biv or giv), this routine
4935 returns 0.
4936
4937 For a non-zero return, the result will have a code of CONST_INT, USE,
4938 REG (for a BIV), PLUS, or MULT. No other codes will occur.
4939
4940 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
4941
4942static rtx
4943simplify_giv_expr (x, benefit)
4944 rtx x;
4945 int *benefit;
4946{
4947 enum machine_mode mode = GET_MODE (x);
4948 rtx arg0, arg1;
4949 rtx tem;
4950
4951 /* If this is not an integer mode, or if we cannot do arithmetic in this
4952 mode, this can't be a giv. */
4953 if (mode != VOIDmode
4954 && (GET_MODE_CLASS (mode) != MODE_INT
4955 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
4956 return 0;
4957
4958 switch (GET_CODE (x))
4959 {
4960 case PLUS:
4961 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
4962 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
4963 if (arg0 == 0 || arg1 == 0)
4964 return 0;
4965
4966 /* Put constant last, CONST_INT last if both constant. */
4967 if ((GET_CODE (arg0) == USE
4968 || GET_CODE (arg0) == CONST_INT)
4969 && GET_CODE (arg1) != CONST_INT)
4970 tem = arg0, arg0 = arg1, arg1 = tem;
4971
4972 /* Handle addition of zero, then addition of an invariant. */
4973 if (arg1 == const0_rtx)
4974 return arg0;
4975 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
4976 switch (GET_CODE (arg0))
4977 {
4978 case CONST_INT:
4979 case USE:
4980 /* Both invariant. Only valid if sum is machine operand.
4981 First strip off possible USE on first operand. */
4982 if (GET_CODE (arg0) == USE)
4983 arg0 = XEXP (arg0, 0);
4984
4985 tem = 0;
4986 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
4987 {
4988 tem = plus_constant (arg0, INTVAL (arg1));
4989 if (GET_CODE (tem) != CONST_INT)
4990 tem = gen_rtx (USE, mode, tem);
4991 }
4992
4993 return tem;
4994
4995 case REG:
4996 case MULT:
4997 /* biv + invar or mult + invar. Return sum. */
4998 return gen_rtx (PLUS, mode, arg0, arg1);
4999
5000 case PLUS:
5001 /* (a + invar_1) + invar_2. Associate. */
5002 return simplify_giv_expr (gen_rtx (PLUS, mode,
5003 XEXP (arg0, 0),
5004 gen_rtx (PLUS, mode,
5005 XEXP (arg0, 1), arg1)),
5006 benefit);
5007
5008 default:
5009 abort ();
5010 }
5011
5012 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5013 MULT to reduce cases. */
5014 if (GET_CODE (arg0) == REG)
5015 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5016 if (GET_CODE (arg1) == REG)
5017 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5018
5019 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5020 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5021 Recurse to associate the second PLUS. */
5022 if (GET_CODE (arg1) == MULT)
5023 tem = arg0, arg0 = arg1, arg1 = tem;
5024
5025 if (GET_CODE (arg1) == PLUS)
5026 return simplify_giv_expr (gen_rtx (PLUS, mode,
5027 gen_rtx (PLUS, mode,
5028 arg0, XEXP (arg1, 0)),
5029 XEXP (arg1, 1)),
5030 benefit);
5031
5032 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5033 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5034 abort ();
5035
5036 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5037 return 0;
5038
5039 return simplify_giv_expr (gen_rtx (MULT, mode,
5040 XEXP (arg0, 0),
5041 gen_rtx (PLUS, mode,
5042 XEXP (arg0, 1),
5043 XEXP (arg1, 1))),
5044 benefit);
5045
5046 case MINUS:
5047 /* Handle "a - b" as "a + b * (-1)". */
5048 return simplify_giv_expr (gen_rtx (PLUS, mode,
5049 XEXP (x, 0),
5050 gen_rtx (MULT, mode,
5051 XEXP (x, 1), constm1_rtx)),
5052 benefit);
5053
5054 case MULT:
5055 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5056 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5057 if (arg0 == 0 || arg1 == 0)
5058 return 0;
5059
5060 /* Put constant last, CONST_INT last if both constant. */
5061 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5062 && GET_CODE (arg1) != CONST_INT)
5063 tem = arg0, arg0 = arg1, arg1 = tem;
5064
5065 /* If second argument is not now constant, not giv. */
5066 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5067 return 0;
5068
5069 /* Handle multiply by 0 or 1. */
5070 if (arg1 == const0_rtx)
5071 return const0_rtx;
5072
5073 else if (arg1 == const1_rtx)
5074 return arg0;
5075
5076 switch (GET_CODE (arg0))
5077 {
5078 case REG:
5079 /* biv * invar. Done. */
5080 return gen_rtx (MULT, mode, arg0, arg1);
5081
5082 case CONST_INT:
5083 /* Product of two constants. */
5084 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5085
5086 case USE:
5087 /* invar * invar. Not giv. */
5088 return 0;
5089
5090 case MULT:
5091 /* (a * invar_1) * invar_2. Associate. */
5092 return simplify_giv_expr (gen_rtx (MULT, mode,
5093 XEXP (arg0, 0),
5094 gen_rtx (MULT, mode,
5095 XEXP (arg0, 1), arg1)),
5096 benefit);
5097
5098 case PLUS:
5099 /* (a + invar_1) * invar_2. Distribute. */
5100 return simplify_giv_expr (gen_rtx (PLUS, mode,
5101 gen_rtx (MULT, mode,
5102 XEXP (arg0, 0), arg1),
5103 gen_rtx (MULT, mode,
5104 XEXP (arg0, 1), arg1)),
5105 benefit);
5106
5107 default:
5108 abort ();
5109 }
5110
5111 case ASHIFT:
5112 case LSHIFT:
5113 /* Shift by constant is multiply by power of two. */
5114 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5115 return 0;
5116
5117 return simplify_giv_expr (gen_rtx (MULT, mode,
5118 XEXP (x, 0),
5119 GEN_INT ((HOST_WIDE_INT) 1
5120 << INTVAL (XEXP (x, 1)))),
5121 benefit);
5122
5123 case NEG:
5124 /* "-a" is "a * (-1)" */
5125 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
5126 benefit);
5127
5128 case NOT:
5129 /* "~a" is "-a - 1". Silly, but easy. */
5130 return simplify_giv_expr (gen_rtx (MINUS, mode,
5131 gen_rtx (NEG, mode, XEXP (x, 0)),
5132 const1_rtx),
5133 benefit);
5134
5135 case USE:
5136 /* Already in proper form for invariant. */
5137 return x;
5138
5139 case REG:
5140 /* If this is a new register, we can't deal with it. */
5141 if (REGNO (x) >= max_reg_before_loop)
5142 return 0;
5143
5144 /* Check for biv or giv. */
5145 switch (reg_iv_type[REGNO (x)])
5146 {
5147 case BASIC_INDUCT:
5148 return x;
5149 case GENERAL_INDUCT:
5150 {
5151 struct induction *v = reg_iv_info[REGNO (x)];
5152
5153 /* Form expression from giv and add benefit. Ensure this giv
5154 can derive another and subtract any needed adjustment if so. */
5155 *benefit += v->benefit;
5156 if (v->cant_derive)
5157 return 0;
5158
5159 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5160 v->src_reg, v->mult_val),
5161 v->add_val);
5162 if (v->derive_adjustment)
5163 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5164 return simplify_giv_expr (tem, benefit);
5165 }
5166 }
5167
5168 /* Fall through to general case. */
5169 default:
5170 /* If invariant, return as USE (unless CONST_INT).
