Oh GACK! src-clean doesn't quite work that easily since cleandist rebuilds the
[unix-history] / gnu / usr.bin / cc / common / loop.c
CommitLineData
9bf86ebb
PR
1/* Move constant computations out of loops.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This is the loop optimization pass of the compiler.
22 It finds invariant computations within loops and moves them
23 to the beginning of the loop. Then it identifies basic and
24 general induction variables. Strength reduction is applied to the general
25 induction variables, and induction variable elimination is applied to
26 the basic induction variables.
27
28 It also finds cases where
29 a register is set within the loop by zero-extending a narrower value
30 and changes these to zero the entire register once before the loop
31 and merely copy the low part within the loop.
32
33 Most of the complexity is in heuristics to decide when it is worth
34 while to do these things. */
35
36#include <stdio.h>
37#include "config.h"
38#include "rtl.h"
39#include "obstack.h"
40#include "expr.h"
41#include "insn-config.h"
42#include "insn-flags.h"
43#include "regs.h"
44#include "hard-reg-set.h"
45#include "recog.h"
46#include "flags.h"
47#include "real.h"
48#include "loop.h"
49
50/* Vector mapping INSN_UIDs to luids.
51 The luids are like uids but increase monotonically always.
52 We use them to see whether a jump comes from outside a given loop. */
53
54int *uid_luid;
55
56/* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
57 number the insn is contained in. */
58
59int *uid_loop_num;
60
61/* 1 + largest uid of any insn. */
62
63int max_uid_for_loop;
64
65/* 1 + luid of last insn. */
66
67static int max_luid;
68
69/* Number of loops detected in current function. Used as index to the
70 next few tables. */
71
72static int max_loop_num;
73
74/* Indexed by loop number, contains the first and last insn of each loop. */
75
76static rtx *loop_number_loop_starts, *loop_number_loop_ends;
77
78/* For each loop, gives the containing loop number, -1 if none. */
79
80int *loop_outer_loop;
81
82/* Indexed by loop number, contains a nonzero value if the "loop" isn't
83 really a loop (an insn outside the loop branches into it). */
84
85static char *loop_invalid;
86
87/* Indexed by loop number, links together all LABEL_REFs which refer to
88 code labels outside the loop. Used by routines that need to know all
89 loop exits, such as final_biv_value and final_giv_value.
90
91 This does not include loop exits due to return instructions. This is
92 because all bivs and givs are pseudos, and hence must be dead after a
93 return, so the presense of a return does not affect any of the
94 optimizations that use this info. It is simpler to just not include return
95 instructions on this list. */
96
97rtx *loop_number_exit_labels;
98
99/* Holds the number of loop iterations. It is zero if the number could not be
100 calculated. Must be unsigned since the number of iterations can
101 be as high as 2^wordsize-1. For loops with a wider iterator, this number
102 will will be zero if the number of loop iterations is too large for an
103 unsigned integer to hold. */
104
105unsigned HOST_WIDE_INT loop_n_iterations;
106
107/* Nonzero if there is a subroutine call in the current loop.
108 (unknown_address_altered is also nonzero in this case.) */
109
110static int loop_has_call;
111
112/* Nonzero if there is a volatile memory reference in the current
113 loop. */
114
115static int loop_has_volatile;
116
117/* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
118 current loop. A continue statement will generate a branch to
119 NEXT_INSN (loop_continue). */
120
121static rtx loop_continue;
122
123/* Indexed by register number, contains the number of times the reg
124 is set during the loop being scanned.
125 During code motion, a negative value indicates a reg that has been
126 made a candidate; in particular -2 means that it is an candidate that
127 we know is equal to a constant and -1 means that it is an candidate
128 not known equal to a constant.
129 After code motion, regs moved have 0 (which is accurate now)
130 while the failed candidates have the original number of times set.
131
132 Therefore, at all times, == 0 indicates an invariant register;
133 < 0 a conditionally invariant one. */
134
135static short *n_times_set;
136
137/* Original value of n_times_set; same except that this value
138 is not set negative for a reg whose sets have been made candidates
139 and not set to 0 for a reg that is moved. */
140
141static short *n_times_used;
142
143/* Index by register number, 1 indicates that the register
144 cannot be moved or strength reduced. */
145
146static char *may_not_optimize;
147
148/* Nonzero means reg N has already been moved out of one loop.
149 This reduces the desire to move it out of another. */
150
151static char *moved_once;
152
153/* Array of MEMs that are stored in this loop. If there are too many to fit
154 here, we just turn on unknown_address_altered. */
155
156#define NUM_STORES 20
157static rtx loop_store_mems[NUM_STORES];
158
159/* Index of first available slot in above array. */
160static int loop_store_mems_idx;
161
162/* Nonzero if we don't know what MEMs were changed in the current loop.
163 This happens if the loop contains a call (in which case `loop_has_call'
164 will also be set) or if we store into more than NUM_STORES MEMs. */
165
166static int unknown_address_altered;
167
168/* Count of movable (i.e. invariant) instructions discovered in the loop. */
169static int num_movables;
170
171/* Count of memory write instructions discovered in the loop. */
172static int num_mem_sets;
173
174/* Number of loops contained within the current one, including itself. */
175static int loops_enclosed;
176
177/* Bound on pseudo register number before loop optimization.
178 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
179int max_reg_before_loop;
180
181/* This obstack is used in product_cheap_p to allocate its rtl. It
182 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
183 If we used the same obstack that it did, we would be deallocating
184 that array. */
185
186static struct obstack temp_obstack;
187
188/* This is where the pointer to the obstack being used for RTL is stored. */
189
190extern struct obstack *rtl_obstack;
191
192#define obstack_chunk_alloc xmalloc
193#define obstack_chunk_free free
194
195extern char *oballoc ();
196\f
197/* During the analysis of a loop, a chain of `struct movable's
198 is made to record all the movable insns found.