5171 Otherwise, not giv. */
5172 if (GET_CODE (x) == USE)
5173 x = XEXP (x, 0);
5174
5175 if (invariant_p (x) == 1)
5176 {
5177 if (GET_CODE (x) == CONST_INT)
5178 return x;
5179 else
5180 return gen_rtx (USE, mode, x);
5181 }
5182 else
5183 return 0;
5184 }
5185}
5186\f
5187/* Help detect a giv that is calculated by several consecutive insns;
5188 for example,
5189 giv = biv * M
5190 giv = giv + A
5191 The caller has already identified the first insn P as having a giv as dest;
5192 we check that all other insns that set the same register follow
5193 immediately after P, that they alter nothing else,
5194 and that the result of the last is still a giv.
5195
5196 The value is 0 if the reg set in P is not really a giv.
5197 Otherwise, the value is the amount gained by eliminating
5198 all the consecutive insns that compute the value.
5199
5200 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5201 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5202
5203 The coefficients of the ultimate giv value are stored in
5204 *MULT_VAL and *ADD_VAL. */
5205
5206static int
5207consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5208 add_val, mult_val)
5209 int first_benefit;
5210 rtx p;
5211 rtx src_reg;
5212 rtx dest_reg;
5213 rtx *add_val;
5214 rtx *mult_val;
5215{
5216 int count;
5217 enum rtx_code code;
5218 int benefit;
5219 rtx temp;
5220 rtx set;
5221
5222 /* Indicate that this is a giv so that we can update the value produced in
5223 each insn of the multi-insn sequence.
5224
5225 This induction structure will be used only by the call to
5226 general_induction_var below, so we can allocate it on our stack.
5227 If this is a giv, our caller will replace the induct var entry with
5228 a new induction structure. */
5229 struct induction *v
5230 = (struct induction *) alloca (sizeof (struct induction));
5231 v->src_reg = src_reg;
5232 v->mult_val = *mult_val;
5233 v->add_val = *add_val;
5234 v->benefit = first_benefit;
5235 v->cant_derive = 0;
5236 v->derive_adjustment = 0;
5237
5238 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5239 reg_iv_info[REGNO (dest_reg)] = v;
5240
5241 count = n_times_set[REGNO (dest_reg)] - 1;
5242
5243 while (count > 0)
5244 {
5245 p = NEXT_INSN (p);
5246 code = GET_CODE (p);
5247
5248 /* If libcall, skip to end of call sequence. */
5249 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5250 p = XEXP (temp, 0);
5251
5252 if (code == INSN
5253 && (set = single_set (p))
5254 && GET_CODE (SET_DEST (set)) == REG
5255 && SET_DEST (set) == dest_reg
5256 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5257 add_val, mult_val))
5258 /* Giv created by equivalent expression. */
5259 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5260 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5261 add_val, mult_val))))
5262 && src_reg == v->src_reg)
5263 {
5264 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5265 benefit += libcall_benefit (p);
5266
5267 count--;
5268 v->mult_val = *mult_val;
5269 v->add_val = *add_val;
5270 v->benefit = benefit;
5271 }
5272 else if (code != NOTE)
5273 {
5274 /* Allow insns that set something other than this giv to a
5275 constant. Such insns are needed on machines which cannot
5276 include long constants and should not disqualify a giv. */
5277 if (code == INSN
5278 && (set = single_set (p))
5279 && SET_DEST (set) != dest_reg
5280 && CONSTANT_P (SET_SRC (set)))
5281 continue;
5282
5283 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5284 return 0;
5285 }
5286 }
5287
5288 return v->benefit;
5289}
5290\f
5291/* Return an rtx, if any, that expresses giv G2 as a function of the register
5292 represented by G1. If no such expression can be found, or it is clear that
5293 it cannot possibly be a valid address, 0 is returned.
5294
5295 To perform the computation, we note that
5296 G1 = a * v + b and
5297 G2 = c * v + d
5298 where `v' is the biv.