199 Then the entire chain can be scanned to decide which to move. */
200
201struct movable
202{
203 rtx insn; /* A movable insn */
204 rtx set_src; /* The expression this reg is set from. */
205 rtx set_dest; /* The destination of this SET. */
206 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
207 of any registers used within the LIBCALL. */
208 int consec; /* Number of consecutive following insns
209 that must be moved with this one. */
210 int regno; /* The register it sets */
211 short lifetime; /* lifetime of that register;
212 may be adjusted when matching movables
213 that load the same value are found. */
214 short savings; /* Number of insns we can move for this reg,
215 including other movables that force this
216 or match this one. */
217 unsigned int cond : 1; /* 1 if only conditionally movable */
218 unsigned int force : 1; /* 1 means MUST move this insn */
219 unsigned int global : 1; /* 1 means reg is live outside this loop */
220 /* If PARTIAL is 1, GLOBAL means something different:
221 that the reg is live outside the range from where it is set
222 to the following label. */
223 unsigned int done : 1; /* 1 inhibits further processing of this */
224
225 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
226 In particular, moving it does not make it
227 invariant. */
228 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
229 load SRC, rather than copying INSN. */
230 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
231 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
232 that we should avoid changing when clearing
233 the rest of the reg. */
234 struct movable *match; /* First entry for same value */
235 struct movable *forces; /* An insn that must be moved if this is */
236 struct movable *next;
237};
238
239FILE *loop_dump_stream;
240
241/* Forward declarations. */
242
243static void find_and_verify_loops ();
244static void mark_loop_jump ();
245static void prescan_loop ();
246static int reg_in_basic_block_p ();
247static int consec_sets_invariant_p ();
248static rtx libcall_other_reg ();
249static int labels_in_range_p ();
250static void count_loop_regs_set ();
251static void note_addr_stored ();
252static int loop_reg_used_before_p ();
253static void scan_loop ();
254static void replace_call_address ();
255static rtx skip_consec_insns ();
256static int libcall_benefit ();
257static void ignore_some_movables ();
258static void force_movables ();
259static void combine_movables ();
260static int rtx_equal_for_loop_p ();
261static void move_movables ();
262static void strength_reduce ();
263static int valid_initial_value_p ();
264static void find_mem_givs ();
265static void record_biv ();
266static void check_final_value ();
267static void record_giv ();
268static void update_giv_derive ();
269static int basic_induction_var ();
270static rtx simplify_giv_expr ();
271static int general_induction_var ();
272static int consec_sets_giv ();
273static int check_dbra_loop ();
274static rtx express_from ();
275static int combine_givs_p ();
276static void combine_givs ();
277static int product_cheap_p ();
278static int maybe_eliminate_biv ();
279static int maybe_eliminate_biv_1 ();
280static int last_use_this_basic_block ();
281static void record_initial ();
282static void update_reg_last_use ();
283\f
284/* Relative gain of eliminating various kinds of operations. */
285int add_cost;
286#if 0
287int shift_cost;
288int mult_cost;
289#endif
290
291/* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
292 copy the value of the strength reduced giv to its original register. */
293int copy_cost;
294
295void
296init_loop ()
297{
298 char *free_point = (char *) oballoc (1);
299 rtx reg = gen_rtx (REG, word_mode, 0);
300 rtx pow2 = GEN_INT (32);
301 rtx lea;
302 int i;
303
304 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
305
306 /* We multiply by 2 to reconcile the difference in scale between
307 these two ways of computing costs. Otherwise the cost of a copy
308 will be far less than the cost of an add. */
309
310 copy_cost = 2 * 2;
311
312 /* Free the objects we just allocated. */
313 obfree (free_point);
314
315 /* Initialize the obstack used for rtl in product_cheap_p. */
316 gcc_obstack_init (&temp_obstack);
317}
318\f
319/* Entry point of this file. Perform loop optimization
320 on the current function. F is the first insn of the function
321 and DUMPFILE is a stream for output of a trace of actions taken
322 (or 0 if none should be output). */
323
324void
325loop_optimize (f, dumpfile)
326 /* f is the first instruction of a chain of insns for one function */
327 rtx f;
328 FILE *dumpfile;
329{
330 register rtx insn;
331 register int i;
332 rtx end;
333 rtx last_insn;
334
335 loop_dump_stream = dumpfile;
336
337 init_recog_no_volatile ();
338 init_alias_analysis ();
339
340 max_reg_before_loop = max_reg_num ();
341
342 moved_once = (char *) alloca (max_reg_before_loop);
343 bzero (moved_once, max_reg_before_loop);
344
345 regs_may_share = 0;
346
347 /* Count the number of loops. */
348
349 max_loop_num = 0;
350 for (insn = f; insn; insn = NEXT_INSN (insn))
351 {
352 if (GET_CODE (insn) == NOTE
353 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
354 max_loop_num++;
355 }
356
357 /* Don't waste time if no loops. */
358 if (max_loop_num == 0)
359 return;
360
361 /* Get size to use for tables indexed by uids.
362 Leave some space for labels allocated by find_and_verify_loops. */
363 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
364
365 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
366 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
367
368 bzero (uid_luid, max_uid_for_loop * sizeof (int));
369 bzero (uid_loop_num, max_uid_for_loop * sizeof (int));
370
371 /* Allocate tables for recording each loop. We set each entry, so they need
372 not be zeroed. */
373 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
374 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
375 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
376 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
377 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
378
379 /* Find and process each loop.
380 First, find them, and record them in order of their beginnings. */
381 find_and_verify_loops (f);
382
383 /* Now find all register lifetimes. This must be done after
384 find_and_verify_loops, because it might reorder the insns in the
385 function. */
386 reg_scan (f, max_reg_num (), 1);
387
388 /* See if we went too far. */
389 if (get_max_uid () > max_uid_for_loop)
390 abort ();
391
392 /* Compute the mapping from uids to luids.
393 LUIDs are numbers assigned to insns, like uids,
394 except that luids increase monotonically through the code.
395 Don't assign luids to line-number NOTEs, so that the distance in luids
396 between two insns is not affected by -g. */
397
398 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
399 {
400 last_insn = insn;
401 if (GET_CODE (insn) != NOTE
402 || NOTE_LINE_NUMBER (insn) <= 0)
403 uid_luid[INSN_UID (insn)] = ++i;
404 else
405 /* Give a line number note the same luid as preceding insn. */
406 uid_luid[INSN_UID (insn)] = i;
407 }
408
409 max_luid = i + 1;
410
411 /* Don't leave gaps in uid_luid for insns that have been
412 deleted. It is possible that the first or last insn
413 using some register has been deleted by cross-jumping.
414 Make sure that uid_luid for that former insn's uid
415 points to the general area where that insn used to be. */
416 for (i = 0; i < max_uid_for_loop; i++)
417 {
418 uid_luid[0] = uid_luid[i];
419 if (uid_luid[0] != 0)
420 break;
421 }
422 for (i = 0; i < max_uid_for_loop; i++)
423 if (uid_luid[i] == 0)
424 uid_luid[i] = uid_luid[i - 1];
425
426 /* Create a mapping from loops to BLOCK tree nodes. */
427 if (flag_unroll_loops && write_symbols != NO_DEBUG)
428 find_loop_tree_blocks ();
429
430 /* Now scan the loops, last ones first, since this means inner ones are done
431 before outer ones. */
432 for (i = max_loop_num-1; i >= 0; i--)
433 if (! loop_invalid[i] && loop_number_loop_ends[i])
434 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
435 max_reg_num ());
436
437 /* If debugging and unrolling loops, we must replicate the tree nodes
438 corresponding to the blocks inside the loop, so that the original one
439 to one mapping will remain. */
440 if (flag_unroll_loops && write_symbols != NO_DEBUG)
441 unroll_block_trees ();
442}
443\f
444/* Optimize one loop whose start is LOOP_START and end is END.
445 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
446 NOTE_INSN_LOOP_END. */
447
448/* ??? Could also move memory writes out of loops if the destination address
449 is invariant, the source is invariant, the memory write is not volatile,
450 and if we can prove that no read inside the loop can read this address
451 before the write occurs. If there is a read of this address after the
452 write, then we can also mark the memory read as invariant. */
453
454static void
455scan_loop (loop_start, end, nregs)
456 rtx loop_start, end;
457 int nregs;
458{
459 register int i;
460 register rtx p;
461 /* 1 if we are scanning insns that could be executed zero times. */
462 int maybe_never = 0;
463 /* 1 if we are scanning insns that might never be executed
464 due to a subroutine call which might exit before they are reached. */
465 int call_passed = 0;
466 /* For a rotated loop that is entered near the bottom,
467 this is the label at the top. Otherwise it is zero. */
468 rtx loop_top = 0;
469 /* Jump insn that enters the loop, or 0 if control drops in. */
470 rtx loop_entry_jump = 0;
471 /* Place in the loop where control enters. */
472 rtx scan_start;
473 /* Number of insns in the loop. */
474 int insn_count;
475 int in_libcall = 0;
476 int tem;
477 rtx temp;
478 /* The SET from an insn, if it is the only SET in the insn. */
479 rtx set, set1;
480 /* Chain describing insns movable in current loop. */
481 struct movable *movables = 0;
482 /* Last element in `movables' -- so we can add elements at the end. */
483 struct movable *last_movable = 0;
484 /* Ratio of extra register life span we can justify
485 for saving an instruction. More if loop doesn't call subroutines
486 since in that case saving an insn makes more difference
487 and more registers are available. */
488 int threshold;
489 /* If we have calls, contains the insn in which a register was used
490 if it was used exactly once; contains const0_rtx if it was used more
491 than once. */
492 rtx *reg_single_usage = 0;
493
494 n_times_set = (short *) alloca (nregs * sizeof (short));
495 n_times_used = (short *) alloca (nregs * sizeof (short));
496 may_not_optimize = (char *) alloca (nregs);
497
498 /* Determine whether this loop starts with a jump down to a test at
499 the end. This will occur for a small number of loops with a test
500 that is too complex to duplicate in front of the loop.
501
502 We search for the first insn or label in the loop, skipping NOTEs.
503 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
504 (because we might have a loop executed only once that contains a
505 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
506 (in case we have a degenerate loop).
507
508 Note that if we mistakenly think that a loop is entered at the top
509 when, in fact, it is entered at the exit test, the only effect will be
510 slightly poorer optimization. Making the opposite error can generate
511 incorrect code. Since very few loops now start with a jump to the
512 exit test, the code here to detect that case is very conservative. */
513
514 for (p = NEXT_INSN (loop_start);
515 p != end
516 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
517 && (GET_CODE (p) != NOTE
518 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
519 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
520 p = NEXT_INSN (p))
521 ;
522
523 scan_start = p;
524
525 /* Set up variables describing this loop. */
526 prescan_loop (loop_start, end);
527 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
528
529 /* If loop has a jump before the first label,
530 the true entry is the target of that jump.
531 Start scan from there.
532 But record in LOOP_TOP the place where the end-test jumps
533 back to so we can scan that after the end of the loop. */
534 if (GET_CODE (p) == JUMP_INSN)
535 {
536 loop_entry_jump = p;
537
538 /* Loop entry must be unconditional jump (and not a RETURN) */
539 if (simplejump_p (p)
540 && JUMP_LABEL (p) != 0
541 /* Check to see whether the jump actually
542 jumps out of the loop (meaning it's no loop).
543 This case can happen for things like
544 do {..} while (0). If this label was generated previously
545 by loop, we can't tell anything about it and have to reject
546 the loop. */
547 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
548 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
549 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
550 {
551 loop_top = next_label (scan_start);
552 scan_start = JUMP_LABEL (p);
553 }
554 }
555
556 /* If SCAN_START was an insn created by loop, we don't know its luid
557 as required by loop_reg_used_before_p. So skip such loops. (This
558 test may never be true, but it's best to play it safe.)
559
560 Also, skip loops where we do not start scanning at a label. This
561 test also rejects loops starting with a JUMP_INSN that failed the
562 test above. */
563
564 if (INSN_UID (scan_start) >= max_uid_for_loop
565 || GET_CODE (scan_start) != CODE_LABEL)
566 {
567 if (loop_dump_stream)
568 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
569 INSN_UID (loop_start), INSN_UID (end));
570 return;
571 }
572
573 /* Count number of times each reg is set during this loop.
574 Set may_not_optimize[I] if it is not safe to move out
575 the setting of register I. If this loop has calls, set
576 reg_single_usage[I]. */
577
578 bzero (n_times_set, nregs * sizeof (short));
579 bzero (may_not_optimize, nregs);
580
581 if (loop_has_call)
582 {
583 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
584 bzero (reg_single_usage, nregs * sizeof (rtx));
585 }
586
587 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
588 may_not_optimize, reg_single_usage, &insn_count, nregs);
589
590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
591 may_not_optimize[i] = 1, n_times_set[i] = 1;
592 bcopy (n_times_set, n_times_used, nregs * sizeof (short));
593
594 if (loop_dump_stream)
595 {
596 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
597 INSN_UID (loop_start), INSN_UID (end), insn_count);
598 if (loop_continue)
599 fprintf (loop_dump_stream, "Continue at insn %d.\n",
600 INSN_UID (loop_continue));
601 }
602
603 /* Scan through the loop finding insns that are safe to move.
604 Set n_times_set negative for the reg being set, so that
605 this reg will be considered invariant for subsequent insns.
606 We consider whether subsequent insns use the reg
607 in deciding whether it is worth actually moving.
608
609 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
610 and therefore it is possible that the insns we are scanning
611 would never be executed. At such times, we must make sure
612 that it is safe to execute the insn once instead of zero times.
613 When MAYBE_NEVER is 0, all insns will be executed at least once
614 so that is not a problem. */
615
616 p = scan_start;
617 while (1)
618 {
619 p = NEXT_INSN (p);
620 /* At end of a straight-in loop, we are done.
621 At end of a loop entered at the bottom, scan the top. */
622 if (p == scan_start)
623 break;
624 if (p == end)
625 {
626 if (loop_top != 0)
627 p = NEXT_INSN (loop_top);
628 else
629 break;
630 if (p == scan_start)
631 break;
632 }
633
634 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
635 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
636 in_libcall = 1;
637 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
638 && find_reg_note (p, REG_RETVAL, NULL_RTX))
639 in_libcall = 0;
640
641 if (GET_CODE (p) == INSN
642 && (set = single_set (p))
643 && GET_CODE (SET_DEST (set)) == REG
644 && ! may_not_optimize[REGNO (SET_DEST (set))])
645 {
646 int tem1 = 0;
647 int tem2 = 0;
648 int move_insn = 0;
649 rtx src = SET_SRC (set);
650 rtx dependencies = 0;
651
652 /* Figure out what to use as a source of this insn. If a REG_EQUIV
653 note is given or if a REG_EQUAL note with a constant operand is
654 specified, use it as the source and mark that we should move
655 this insn by calling emit_move_insn rather that duplicating the
656 insn.
657
658 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
659 is present. */
660 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
661 if (temp)
662 src = XEXP (temp, 0), move_insn = 1;
663 else
664 {
665 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
666 if (temp && CONSTANT_P (XEXP (temp, 0)))
667 src = XEXP (temp, 0), move_insn = 1;
668 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
669 {
670 src = XEXP (temp, 0);
671 /* A libcall block can use regs that don't appear in
672 the equivalent expression. To move the libcall,
673 we must move those regs too. */
674 dependencies = libcall_other_reg (p, src);
675 }
676 }
677
678 /* Don't try to optimize a register that was made
679 by loop-optimization for an inner loop.
680 We don't know its life-span, so we can't compute the benefit. */
681 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
682 ;
683 /* In order to move a register, we need to have one of three cases:
684 (1) it is used only in the same basic block as the set
685 (2) it is not a user variable and it is not used in the
686 exit test (this can cause the variable to be used
687 before it is set just like a user-variable).