5299
5300 So G2 = (c/a) * G1 + (d - b*c/a) */
5301
5302#ifdef ADDRESS_COST
5303static rtx
5304express_from (g1, g2)
5305 struct induction *g1, *g2;
5306{
5307 rtx mult, add;
5308
5309 /* The value that G1 will be multiplied by must be a constant integer. Also,
5310 the only chance we have of getting a valid address is if b*c/a (see above
5311 for notation) is also an integer. */
5312 if (GET_CODE (g1->mult_val) != CONST_INT
5313 || GET_CODE (g2->mult_val) != CONST_INT
5314 || GET_CODE (g1->add_val) != CONST_INT
5315 || g1->mult_val == const0_rtx
5316 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5317 return 0;
5318
5319 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5320 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5321
5322 /* Form simplified final result. */
5323 if (mult == const0_rtx)
5324 return add;
5325 else if (mult == const1_rtx)
5326 mult = g1->dest_reg;
5327 else
5328 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5329
5330 if (add == const0_rtx)
5331 return mult;
5332 else
5333 return gen_rtx (PLUS, g2->mode, mult, add);
5334}
5335#endif
5336\f
5337/* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5338 (either directly or via an address expression) a register used to represent
5339 G1. Set g2->new_reg to a represtation of G1 (normally just
5340 g1->dest_reg). */
5341
5342static int
5343combine_givs_p (g1, g2)
5344 struct induction *g1, *g2;
5345{
5346 rtx tem;
5347
5348 /* If these givs are identical, they can be combined. */
5349 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5350 && rtx_equal_p (g1->add_val, g2->add_val))
5351 {
5352 g2->new_reg = g1->dest_reg;
5353 return 1;
5354 }
5355
5356#ifdef ADDRESS_COST
5357 /* If G2 can be expressed as a function of G1 and that function is valid
5358 as an address and no more expensive than using a register for G2,
5359 the expression of G2 in terms of G1 can be used. */
5360 if (g2->giv_type == DEST_ADDR
5361 && (tem = express_from (g1, g2)) != 0
5362 && memory_address_p (g2->mem_mode, tem)
5363 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5364 {
5365 g2->new_reg = tem;
5366 return 1;
5367 }
5368#endif
5369
5370 return 0;
5371}
5372\f
5373/* Check all pairs of givs for iv_class BL and see if any can be combined with
5374 any other. If so, point SAME to the giv combined with and set NEW_REG to
5375 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5376 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5377
5378static void
5379combine_givs (bl)
5380 struct iv_class *bl;
5381{
5382 struct induction *g1, *g2;
5383 int pass;
5384
5385 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5386 for (pass = 0; pass <= 1; pass++)
5387 for (g2 = bl->giv; g2; g2 = g2->next_iv)
5388 if (g1 != g2
5389 /* First try to combine with replaceable givs, then all givs. */
5390 && (g1->replaceable || pass == 1)
5391 /* If either has already been combined or is to be ignored, can't
5392 combine. */
5393 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5394 /* If something has been based on G2, G2 cannot itself be based
5395 on something else. */
5396 && ! g2->combined_with
5397 && combine_givs_p (g1, g2))
5398 {
5399 /* g2->new_reg set by `combine_givs_p' */
5400 g2->same = g1;
5401 g1->combined_with = 1;
5402 g1->benefit += g2->benefit;
5403 /* ??? The new final_[bg]iv_value code does a much better job
5404 of finding replaceable giv's, and hence this code may no
5405 longer be necessary. */
5406 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5407 g1->benefit -= copy_cost;
5408 g1->lifetime += g2->lifetime;
5409 g1->times_used += g2->times_used;
5410
5411 if (loop_dump_stream)
5412 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5413 INSN_UID (g2->insn), INSN_UID (g1->insn));
5414 }
5415}
5416\f
5417/* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5418
5419void
5420emit_iv_add_mult (b, m, a, reg, insert_before)
5421 rtx b; /* initial value of basic induction variable */
5422 rtx m; /* multiplicative constant */
5423 rtx a; /* additive constant */
5424 rtx reg; /* destination register */
5425 rtx insert_before;
5426{
5427 rtx seq;
5428 rtx result;
5429
5430 /* Prevent unexpected sharing of these rtx. */
5431 a = copy_rtx (a);
5432 b = copy_rtx (b);
5433
5434 /* Increase the lifetime of any invariants moved further in code. */
5435 update_reg_last_use (a, insert_before);
5436 update_reg_last_use (b, insert_before);
5437 update_reg_last_use (m, insert_before);
5438
5439 start_sequence ();
5440 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5441 if (reg != result)
5442 emit_move_insn (reg, result);
5443 seq = gen_sequence ();
5444 end_sequence ();
5445
5446 emit_insn_before (seq, insert_before);
5447}
5448\f
5449/* Test whether A * B can be computed without
5450 an actual multiply insn. Value is 1 if so. */
5451
5452static int
5453product_cheap_p (a, b)
5454 rtx a;
5455 rtx b;
5456{
5457 int i;
5458 rtx tmp;
5459 struct obstack *old_rtl_obstack = rtl_obstack;
5460 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5461 int win = 1;
5462
5463 /* If only one is constant, make it B. */
5464 if (GET_CODE (a) == CONST_INT)
5465 tmp = a, a = b, b = tmp;
5466
5467 /* If first constant, both constant, so don't need multiply. */
5468 if (GET_CODE (a) == CONST_INT)
5469 return 1;
5470
5471 /* If second not constant, neither is constant, so would need multiply. */
5472 if (GET_CODE (b) != CONST_INT)
5473 return 0;
5474
5475 /* One operand is constant, so might not need multiply insn. Generate the
5476 code for the multiply and see if a call or multiply, or long sequence
5477 of insns is generated. */
5478
5479 rtl_obstack = &temp_obstack;
5480 start_sequence ();
5481 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5482 tmp = gen_sequence ();
5483 end_sequence ();
5484
5485 if (GET_CODE (tmp) == SEQUENCE)
5486 {
5487 if (XVEC (tmp, 0) == 0)
5488 win = 1;
5489 else if (XVECLEN (tmp, 0) > 3)
5490 win = 0;
5491 else
5492 for (i = 0; i < XVECLEN (tmp, 0); i++)
5493 {
5494 rtx insn = XVECEXP (tmp, 0, i);
5495
5496 if (GET_CODE (insn) != INSN
5497 || (GET_CODE (PATTERN (insn)) == SET
5498 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5499 || (GET_CODE (PATTERN (insn)) == PARALLEL
5500 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5501 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5502 {
5503 win = 0;
5504 break;
5505 }
5506 }
5507 }
5508 else if (GET_CODE (tmp) == SET
5509 && GET_CODE (SET_SRC (tmp)) == MULT)
5510 win = 0;
5511 else if (GET_CODE (tmp) == PARALLEL
5512 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5513 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5514 win = 0;
5515
5516 /* Free any storage we obtained in generating this multiply and restore rtl
5517 allocation to its normal obstack. */
5518 obstack_free (&temp_obstack, storage);
5519 rtl_obstack = old_rtl_obstack;
5520
5521 return win;
5522}
5523\f
5524/* Check to see if loop can be terminated by a "decrement and branch until
5525 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5526 Also try reversing an increment loop to a decrement loop
5527 to see if the optimization can be performed.