688 (3) the set is guaranteed to be executed once the loop starts,
689 and the reg is not used until after that. */
690 else if (! ((! maybe_never
691 && ! loop_reg_used_before_p (set, p, loop_start,
692 scan_start, end))
693 || (! REG_USERVAR_P (SET_DEST (PATTERN (p)))
694 && ! REG_LOOP_TEST_P (SET_DEST (PATTERN (p))))
695 || reg_in_basic_block_p (p, SET_DEST (PATTERN (p)))))
696 ;
697 else if ((tem = invariant_p (src))
698 && (dependencies == 0
699 || (tem2 = invariant_p (dependencies)) != 0)
700 && (n_times_set[REGNO (SET_DEST (set))] == 1
701 || (tem1
702 = consec_sets_invariant_p (SET_DEST (set),
703 n_times_set[REGNO (SET_DEST (set))],
704 p)))
705 /* If the insn can cause a trap (such as divide by zero),
706 can't move it unless it's guaranteed to be executed
707 once loop is entered. Even a function call might
708 prevent the trap insn from being reached
709 (since it might exit!) */
710 && ! ((maybe_never || call_passed)
711 && may_trap_p (src)))
712 {
713 register struct movable *m;
714 register int regno = REGNO (SET_DEST (set));
715
716 /* A potential lossage is where we have a case where two insns
717 can be combined as long as they are both in the loop, but
718 we move one of them outside the loop. For large loops,
719 this can lose. The most common case of this is the address
720 of a function being called.
721
722 Therefore, if this register is marked as being used exactly
723 once if we are in a loop with calls (a "large loop"), see if
724 we can replace the usage of this register with the source
725 of this SET. If we can, delete this insn.
726
727 Don't do this if P has a REG_RETVAL note or if we have
728 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
729
730 if (reg_single_usage && reg_single_usage[regno] != 0
731 && reg_single_usage[regno] != const0_rtx
732 && regno_first_uid[regno] == INSN_UID (p)
733 && (regno_last_uid[regno]
734 == INSN_UID (reg_single_usage[regno]))
735 && n_times_set[REGNO (SET_DEST (set))] == 1
736 && ! side_effects_p (SET_SRC (set))
737 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
738#ifdef SMALL_REGISTER_CLASSES
739 && ! (GET_CODE (SET_SRC (set)) == REG
740 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
741#endif
742 /* This test is not redundant; SET_SRC (set) might be
743 a call-clobbered register and the life of REGNO
744 might span a call. */
745 && ! modified_between_p (SET_SRC (set), p,
746 reg_single_usage[regno])
747 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
748 reg_single_usage[regno]))
749 {
750 /* Replace any usage in a REG_EQUAL note. */
751 REG_NOTES (reg_single_usage[regno])
752 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
753 SET_DEST (set), SET_SRC (set));
754
755 PUT_CODE (p, NOTE);
756 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
757 NOTE_SOURCE_FILE (p) = 0;
758 n_times_set[regno] = 0;
759 continue;
760 }
761
762 m = (struct movable *) alloca (sizeof (struct movable));
763 m->next = 0;
764 m->insn = p;
765 m->set_src = src;
766 m->dependencies = dependencies;
767 m->set_dest = SET_DEST (set);
768 m->force = 0;
769 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
770 m->done = 0;
771 m->forces = 0;
772 m->partial = 0;
773 m->move_insn = move_insn;
774 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
775 m->savemode = VOIDmode;
776 m->regno = regno;
777 /* Set M->cond if either invariant_p or consec_sets_invariant_p
778 returned 2 (only conditionally invariant). */
779 m->cond = ((tem | tem1 | tem2) > 1);
780 m->global = (uid_luid[regno_last_uid[regno]] > INSN_LUID (end)
781 || uid_luid[regno_first_uid[regno]] < INSN_LUID (loop_start));
782 m->match = 0;
783 m->lifetime = (uid_luid[regno_last_uid[regno]]
784 - uid_luid[regno_first_uid[regno]]);
785 m->savings = n_times_used[regno];
786 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
787 m->savings += libcall_benefit (p);
788 n_times_set[regno] = move_insn ? -2 : -1;
789 /* Add M to the end of the chain MOVABLES. */
790 if (movables == 0)
791 movables = m;
792 else
793 last_movable->next = m;
794 last_movable = m;
795
796 if (m->consec > 0)
797 {
798 /* Skip this insn, not checking REG_LIBCALL notes. */
799 p = NEXT_INSN (p);
800 /* Skip the consecutive insns, if there are any. */
801 p = skip_consec_insns (p, m->consec);
802 /* Back up to the last insn of the consecutive group. */
803 p = prev_nonnote_insn (p);
804
805 /* We must now reset m->move_insn, m->is_equiv, and possibly
806 m->set_src to correspond to the effects of all the
807 insns. */
808 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
809 if (temp)
810 m->set_src = XEXP (temp, 0), m->move_insn = 1;
811 else
812 {
813 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
814 if (temp && CONSTANT_P (XEXP (temp, 0)))
815 m->set_src = XEXP (temp, 0), m->move_insn = 1;
816 else
817 m->move_insn = 0;
818
819 }
820 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
821 }
822 }
823 /* If this register is always set within a STRICT_LOW_PART
824 or set to zero, then its high bytes are constant.
825 So clear them outside the loop and within the loop
826 just load the low bytes.
827 We must check that the machine has an instruction to do so.
828 Also, if the value loaded into the register
829 depends on the same register, this cannot be done. */
830 else if (SET_SRC (set) == const0_rtx
831 && GET_CODE (NEXT_INSN (p)) == INSN
832 && (set1 = single_set (NEXT_INSN (p)))
833 && GET_CODE (set1) == SET
834 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
835 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
836 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
837 == SET_DEST (set))
838 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
839 {
840 register int regno = REGNO (SET_DEST (set));
841 if (n_times_set[regno] == 2)
842 {
843 register struct movable *m;
844 m = (struct movable *) alloca (sizeof (struct movable));
845 m->next = 0;
846 m->insn = p;
847 m->set_dest = SET_DEST (set);
848 m->dependencies = 0;
849 m->force = 0;
850 m->consec = 0;
851 m->done = 0;
852 m->forces = 0;
853 m->move_insn = 0;
854 m->partial = 1;
855 /* If the insn may not be executed on some cycles,
856 we can't clear the whole reg; clear just high part.
857 Not even if the reg is used only within this loop.
858 Consider this:
859 while (1)
860 while (s != t) {
861 if (foo ()) x = *s;
862 use (x);
863 }
864 Clearing x before the inner loop could clobber a value
865 being saved from the last time around the outer loop.
866 However, if the reg is not used outside this loop
867 and all uses of the register are in the same
868 basic block as the store, there is no problem.
869
870 If this insn was made by loop, we don't know its
871 INSN_LUID and hence must make a conservative
872 assumption. */
873 m->global = (INSN_UID (p) >= max_uid_for_loop
874 || (uid_luid[regno_last_uid[regno]]
875 > INSN_LUID (end))
876 || (uid_luid[regno_first_uid[regno]]
877 < INSN_LUID (p))
878 || (labels_in_range_p
879 (p, uid_luid[regno_first_uid[regno]])));
880 if (maybe_never && m->global)
881 m->savemode = GET_MODE (SET_SRC (set1));
882 else
883 m->savemode = VOIDmode;
884 m->regno = regno;
885 m->cond = 0;
886 m->match = 0;
887 m->lifetime = (uid_luid[regno_last_uid[regno]]
888 - uid_luid[regno_first_uid[regno]]);
889 m->savings = 1;
890 n_times_set[regno] = -1;
891 /* Add M to the end of the chain MOVABLES. */
892 if (movables == 0)
893 movables = m;
894 else
895 last_movable->next = m;
896 last_movable = m;
897 }
898 }
899 }
900 /* Past a call insn, we get to insns which might not be executed
901 because the call might exit. This matters for insns that trap.
902 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
903 so they don't count. */
904 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
905 call_passed = 1;
906 /* Past a label or a jump, we get to insns for which we
907 can't count on whether or how many times they will be
908 executed during each iteration. Therefore, we can
909 only move out sets of trivial variables
910 (those not used after the loop). */
911 /* This code appears in three places, once in scan_loop, and twice
912 in strength_reduce. */
913 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
914 /* If we enter the loop in the middle, and scan around to the
915 beginning, don't set maybe_never for that. This must be an
916 unconditional jump, otherwise the code at the top of the
917 loop might never be executed. Unconditional jumps are
918 followed a by barrier then loop end. */
919 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
920 && NEXT_INSN (NEXT_INSN (p)) == end
921 && simplejump_p (p)))
922 maybe_never = 1;
923 /* At the virtual top of a converted loop, insns are again known to
924 be executed: logically, the loop begins here even though the exit
925 code has been duplicated. */
926 else if (GET_CODE (p) == NOTE
927 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
928 maybe_never = call_passed = 0;
929 }
930
931 /* If one movable subsumes another, ignore that other. */
932
933 ignore_some_movables (movables);
934
935 /* For each movable insn, see if the reg that it loads
936 leads when it dies right into another conditionally movable insn.
937 If so, record that the second insn "forces" the first one,
938 since the second can be moved only if the first is. */
939
940 force_movables (movables);
941
942 /* See if there are multiple movable insns that load the same value.
943 If there are, make all but the first point at the first one
944 through the `match' field, and add the priorities of them
945 all together as the priority of the first. */
946
947 combine_movables (movables, nregs);
948
949 /* Now consider each movable insn to decide whether it is worth moving.
950 Store 0 in n_times_set for each reg that is moved. */
951
952 move_movables (movables, threshold,
953 insn_count, loop_start, end, nregs);
954
955 /* Now candidates that still are negative are those not moved.
956 Change n_times_set to indicate that those are not actually invariant. */
957 for (i = 0; i < nregs; i++)
958 if (n_times_set[i] < 0)
959 n_times_set[i] = n_times_used[i];
960
961 if (flag_strength_reduce)
962 strength_reduce (scan_start, end, loop_top,
963 insn_count, loop_start, end);
964}
965\f
966/* Add elements to *OUTPUT to record all the pseudo-regs
967 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
968
969void
970record_excess_regs (in_this, not_in_this, output)
971 rtx in_this, not_in_this;
972 rtx *output;
973{
974 enum rtx_code code;
975 char *fmt;
976 int i;
977
978 code = GET_CODE (in_this);
979
980 switch (code)
981 {
982 case PC:
983 case CC0:
984 case CONST_INT:
985 case CONST_DOUBLE:
986 case CONST:
987 case SYMBOL_REF:
988 case LABEL_REF:
989 return;
990
991 case REG:
992 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
993 && ! reg_mentioned_p (in_this, not_in_this))
994 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
995 return;
996 }
997
998 fmt = GET_RTX_FORMAT (code);
999 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1000 {
1001 int j;
1002
1003 switch (fmt[i])
1004 {
1005 case 'E':
1006 for (j = 0; j < XVECLEN (in_this, i); j++)
1007 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1008 break;
1009
1010 case 'e':
1011 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1012 break;
1013 }
1014 }
1015}
1016\f
1017/* Check what regs are referred to in the libcall block ending with INSN,
1018 aside from those mentioned in the equivalent value.
1019 If there are none, return 0.
1020 If there are one or more, return an EXPR_LIST containing all of them. */
1021
1022static rtx
1023libcall_other_reg (insn, equiv)
1024 rtx insn, equiv;
1025{
1026 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1027 rtx p = XEXP (note, 0);
1028 rtx output = 0;
1029
1030 /* First, find all the regs used in the libcall block
1031 that are not mentioned as inputs to the result. */
1032
1033 while (p != insn)
1034 {
1035 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1036 || GET_CODE (p) == CALL_INSN)
1037 record_excess_regs (PATTERN (p), equiv, &output);
1038 p = NEXT_INSN (p);
1039 }
1040
1041 return output;
1042}
1043\f
1044/* Return 1 if all uses of REG
1045 are between INSN and the end of the basic block. */
1046
1047static int
1048reg_in_basic_block_p (insn, reg)
1049 rtx insn, reg;
1050{
1051 int regno = REGNO (reg);
1052 rtx p;
1053
1054 if (regno_first_uid[regno] != INSN_UID (insn))
1055 return 0;
1056
1057 /* Search this basic block for the already recorded last use of the reg. */
1058 for (p = insn; p; p = NEXT_INSN (p))
1059 {
1060 switch (GET_CODE (p))
1061 {
1062 case NOTE:
1063 break;
1064
1065 case INSN:
1066 case CALL_INSN:
1067 /* Ordinary insn: if this is the last use, we win. */
1068 if (regno_last_uid[regno] == INSN_UID (p))
1069 return 1;
1070 break;
1071
1072 case JUMP_INSN:
1073 /* Jump insn: if this is the last use, we win. */
1074 if (regno_last_uid[regno] == INSN_UID (p))
1075 return 1;
1076 /* Otherwise, it's the end of the basic block, so we lose. */
1077 return 0;
1078
1079 case CODE_LABEL:
1080 case BARRIER:
1081 /* It's the end of the basic block, so we lose. */
1082 return 0;
1083 }
1084 }
1085
1086 /* The "last use" doesn't follow the "first use"?? */
1087 abort ();
1088}
1089\f
1090/* Compute the benefit of eliminating the insns in the block whose
1091 last insn is LAST. This may be a group of insns used to compute a
1092 value directly or can contain a library call. */
1093
1094static int
1095libcall_benefit (last)
1096 rtx last;
1097{
1098 rtx insn;
1099 int benefit = 0;
1100
1101 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1102 insn != last; insn = NEXT_INSN (insn))
1103 {
1104 if (GET_CODE (insn) == CALL_INSN)
1105 benefit += 10; /* Assume at least this many insns in a library
1106 routine. */
1107 else if (GET_CODE (insn) == INSN
1108 && GET_CODE (PATTERN (insn)) != USE
1109 && GET_CODE (PATTERN (insn)) != CLOBBER)
1110 benefit++;
1111 }
1112
1113 return benefit;
1114}
1115\f
1116/* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1117
1118static rtx
1119skip_consec_insns (insn, count)
1120 rtx insn;
1121 int count;
1122{
1123 for (; count > 0; count--)
1124 {
1125 rtx temp;
1126
1127 /* If first insn of libcall sequence, skip to end. */
1128 /* Do this at start of loop, since INSN is guaranteed to
1129 be an insn here. */
1130 if (GET_CODE (insn) != NOTE
1131 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1132 insn = XEXP (temp, 0);
1133
1134 do insn = NEXT_INSN (insn);
1135 while (GET_CODE (insn) == NOTE);
1136 }
1137
1138 return insn;
1139}
1140
1141/* Ignore any movable whose insn falls within a libcall
1142 which is part of another movable.