5528 Value is nonzero if optimization was performed. */
5529
5530/* This is useful even if the architecture doesn't have such an insn,
5531 because it might change a loops which increments from 0 to n to a loop
5532 which decrements from n to 0. A loop that decrements to zero is usually
5533 faster than one that increments from zero. */
5534
5535/* ??? This could be rewritten to use some of the loop unrolling procedures,
5536 such as approx_final_value, biv_total_increment, loop_iterations, and
5537 final_[bg]iv_value. */
5538
5539static int
5540check_dbra_loop (loop_end, insn_count, loop_start)
5541 rtx loop_end;
5542 int insn_count;
5543 rtx loop_start;
5544{
5545 struct iv_class *bl;
5546 rtx reg;
5547 rtx jump_label;
5548 rtx final_value;
5549 rtx start_value;
5550 enum rtx_code branch_code;
5551 rtx new_add_val;
5552 rtx comparison;
5553 rtx before_comparison;
5554 rtx p;
5555
5556 /* If last insn is a conditional branch, and the insn before tests a
5557 register value, try to optimize it. Otherwise, we can't do anything. */
5558
5559 comparison = get_condition_for_loop (PREV_INSN (loop_end));
5560 if (comparison == 0)
5561 return 0;
5562
5563 /* Check all of the bivs to see if the compare uses one of them.
5564 Skip biv's set more than once because we can't guarantee that
5565 it will be zero on the last iteration. Also skip if the biv is
5566 used between its update and the test insn. */
5567
5568 for (bl = loop_iv_list; bl; bl = bl->next)
5569 {
5570 if (bl->biv_count == 1
5571 && bl->biv->dest_reg == XEXP (comparison, 0)
5572 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
5573 PREV_INSN (PREV_INSN (loop_end))))
5574 break;
5575 }
5576
5577 if (! bl)
5578 return 0;
5579
5580 /* Look for the case where the basic induction variable is always
5581 nonnegative, and equals zero on the last iteration.
5582 In this case, add a reg_note REG_NONNEG, which allows the
5583 m68k DBRA instruction to be used. */
5584
5585 if (((GET_CODE (comparison) == GT
5586 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5587 && INTVAL (XEXP (comparison, 1)) == -1)
5588 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
5589 && GET_CODE (bl->biv->add_val) == CONST_INT
5590 && INTVAL (bl->biv->add_val) < 0)
5591 {
5592 /* Initial value must be greater than 0,
5593 init_val % -dec_value == 0 to ensure that it equals zero on
5594 the last iteration */
5595
5596 if (GET_CODE (bl->initial_value) == CONST_INT
5597 && INTVAL (bl->initial_value) > 0
5598 && (INTVAL (bl->initial_value) %
5599 (-INTVAL (bl->biv->add_val))) == 0)
5600 {
5601 /* register always nonnegative, add REG_NOTE to branch */
5602 REG_NOTES (PREV_INSN (loop_end))
5603 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5604 REG_NOTES (PREV_INSN (loop_end)));
5605 bl->nonneg = 1;
5606
5607 return 1;
5608 }
5609
5610 /* If the decrement is 1 and the value was tested as >= 0 before
5611 the loop, then we can safely optimize. */
5612 for (p = loop_start; p; p = PREV_INSN (p))
5613 {
5614 if (GET_CODE (p) == CODE_LABEL)
5615 break;
5616 if (GET_CODE (p) != JUMP_INSN)
5617 continue;
5618
5619 before_comparison = get_condition_for_loop (p);
5620 if (before_comparison
5621 && XEXP (before_comparison, 0) == bl->biv->dest_reg
5622 && GET_CODE (before_comparison) == LT
5623 && XEXP (before_comparison, 1) == const0_rtx
5624 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
5625 && INTVAL (bl->biv->add_val) == -1)
5626 {
5627 REG_NOTES (PREV_INSN (loop_end))
5628 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5629 REG_NOTES (PREV_INSN (loop_end)));
5630 bl->nonneg = 1;
5631
5632 return 1;
5633 }
5634 }
5635 }
5636 else if (num_mem_sets <= 1)
5637 {
5638 /* Try to change inc to dec, so can apply above optimization. */
5639 /* Can do this if:
5640 all registers modified are induction variables or invariant,
5641 all memory references have non-overlapping addresses
5642 (obviously true if only one write)
5643 allow 2 insns for the compare/jump at the end of the loop. */
5644 int num_nonfixed_reads = 0;
5645 /* 1 if the iteration var is used only to count iterations. */
5646 int no_use_except_counting = 0;
5647
5648 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5649 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5650 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
5651
5652 if (bl->giv_count == 0
5653 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
5654 {
5655 rtx bivreg = regno_reg_rtx[bl->regno];
5656
5657 /* If there are no givs for this biv, and the only exit is the
5658 fall through at the end of the the loop, then
5659 see if perhaps there are no uses except to count. */
5660 no_use_except_counting = 1;
5661 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5662 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5663 {
5664 rtx set = single_set (p);
5665
5666 if (set && GET_CODE (SET_DEST (set)) == REG
5667 && REGNO (SET_DEST (set)) == bl->regno)
5668 /* An insn that sets the biv is okay. */
5669 ;
5670 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
5671 || p == prev_nonnote_insn (loop_end))
5672 /* Don't bother about the end test. */
5673 ;
5674 else if (reg_mentioned_p (bivreg, PATTERN (p)))
5675 /* Any other use of the biv is no good. */
5676 {
5677 no_use_except_counting = 0;
5678 break;
5679 }
5680 }
5681 }
5682
5683 /* This code only acts for innermost loops. Also it simplifies
5684 the memory address check by only reversing loops with
5685 zero or one memory access.
5686 Two memory accesses could involve parts of the same array,
5687 and that can't be reversed. */
5688
5689 if (num_nonfixed_reads <= 1
5690 && !loop_has_call
5691 && !loop_has_volatile
5692 && (no_use_except_counting
5693 || (bl->giv_count + bl->biv_count + num_mem_sets
5694 + num_movables + 2 == insn_count)))
5695 {
5696 rtx condition = get_condition_for_loop (PREV_INSN (loop_end));
5697 int win;
5698 rtx tem;
5699
5700 /* Loop can be reversed. */
5701 if (loop_dump_stream)
5702 fprintf (loop_dump_stream, "Can reverse loop\n");
5703
5704 /* Now check other conditions:
5705 initial_value must be zero,
5706 final_value % add_val == 0, so that when reversed, the
5707 biv will be zero on the last iteration.
5708
5709 This test can probably be improved since +/- 1 in the constant
5710 can be obtained by changing LT to LE and vice versa; this is
5711 confusing. */
5712
5713 if (comparison && bl->initial_value == const0_rtx
5714 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5715 /* LE gets turned into LT */
5716 && GET_CODE (comparison) == LT
5717 && (INTVAL (XEXP (comparison, 1))
5718 % INTVAL (bl->biv->add_val)) == 0)
5719 {
5720 /* Register will always be nonnegative, with value
5721 0 on last iteration if loop reversed */
5722
5723 /* Save some info needed to produce the new insns. */
5724 reg = bl->biv->dest_reg;
5725 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
5726 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
5727
5728 final_value = XEXP (comparison, 1);
5729 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
5730 - INTVAL (bl->biv->add_val));
5731
5732 /* Initialize biv to start_value before loop start.
5733 The old initializing insn will be deleted as a
5734 dead store by flow.c. */
5735 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
5736
5737 /* Add insn to decrement register, and delete insn
5738 that incremented the register. */
5739 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
5740 bl->biv->insn);
5741 delete_insn (bl->biv->insn);
5742
5743 /* Update biv info to reflect its new status. */
5744 bl->biv->insn = p;
5745 bl->initial_value = start_value;
5746 bl->biv->add_val = new_add_val;
5747
5748 /* Inc LABEL_NUSES so that delete_insn will
5749 not delete the label. */
5750 LABEL_NUSES (XEXP (jump_label, 0)) ++;
5751
5752 /* Emit an insn after the end of the loop to set the biv's
5753 proper exit value if it is used anywhere outside the loop. */
5754 if ((regno_last_uid[bl->regno]
5755 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
5756 || ! bl->init_insn
5757 || regno_first_uid[bl->regno] != INSN_UID (bl->init_insn))
5758 emit_insn_after (gen_move_insn (reg, final_value),
5759 loop_end);
5760
5761 /* Delete compare/branch at end of loop. */
5762 delete_insn (PREV_INSN (loop_end));
5763 delete_insn (PREV_INSN (loop_end));
5764
5765 /* Add new compare/branch insn at end of loop. */
5766 start_sequence ();
5767 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
5768 GET_MODE (reg), 0, 0);
5769 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
5770 tem = gen_sequence ();
5771 end_sequence ();
5772 emit_jump_insn_before (tem, loop_end);
5773
5774 for (tem = PREV_INSN (loop_end);
5775 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
5776 ;
5777 if (tem)
5778 {
5779 JUMP_LABEL (tem) = XEXP (jump_label, 0);
5780
5781 /* Increment of LABEL_NUSES done above. */
5782 /* Register is now always nonnegative,
5783 so add REG_NONNEG note to the branch. */
5784 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5785 REG_NOTES (tem));
5786 }
5787
5788 bl->nonneg = 1;
5789
5790 /* Mark that this biv has been reversed. Each giv which depends
5791 on this biv, and which is also live past the end of the loop
5792 will have to be fixed up. */
5793
5794 bl->reversed = 1;
5795
5796 if (loop_dump_stream)
5797 fprintf (loop_dump_stream,
5798 "Reversed loop and added reg_nonneg\n");
5799
5800 return 1;
5801 }
5802 }
5803 }
5804
5805 return 0;
5806}
5807\f
5808/* Verify whether the biv BL appears to be eliminable,
5809 based on the insns in the loop that refer to it.
5810 LOOP_START is the first insn of the loop, and END is the end insn.
5811
5812 If ELIMINATE_P is non-zero, actually do the elimination.
5813
5814 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
5815 determine whether invariant insns should be placed inside or at the
5816 start of the loop. */
5817
5818static int
5819maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
5820 struct iv_class *bl;
5821 rtx loop_start;
5822 rtx end;
5823 int eliminate_p;
5824 int threshold, insn_count;
5825{
5826 rtx reg = bl->biv->dest_reg;
5827 rtx p, set;
5828 struct induction *v;
5829
5830 /* Scan all insns in the loop, stopping if we find one that uses the
5831 biv in a way that we cannot eliminate. */
5832
5833 for (p = loop_start; p != end; p = NEXT_INSN (p))
5834 {
5835 enum rtx_code code = GET_CODE (p);
5836 rtx where = threshold >= insn_count ? loop_start : p;
5837
5838 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
5839 && reg_mentioned_p (reg, PATTERN (p))
5840 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
5841 {
5842 if (loop_dump_stream)
5843 fprintf (loop_dump_stream,
5844 "Cannot eliminate biv %d: biv used in insn %d.\n",
5845 bl->regno, INSN_UID (p));
5846 break;
5847 }
5848 }
5849
5850 if (p == end)
5851 {
5852 if (loop_dump_stream)
5853 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
5854 bl->regno, eliminate_p ? "was" : "can be");
5855 return 1;
5856 }
5857
5858 return 0;
5859}
5860\f
5861/* If BL appears in X (part of the pattern of INSN), see if we can
5862 eliminate its use. If so, return 1. If not, return 0.
5863
5864 If BIV does not appear in X, return 1.
5865
5866 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
5867 where extra insns should be added. Depending on how many items have been
5868 moved out of the loop, it will either be before INSN or at the start of
5869 the loop. */
5870
5871static int
5872maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
5873 rtx x, insn;
5874 struct iv_class *bl;
5875 int eliminate_p;
5876 rtx where;
5877{
5878 enum rtx_code code = GET_CODE (x);
5879 rtx reg = bl->biv->dest_reg;
5880 enum machine_mode mode = GET_MODE (reg);
5881 struct induction *v;
5882 rtx arg, new, tem;
5883 int arg_operand;
5884 char *fmt;
5885 int i, j;
5886
5887 switch (code)
5888 {
5889 case REG:
5890 /* If we haven't already been able to do something with this BIV,
5891 we can't eliminate it. */
5892 if (x == reg)
5893 return 0;
5894 return 1;
5895
5896 case SET:
5897 /* If this sets the BIV, it is not a problem. */
5898 if (SET_DEST (x) == reg)
5899 return 1;
5900
5901 /* If this is an insn that defines a giv, it is also ok because
5902 it will go away when the giv is reduced. */
5903 for (v = bl->giv; v; v = v->next_iv)
5904 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
5905 return 1;
5906
5907#ifdef HAVE_cc0
5908 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
5909 {
5910 /* Can replace with any giv that was reduced and
5911 that has (MULT_VAL != 0) and (ADD_VAL == 0).