1143 We make use of the fact that the movable for the libcall value
1144 was made later and so appears later on the chain. */
1145
1146static void
1147ignore_some_movables (movables)
1148 struct movable *movables;
1149{
1150 register struct movable *m, *m1;
1151
1152 for (m = movables; m; m = m->next)
1153 {
1154 /* Is this a movable for the value of a libcall? */
1155 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1156 if (note)
1157 {
1158 rtx insn;
1159 /* Check for earlier movables inside that range,
1160 and mark them invalid. We cannot use LUIDs here because
1161 insns created by loop.c for prior loops don't have LUIDs.
1162 Rather than reject all such insns from movables, we just
1163 explicitly check each insn in the libcall (since invariant
1164 libcalls aren't that common). */
1165 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1166 for (m1 = movables; m1 != m; m1 = m1->next)
1167 if (m1->insn == insn)
1168 m1->done = 1;
1169 }
1170 }
1171}
1172
1173/* For each movable insn, see if the reg that it loads
1174 leads when it dies right into another conditionally movable insn.
1175 If so, record that the second insn "forces" the first one,
1176 since the second can be moved only if the first is. */
1177
1178static void
1179force_movables (movables)
1180 struct movable *movables;
1181{
1182 register struct movable *m, *m1;
1183 for (m1 = movables; m1; m1 = m1->next)
1184 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1185 if (!m1->partial && !m1->done)
1186 {
1187 int regno = m1->regno;
1188 for (m = m1->next; m; m = m->next)
1189 /* ??? Could this be a bug? What if CSE caused the
1190 register of M1 to be used after this insn?
1191 Since CSE does not update regno_last_uid,
1192 this insn M->insn might not be where it dies.
1193 But very likely this doesn't matter; what matters is
1194 that M's reg is computed from M1's reg. */
1195 if (INSN_UID (m->insn) == regno_last_uid[regno]
1196 && !m->done)
1197 break;
1198 if (m != 0 && m->set_src == m1->set_dest
1199 /* If m->consec, m->set_src isn't valid. */
1200 && m->consec == 0)
1201 m = 0;
1202
1203 /* Increase the priority of the moving the first insn
1204 since it permits the second to be moved as well. */
1205 if (m != 0)
1206 {
1207 m->forces = m1;
1208 m1->lifetime += m->lifetime;
1209 m1->savings += m1->savings;
1210 }
1211 }
1212}
1213\f
1214/* Find invariant expressions that are equal and can be combined into
1215 one register. */
1216
1217static void
1218combine_movables (movables, nregs)
1219 struct movable *movables;
1220 int nregs;
1221{
1222 register struct movable *m;
1223 char *matched_regs = (char *) alloca (nregs);
1224 enum machine_mode mode;
1225
1226 /* Regs that are set more than once are not allowed to match
1227 or be matched. I'm no longer sure why not. */
1228 /* Perhaps testing m->consec_sets would be more appropriate here? */
1229
1230 for (m = movables; m; m = m->next)
1231 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1232 {
1233 register struct movable *m1;
1234 int regno = m->regno;
1235 rtx reg_note, reg_note1;
1236
1237 bzero (matched_regs, nregs);
1238 matched_regs[regno] = 1;
1239
1240 for (m1 = movables; m1; m1 = m1->next)
1241 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1242 /* A reg used outside the loop mustn't be eliminated. */
1243 && !m1->global
1244 /* A reg used for zero-extending mustn't be eliminated. */
1245 && !m1->partial
1246 && (matched_regs[m1->regno]
1247 ||
1248 (
1249 /* Can combine regs with different modes loaded from the
1250 same constant only if the modes are the same or
1251 if both are integer modes with M wider or the same
1252 width as M1. The check for integer is redundant, but
1253 safe, since the only case of differing destination
1254 modes with equal sources is when both sources are
1255 VOIDmode, i.e., CONST_INT. */
1256 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1257 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1258 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1259 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1260 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1261 /* See if the source of M1 says it matches M. */
1262 && ((GET_CODE (m1->set_src) == REG
1263 && matched_regs[REGNO (m1->set_src)])
1264 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1265 movables))))
1266 && ((m->dependencies == m1->dependencies)
1267 || rtx_equal_p (m->dependencies, m1->dependencies)))
1268 {
1269 m->lifetime += m1->lifetime;
1270 m->savings += m1->savings;
1271 m1->done = 1;
1272 m1->match = m;
1273 matched_regs[m1->regno] = 1;
1274 }
1275 }
1276
1277 /* Now combine the regs used for zero-extension.
1278 This can be done for those not marked `global'
1279 provided their lives don't overlap. */
1280
1281 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1282 mode = GET_MODE_WIDER_MODE (mode))
1283 {
1284 register struct movable *m0 = 0;
1285
1286 /* Combine all the registers for extension from mode MODE.
1287 Don't combine any that are used outside this loop. */
1288 for (m = movables; m; m = m->next)
1289 if (m->partial && ! m->global
1290 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1291 {
1292 register struct movable *m1;
1293 int first = uid_luid[regno_first_uid[m->regno]];
1294 int last = uid_luid[regno_last_uid[m->regno]];
1295
1296 if (m0 == 0)
1297 {
1298 /* First one: don't check for overlap, just record it. */
1299 m0 = m;
1300 continue;
1301 }
1302
1303 /* Make sure they extend to the same mode.
1304 (Almost always true.) */
1305 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1306 continue;
1307
1308 /* We already have one: check for overlap with those
1309 already combined together. */
1310 for (m1 = movables; m1 != m; m1 = m1->next)
1311 if (m1 == m0 || (m1->partial && m1->match == m0))
1312 if (! (uid_luid[regno_first_uid[m1->regno]] > last
1313 || uid_luid[regno_last_uid[m1->regno]] < first))
1314 goto overlap;
1315
1316 /* No overlap: we can combine this with the others. */
1317 m0->lifetime += m->lifetime;
1318 m0->savings += m->savings;
1319 m->done = 1;
1320 m->match = m0;
1321
1322 overlap: ;
1323 }
1324 }
1325}
1326\f
1327/* Return 1 if regs X and Y will become the same if moved. */
1328
1329static int
1330regs_match_p (x, y, movables)
1331 rtx x, y;
1332 struct movable *movables;
1333{
1334 int xn = REGNO (x);
1335 int yn = REGNO (y);
1336 struct movable *mx, *my;
1337
1338 for (mx = movables; mx; mx = mx->next)
1339 if (mx->regno == xn)
1340 break;
1341
1342 for (my = movables; my; my = my->next)
1343 if (my->regno == yn)
1344 break;
1345
1346 return (mx && my
1347 && ((mx->match == my->match && mx->match != 0)
1348 || mx->match == my
1349 || mx == my->match));
1350}
1351
1352/* Return 1 if X and Y are identical-looking rtx's.
1353 This is the Lisp function EQUAL for rtx arguments.
1354
1355 If two registers are matching movables or a movable register and an
1356 equivalent constant, consider them equal. */
1357
1358static int
1359rtx_equal_for_loop_p (x, y, movables)
1360 rtx x, y;
1361 struct movable *movables;
1362{
1363 register int i;
1364 register int j;
1365 register struct movable *m;
1366 register enum rtx_code code;
1367 register char *fmt;
1368
1369 if (x == y)
1370 return 1;
1371 if (x == 0 || y == 0)
1372 return 0;
1373
1374 code = GET_CODE (x);
1375
1376 /* If we have a register and a constant, they may sometimes be
1377 equal. */
1378 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1379 && CONSTANT_P (y))
1380 for (m = movables; m; m = m->next)
1381 if (m->move_insn && m->regno == REGNO (x)
1382 && rtx_equal_p (m->set_src, y))
1383 return 1;
1384
1385 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1386 && CONSTANT_P (x))
1387 for (m = movables; m; m = m->next)
1388 if (m->move_insn && m->regno == REGNO (y)
1389 && rtx_equal_p (m->set_src, x))
1390 return 1;
1391
1392 /* Otherwise, rtx's of different codes cannot be equal. */
1393 if (code != GET_CODE (y))
1394 return 0;
1395
1396 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1397 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1398
1399 if (GET_MODE (x) != GET_MODE (y))
1400 return 0;
1401
1402 /* These three types of rtx's can be compared nonrecursively. */
1403 if (code == REG)
1404 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1405
1406 if (code == LABEL_REF)
1407 return XEXP (x, 0) == XEXP (y, 0);
1408 if (code == SYMBOL_REF)
1409 return XSTR (x, 0) == XSTR (y, 0);
1410
1411 /* Compare the elements. If any pair of corresponding elements
1412 fail to match, return 0 for the whole things. */
1413
1414 fmt = GET_RTX_FORMAT (code);
1415 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1416 {
1417 switch (fmt[i])
1418 {
1419 case 'w':
1420 if (XWINT (x, i) != XWINT (y, i))
1421 return 0;
1422 break;
1423
1424 case 'i':
1425 if (XINT (x, i) != XINT (y, i))
1426 return 0;
1427 break;
1428
1429 case 'E':
1430 /* Two vectors must have the same length. */
1431 if (XVECLEN (x, i) != XVECLEN (y, i))
1432 return 0;
1433
1434 /* And the corresponding elements must match. */
1435 for (j = 0; j < XVECLEN (x, i); j++)
1436 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1437 return 0;
1438 break;
1439
1440 case 'e':
1441 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1442 return 0;
1443 break;
1444
1445 case 's':
1446 if (strcmp (XSTR (x, i), XSTR (y, i)))
1447 return 0;
1448 break;
1449
1450 case 'u':
1451 /* These are just backpointers, so they don't matter. */
1452 break;
1453
1454 case '0':
1455 break;
1456
1457 /* It is believed that rtx's at this level will never
1458 contain anything but integers and other rtx's,
1459 except for within LABEL_REFs and SYMBOL_REFs. */
1460 default:
1461 abort ();
1462 }
1463 }
1464 return 1;
1465}
1466\f
1467/* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1468 insns in INSNS which use thet reference. */
1469
1470static void
1471add_label_notes (x, insns)
1472 rtx x;
1473 rtx insns;
1474{
1475 enum rtx_code code = GET_CODE (x);
1476 int i, j;
1477 char *fmt;
1478 rtx insn;
1479
1480 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1481 {
1482 rtx next = next_real_insn (XEXP (x, 0));
1483
1484 /* Don't record labels that refer to dispatch tables.
1485 This is not necessary, since the tablejump references the same label.
1486 And if we did record them, flow.c would make worse code. */
1487 if (next == 0
1488 || ! (GET_CODE (next) == JUMP_INSN
1489 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1490 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1491 {
1492 for (insn = insns; insn; insn = NEXT_INSN (insn))
1493 if (reg_mentioned_p (XEXP (x, 0), insn))
1494 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1495 REG_NOTES (insn));
1496 }
1497 return;
1498 }
1499
1500 fmt = GET_RTX_FORMAT (code);
1501 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1502 {
1503 if (fmt[i] == 'e')
1504 add_label_notes (XEXP (x, i), insns);
1505 else if (fmt[i] == 'E')
1506 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1507 add_label_notes (XVECEXP (x, i, j), insns);
1508 }
1509}
1510\f
1511/* Scan MOVABLES, and move the insns that deserve to be moved.
1512 If two matching movables are combined, replace one reg with the
1513 other throughout. */
1514
1515static void
1516move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1517 struct movable *movables;
1518 int threshold;
1519 int insn_count;
1520 rtx loop_start;
1521 rtx end;
1522 int nregs;
1523{
1524 rtx new_start = 0;
1525 register struct movable *m;
1526 register rtx p;
1527 /* Map of pseudo-register replacements to handle combining
1528 when we move several insns that load the same value
1529 into different pseudo-registers. */
1530 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1531 char *already_moved = (char *) alloca (nregs);
1532
1533 bzero (already_moved, nregs);
1534 bzero (reg_map, nregs * sizeof (rtx));
1535
1536 num_movables = 0;
1537
1538 for (m = movables; m; m = m->next)
1539 {
1540 /* Describe this movable insn. */
1541
1542 if (loop_dump_stream)
1543 {
1544 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1545 INSN_UID (m->insn), m->regno, m->lifetime);
1546 if (m->consec > 0)
1547 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1548 if (m->cond)
1549 fprintf (loop_dump_stream, "cond ");
1550 if (m->force)
1551 fprintf (loop_dump_stream, "force ");
1552 if (m->global)
1553 fprintf (loop_dump_stream, "global ");
1554 if (m->done)
1555 fprintf (loop_dump_stream, "done ");
1556 if (m->move_insn)
1557 fprintf (loop_dump_stream, "move-insn ");
1558 if (m->match)
1559 fprintf (loop_dump_stream, "matches %d ",
1560 INSN_UID (m->match->insn));
1561 if (m->forces)
1562 fprintf (loop_dump_stream, "forces %d ",
1563 INSN_UID (m->forces->insn));
1564 }
1565
1566 /* Count movables. Value used in heuristics in strength_reduce. */
1567 num_movables++;
1568
1569 /* Ignore the insn if it's already done (it matched something else).
1570 Otherwise, see if it is now safe to move. */
1571
1572 if (!m->done
1573 && (! m->cond
1574 || (1 == invariant_p (m->set_src)
1575 && (m->dependencies == 0
1576 || 1 == invariant_p (m->dependencies))
1577 && (m->consec == 0
1578 || 1 == consec_sets_invariant_p (m->set_dest,
1579 m->consec + 1,
1580 m->insn))))
1581 && (! m->forces || m->forces->done))
1582 {
1583 register int regno;
1584 register rtx p;
1585 int savings = m->savings;
1586
1587 /* We have an insn that is safe to move.