5912 Require a constant for MULT_VAL, so we know it's nonzero. */
5913
5914 for (v = bl->giv; v; v = v->next_iv)
5915 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5916 && v->add_val == const0_rtx
5917 && ! v->ignore && ! v->maybe_dead
5918 && v->mode == mode)
5919 {
5920 if (! eliminate_p)
5921 return 1;
5922
5923 /* If the giv has the opposite direction of change,
5924 then reverse the comparison. */
5925 if (INTVAL (v->mult_val) < 0)
5926 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
5927 const0_rtx, v->new_reg);
5928 else
5929 new = v->new_reg;
5930
5931 /* We can probably test that giv's reduced reg. */
5932 if (validate_change (insn, &SET_SRC (x), new, 0))
5933 return 1;
5934 }
5935
5936 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
5937 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
5938 Require a constant for MULT_VAL, so we know it's nonzero. */
5939
5940 for (v = bl->giv; v; v = v->next_iv)
5941 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5942 && ! v->ignore && ! v->maybe_dead
5943 && v->mode == mode)
5944 {
5945 if (! eliminate_p)
5946 return 1;
5947
5948 /* If the giv has the opposite direction of change,
5949 then reverse the comparison. */
5950 if (INTVAL (v->mult_val) < 0)
5951 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
5952 v->new_reg);
5953 else
5954 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
5955 copy_rtx (v->add_val));
5956
5957 /* Replace biv with the giv's reduced register. */
5958 update_reg_last_use (v->add_val, insn);
5959 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
5960 return 1;
5961
5962 /* Insn doesn't support that constant or invariant. Copy it
5963 into a register (it will be a loop invariant.) */
5964 tem = gen_reg_rtx (GET_MODE (v->new_reg));
5965
5966 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
5967 where);
5968
5969 if (validate_change (insn, &SET_SRC (PATTERN (insn)),
5970 gen_rtx (COMPARE, VOIDmode,
5971 v->new_reg, tem), 0))
5972 return 1;
5973 }
5974 }
5975#endif
5976 break;
5977
5978 case COMPARE:
5979 case EQ: case NE:
5980 case GT: case GE: case GTU: case GEU:
5981 case LT: case LE: case LTU: case LEU:
5982 /* See if either argument is the biv. */
5983 if (XEXP (x, 0) == reg)
5984 arg = XEXP (x, 1), arg_operand = 1;
5985 else if (XEXP (x, 1) == reg)
5986 arg = XEXP (x, 0), arg_operand = 0;
5987 else
5988 break;
5989
5990 if (CONSTANT_P (arg))
5991 {
5992 /* First try to replace with any giv that has constant positive
5993 mult_val and constant add_val. We might be able to support
5994 negative mult_val, but it seems complex to do it in general. */
5995
5996 for (v = bl->giv; v; v = v->next_iv)
5997 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
5998 && CONSTANT_P (v->add_val)
5999 && ! v->ignore && ! v->maybe_dead
6000 && v->mode == mode)
6001 {
6002 if (! eliminate_p)
6003 return 1;
6004
6005 /* Replace biv with the giv's reduced reg. */
6006 XEXP (x, 1-arg_operand) = v->new_reg;
6007
6008 /* If all constants are actually constant integers and
6009 the derived constant can be directly placed in the COMPARE,
6010 do so. */
6011 if (GET_CODE (arg) == CONST_INT
6012 && GET_CODE (v->mult_val) == CONST_INT
6013 && GET_CODE (v->add_val) == CONST_INT
6014 && validate_change (insn, &XEXP (x, arg_operand),
6015 GEN_INT (INTVAL (arg)
6016 * INTVAL (v->mult_val)
6017 + INTVAL (v->add_val)), 0))
6018 return 1;
6019
6020 /* Otherwise, load it into a register. */
6021 tem = gen_reg_rtx (mode);
6022 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6023 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6024 return 1;
6025
6026 /* If that failed, put back the change we made above. */
6027 XEXP (x, 1-arg_operand) = reg;
6028 }
6029
6030 /* Look for giv with positive constant mult_val and nonconst add_val.
6031 Insert insns to calculate new compare value. */
6032
6033 for (v = bl->giv; v; v = v->next_iv)
6034 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6035 && ! v->ignore && ! v->maybe_dead
6036 && v->mode == mode)
6037 {
6038 rtx tem;
6039
6040 if (! eliminate_p)
6041 return 1;
6042
6043 tem = gen_reg_rtx (mode);
6044
6045 /* Replace biv with giv's reduced register. */
6046 validate_change (insn, &XEXP (x, 1 - arg_operand),
6047 v->new_reg, 1);
6048
6049 /* Compute value to compare against. */
6050 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6051 /* Use it in this insn. */
6052 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6053 if (apply_change_group ())
6054 return 1;
6055 }
6056 }
6057 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6058 {
6059 if (invariant_p (arg) == 1)
6060 {
6061 /* Look for giv with constant positive mult_val and nonconst
6062 add_val. Insert insns to compute new compare value. */
6063
6064 for (v = bl->giv; v; v = v->next_iv)
6065 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6066 && ! v->ignore && ! v->maybe_dead
6067 && v->mode == mode)
6068 {
6069 rtx tem;
6070
6071 if (! eliminate_p)
6072 return 1;
6073
6074 tem = gen_reg_rtx (mode);
6075
6076 /* Replace biv with giv's reduced register. */
6077 validate_change (insn, &XEXP (x, 1 - arg_operand),
6078 v->new_reg, 1);
6079
6080 /* Compute value to compare against. */
6081 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6082 tem, where);
6083 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6084 if (apply_change_group ())
6085 return 1;
6086 }
6087 }
6088
6089 /* This code has problems. Basically, you can't know when
6090 seeing if we will eliminate BL, whether a particular giv
6091 of ARG will be reduced. If it isn't going to be reduced,
6092 we can't eliminate BL. We can try forcing it to be reduced,
6093 but that can generate poor code.
6094
6095 The problem is that the benefit of reducing TV, below should
6096 be increased if BL can actually be eliminated, but this means
6097 we might have to do a topological sort of the order in which
6098 we try to process biv. It doesn't seem worthwhile to do
6099 this sort of thing now. */
6100
6101#if 0
6102 /* Otherwise the reg compared with had better be a biv. */
6103 if (GET_CODE (arg) != REG
6104 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6105 return 0;
6106
6107 /* Look for a pair of givs, one for each biv,
6108 with identical coefficients. */
6109 for (v = bl->giv; v; v = v->next_iv)
6110 {
6111 struct induction *tv;
6112
6113 if (v->ignore || v->maybe_dead || v->mode != mode)
6114 continue;
6115
6116 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6117 if (! tv->ignore && ! tv->maybe_dead
6118 && rtx_equal_p (tv->mult_val, v->mult_val)
6119 && rtx_equal_p (tv->add_val, v->add_val)
6120 && tv->mode == mode)
6121 {
6122 if (! eliminate_p)
6123 return 1;
6124
6125 /* Replace biv with its giv's reduced reg. */
6126 XEXP (x, 1-arg_operand) = v->new_reg;
6127 /* Replace other operand with the other giv's
6128 reduced reg. */
6129 XEXP (x, arg_operand) = tv->new_reg;
6130 return 1;
6131 }
6132 }
6133#endif
6134 }
6135
6136 /* If we get here, the biv can't be eliminated. */
6137 return 0;
6138
6139 case MEM:
6140 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6141 biv is used in it, since it will be replaced. */
6142 for (v = bl->giv; v; v = v->next_iv)
6143 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6144 return 1;
6145 break;
6146 }
6147
6148 /* See if any subexpression fails elimination. */
6149 fmt = GET_RTX_FORMAT (code);
6150 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6151 {
6152 switch (fmt[i])
6153 {
6154 case 'e':
6155 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6156 eliminate_p, where))
6157 return 0;
6158 break;
6159
6160 case 'E':
6161 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6162 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6163 eliminate_p, where))
6164 return 0;
6165 break;
6166 }
6167 }
6168
6169 return 1;
6170}
6171\f
6172/* Return nonzero if the last use of REG
6173 is in an insn following INSN in the same basic block. */
6174
6175static int
6176last_use_this_basic_block (reg, insn)
6177 rtx reg;
6178 rtx insn;
6179{
6180 rtx n;
6181 for (n = insn;
6182 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6183 n = NEXT_INSN (n))
6184 {
6185 if (regno_last_uid[REGNO (reg)] == INSN_UID (n))
6186 return 1;
6187 }
6188 return 0;
6189}
6190\f
6191/* Called via `note_stores' to record the initial value of a biv. Here we
6192 just record the location of the set and process it later. */
6193
6194static void
6195record_initial (dest, set)
6196 rtx dest;
6197 rtx set;
6198{
6199 struct iv_class *bl;
6200
6201 if (GET_CODE (dest) != REG
6202 || REGNO (dest) >= max_reg_before_loop
6203 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
6204 return;
6205
6206 bl = reg_biv_class[REGNO (dest)];
6207
6208 /* If this is the first set found, record it. */
6209 if (bl->init_insn == 0)
6210 {
6211 bl->init_insn = note_insn;
6212 bl->init_set = set;
6213 }
6214}
6215\f
6216/* If any of the registers in X are "old" and currently have a last use earlier
6217 than INSN, update them to have a last use of INSN. Their actual last use
6218 will be the previous insn but it will not have a valid uid_luid so we can't
6219 use it. */
6220
6221static void
6222update_reg_last_use (x, insn)
6223 rtx x;
6224 rtx insn;
6225{
6226 /* Check for the case where INSN does not have a valid luid. In this case,
6227 there is no need to modify the regno_last_uid, as this can only happen
6228 when code is inserted after the loop_end to set a pseudo's final value,
6229 and hence this insn will never be the last use of x. */
6230 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6231 && INSN_UID (insn) < max_uid_for_loop
6232 && uid_luid[regno_last_uid[REGNO (x)]] < uid_luid[INSN_UID (insn)])
6233 regno_last_uid[REGNO (x)] = INSN_UID (insn);
6234 else
6235 {
6236 register int i, j;
6237 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6238 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6239 {
6240 if (fmt[i] == 'e')
6241 update_reg_last_use (XEXP (x, i), insn);
6242 else if (fmt[i] == 'E')
6243 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6244 update_reg_last_use (XVECEXP (x, i, j), insn);
6245 }
6246 }
6247}
6248\f
6249/* Given a jump insn JUMP, return the condition that will cause it to branch
6250 to its JUMP_LABEL. If the condition cannot be understood, or is an
6251 inequality floating-point comparison which needs to be reversed, 0 will
6252 be returned.
6253
6254 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6255 insn used in locating the condition was found. If a replacement test
6256 of the condition is desired, it should be placed in front of that
6257 insn and we will be sure that the inputs are still valid.
6258
6259 The condition will be returned in a canonical form to simplify testing by
6260 callers. Specifically:
6261
6262 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6263 (2) Both operands will be machine operands; (cc0) will have been replaced.
6264 (3) If an operand is a constant, it will be the second operand.
6265 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6266 for GE, GEU, and LEU. */
6267
6268rtx
6269get_condition (jump, earliest)
6270 rtx jump;
6271 rtx *earliest;
6272{
6273 enum rtx_code code;
6274 rtx prev = jump;
6275 rtx set;
6276 rtx tem;
6277 rtx op0, op1;
6278 int reverse_code = 0;
6279 int did_reverse_condition = 0;
6280
6281 /* If this is not a standard conditional jump, we can't parse it. */
6282 if (GET_CODE (jump) != JUMP_INSN
6283 || ! condjump_p (jump) || simplejump_p (jump))
6284 return 0;
6285
6286 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6287 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6288 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6289
6290 if (earliest)
6291 *earliest = jump;
6292
6293 /* If this branches to JUMP_LABEL when the condition is false, reverse
6294 the condition. */
6295 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6296 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6297 code = reverse_condition (code), did_reverse_condition ^= 1;
6298
6299 /* If we are comparing a register with zero, see if the register is set
6300 in the previous insn to a COMPARE or a comparison operation. Perform
6301 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6302 in cse.c */
6303
6304 while (GET_RTX_CLASS (code) == '<' && op1 == const0_rtx)
6305 {
6306 /* Set non-zero when we find something of interest. */
6307 rtx x = 0;
6308
6309#ifdef HAVE_cc0
6310 /* If comparison with cc0, import actual comparison from compare
6311 insn. */
6312 if (op0 == cc0_rtx)
6313 {
6314 if ((prev = prev_nonnote_insn (prev)) == 0
6315 || GET_CODE (prev) != INSN
6316 || (set = single_set (prev)) == 0
6317 || SET_DEST (set) != cc0_rtx)
6318 return 0;
6319
6320 op0 = SET_SRC (set);
6321 op1 = CONST0_RTX (GET_MODE (op0));
6322 if (earliest)
6323 *earliest = prev;
6324 }
6325#endif
6326
6327 /* If this is a COMPARE, pick up the two things being compared. */
6328 if (GET_CODE (op0) == COMPARE)
6329 {
6330 op1 = XEXP (op0, 1);
6331 op0 = XEXP (op0, 0);
6332 continue;
6333 }
6334 else if (GET_CODE (op0) != REG)
6335 break;
6336
6337 /* Go back to the previous insn. Stop if it is not an INSN. We also
6338 stop if it isn't a single set or if it has a REG_INC note because
6339 we don't want to bother dealing with it. */
6340
6341 if ((prev = prev_nonnote_insn (prev)) == 0
6342 || GET_CODE (prev) != INSN
6343 || FIND_REG_INC_NOTE (prev, 0)
6344 || (set = single_set (prev)) == 0)
6345 break;
6346
6347 /* If this is setting OP0, get what it sets it to if it looks
6348 relevant. */
6349 if (SET_DEST (set) == op0)
6350 {
6351 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6352
6353 if ((GET_CODE (SET_SRC (set)) == COMPARE
6354 || (((code == NE
6355 || (code == LT
6356 && GET_MODE_CLASS (inner_mode) == MODE_INT
6357 && (GET_MODE_BITSIZE (inner_mode)
6358 <= HOST_BITS_PER_WIDE_INT)
6359 && (STORE_FLAG_VALUE
6360 & ((HOST_WIDE_INT) 1
6361 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6362#ifdef FLOAT_STORE_FLAG_VALUE
6363 || (code == LT
6364 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6365 && FLOAT_STORE_FLAG_VALUE < 0)
6366#endif
6367 ))
6368 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6369 x = SET_SRC (set);
6370 else if (((code == EQ
6371 || (code == GE
6372 && (GET_MODE_BITSIZE (inner_mode)
6373 <= HOST_BITS_PER_WIDE_INT)
6374 && GET_MODE_CLASS (inner_mode) == MODE_INT
6375 && (STORE_FLAG_VALUE
6376 & ((HOST_WIDE_INT) 1
6377 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6378#ifdef FLOAT_STORE_FLAG_VALUE
6379 || (code == GE
6380 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6381 && FLOAT_STORE_FLAG_VALUE < 0)
6382#endif
6383 ))
6384 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6385 {
6386 /* We might have reversed a LT to get a GE here. But this wasn't
6387 actually the comparison of data, so we don't flag that we
6388 have had to reverse the condition. */
6389 did_reverse_condition ^= 1;
6390 reverse_code = 1;
6391 x = SET_SRC (set);
6392 }
6393 }
6394
6395 else if (reg_set_p (op0, prev))
6396 /* If this sets OP0, but not directly, we have to give up. */
6397 break;
6398
6399 if (x)
6400 {
6401 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6402 code = GET_CODE (x);
6403 if (reverse_code)
6404 {
6405 code = reverse_condition (code);
6406 did_reverse_condition ^= 1;
6407 reverse_code = 0;
6408 }
6409
6410 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6411 if (earliest)
6412 *earliest = prev;
6413 }
6414 }
6415
6416 /* If constant is first, put it last. */
6417 if (CONSTANT_P (op0))
6418 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6419
6420 /* If OP0 is the result of a comparison, we weren't able to find what
6421 was really being compared, so fail. */
6422 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6423 return 0;
6424
6425 /* Canonicalize any ordered comparison with integers involving equality
6426 if we can do computations in the relevant mode and we do not
6427 overflow. */
6428
6429 if (GET_CODE (op1) == CONST_INT
6430 && GET_MODE (op0) != VOIDmode
6431 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
6432 {
6433 HOST_WIDE_INT const_val = INTVAL (op1);
6434 unsigned HOST_WIDE_INT uconst_val = const_val;
6435 unsigned HOST_WIDE_INT max_val
6436 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
6437
6438 switch (code)
6439 {
6440 case LE:
6441 if (const_val != max_val >> 1)
6442 code = LT, op1 = GEN_INT (const_val + 1);
6443 break;
6444
6445 case GE:
6446 if (const_val
6447 != (((HOST_WIDE_INT) 1
6448 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
6449 code = GT, op1 = GEN_INT (const_val - 1);
6450 break;
6451
6452 case LEU:
6453 if (uconst_val != max_val)
6454 code = LTU, op1 = GEN_INT (uconst_val + 1);
6455 break;
6456
6457 case GEU:
6458 if (uconst_val != 0)
6459 code = GTU, op1 = GEN_INT (uconst_val - 1);
6460 break;
6461 }
6462 }
6463
6464 /* If this was floating-point and we reversed anything other than an
6465 EQ or NE, return zero. */
6466 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
6467 && did_reverse_condition && code != NE && code != EQ
6468 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
6469 return 0;
6470
6471#ifdef HAVE_cc0
6472 /* Never return CC0; return zero instead. */
6473 if (op0 == cc0_rtx)
6474 return 0;
6475#endif
6476
6477 return gen_rtx (code, VOIDmode, op0, op1);
6478}
6479
6480/* Similar to above routine, except that we also put an invariant last
6481 unless both operands are invariants. */
6482
6483rtx
6484get_condition_for_loop (x)
6485 rtx x;
6486{
6487 rtx comparison = get_condition (x, NULL_PTR);
6488
6489 if (comparison == 0
6490 || ! invariant_p (XEXP (comparison, 0))
6491 || invariant_p (XEXP (comparison, 1)))
6492 return comparison;
6493
6494 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
6495 XEXP (comparison, 1), XEXP (comparison, 0));
6496}