1588 Compute its desirability. */
1589
1590 p = m->insn;
1591 regno = m->regno;
1592
1593 if (loop_dump_stream)
1594 fprintf (loop_dump_stream, "savings %d ", savings);
1595
1596 if (moved_once[regno])
1597 {
1598 insn_count *= 2;
1599
1600 if (loop_dump_stream)
1601 fprintf (loop_dump_stream, "halved since already moved ");
1602 }
1603
1604 /* An insn MUST be moved if we already moved something else
1605 which is safe only if this one is moved too: that is,
1606 if already_moved[REGNO] is nonzero. */
1607
1608 /* An insn is desirable to move if the new lifetime of the
1609 register is no more than THRESHOLD times the old lifetime.
1610 If it's not desirable, it means the loop is so big
1611 that moving won't speed things up much,
1612 and it is liable to make register usage worse. */
1613
1614 /* It is also desirable to move if it can be moved at no
1615 extra cost because something else was already moved. */
1616
1617 if (already_moved[regno]
1618 || (threshold * savings * m->lifetime) >= insn_count
1619 || (m->forces && m->forces->done
1620 && n_times_used[m->forces->regno] == 1))
1621 {
1622 int count;
1623 register struct movable *m1;
1624 rtx first;
1625
1626 /* Now move the insns that set the reg. */
1627
1628 if (m->partial && m->match)
1629 {
1630 rtx newpat, i1;
1631 rtx r1, r2;
1632 /* Find the end of this chain of matching regs.
1633 Thus, we load each reg in the chain from that one reg.
1634 And that reg is loaded with 0 directly,
1635 since it has ->match == 0. */
1636 for (m1 = m; m1->match; m1 = m1->match);
1637 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1638 SET_DEST (PATTERN (m1->insn)));
1639 i1 = emit_insn_before (newpat, loop_start);
1640
1641 /* Mark the moved, invariant reg as being allowed to
1642 share a hard reg with the other matching invariant. */
1643 REG_NOTES (i1) = REG_NOTES (m->insn);
1644 r1 = SET_DEST (PATTERN (m->insn));
1645 r2 = SET_DEST (PATTERN (m1->insn));
1646 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1647 gen_rtx (EXPR_LIST, VOIDmode, r2,
1648 regs_may_share));
1649 delete_insn (m->insn);
1650
1651 if (new_start == 0)
1652 new_start = i1;
1653
1654 if (loop_dump_stream)
1655 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1656 }
1657 /* If we are to re-generate the item being moved with a
1658 new move insn, first delete what we have and then emit
1659 the move insn before the loop. */
1660 else if (m->move_insn)
1661 {
1662 rtx i1, temp;
1663
1664 for (count = m->consec; count >= 0; count--)
1665 {
1666 /* If this is the first insn of a library call sequence,
1667 skip to the end. */
1668 if (GET_CODE (p) != NOTE
1669 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1670 p = XEXP (temp, 0);
1671
1672 /* If this is the last insn of a libcall sequence, then
1673 delete every insn in the sequence except the last.
1674 The last insn is handled in the normal manner. */
1675 if (GET_CODE (p) != NOTE
1676 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1677 {
1678 temp = XEXP (temp, 0);
1679 while (temp != p)
1680 temp = delete_insn (temp);
1681 }
1682
1683 p = delete_insn (p);
1684 }
1685
1686 start_sequence ();
1687 emit_move_insn (m->set_dest, m->set_src);
1688 temp = get_insns ();
1689 end_sequence ();
1690
1691 add_label_notes (m->set_src, temp);
1692
1693 i1 = emit_insns_before (temp, loop_start);
1694 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1695 REG_NOTES (i1)
1696 = gen_rtx (EXPR_LIST,
1697 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1698 m->set_src, REG_NOTES (i1));
1699
1700 if (loop_dump_stream)
1701 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1702
1703 /* The more regs we move, the less we like moving them. */
1704 threshold -= 3;
1705 }
1706 else
1707 {
1708 for (count = m->consec; count >= 0; count--)
1709 {
1710 rtx i1, temp;
1711
1712 /* If first insn of libcall sequence, skip to end. */
1713 /* Do this at start of loop, since p is guaranteed to
1714 be an insn here. */
1715 if (GET_CODE (p) != NOTE
1716 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1717 p = XEXP (temp, 0);
1718
1719 /* If last insn of libcall sequence, move all
1720 insns except the last before the loop. The last
1721 insn is handled in the normal manner. */
1722 if (GET_CODE (p) != NOTE
1723 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1724 {
1725 rtx fn_address = 0;
1726 rtx fn_reg = 0;
1727 rtx fn_address_insn = 0;
1728
1729 first = 0;
1730 for (temp = XEXP (temp, 0); temp != p;
1731 temp = NEXT_INSN (temp))
1732 {
1733 rtx body;
1734 rtx n;
1735 rtx next;
1736
1737 if (GET_CODE (temp) == NOTE)
1738 continue;
1739
1740 body = PATTERN (temp);
1741
1742 /* Find the next insn after TEMP,
1743 not counting USE or NOTE insns. */
1744 for (next = NEXT_INSN (temp); next != p;
1745 next = NEXT_INSN (next))
1746 if (! (GET_CODE (next) == INSN
1747 && GET_CODE (PATTERN (next)) == USE)
1748 && GET_CODE (next) != NOTE)
1749 break;
1750
1751 /* If that is the call, this may be the insn
1752 that loads the function address.
1753
1754 Extract the function address from the insn
1755 that loads it into a register.
1756 If this insn was cse'd, we get incorrect code.
1757
1758 So emit a new move insn that copies the
1759 function address into the register that the
1760 call insn will use. flow.c will delete any
1761 redundant stores that we have created. */
1762 if (GET_CODE (next) == CALL_INSN
1763 && GET_CODE (body) == SET
1764 && GET_CODE (SET_DEST (body)) == REG
1765 && (n = find_reg_note (temp, REG_EQUAL,
1766 NULL_RTX)))
1767 {
1768 fn_reg = SET_SRC (body);
1769 if (GET_CODE (fn_reg) != REG)
1770 fn_reg = SET_DEST (body);
1771 fn_address = XEXP (n, 0);
1772 fn_address_insn = temp;
1773 }
1774 /* We have the call insn.
1775 If it uses the register we suspect it might,
1776 load it with the correct address directly. */
1777 if (GET_CODE (temp) == CALL_INSN
1778 && fn_address != 0
1779 && reg_referenced_p (fn_reg, body))
1780 emit_insn_after (gen_move_insn (fn_reg,
1781 fn_address),
1782 fn_address_insn);
1783
1784 if (GET_CODE (temp) == CALL_INSN)
1785 i1 = emit_call_insn_before (body, loop_start);
1786 else
1787 i1 = emit_insn_before (body, loop_start);
1788 if (first == 0)
1789 first = i1;
1790 if (temp == fn_address_insn)
1791 fn_address_insn = i1;
1792 REG_NOTES (i1) = REG_NOTES (temp);
1793 delete_insn (temp);
1794 }
1795 }
1796 if (m->savemode != VOIDmode)
1797 {
1798 /* P sets REG to zero; but we should clear only
1799 the bits that are not covered by the mode
1800 m->savemode. */
1801 rtx reg = m->set_dest;
1802 rtx sequence;
1803 rtx tem;
1804
1805 start_sequence ();
1806 tem = expand_binop
1807 (GET_MODE (reg), and_optab, reg,
1808 GEN_INT ((((HOST_WIDE_INT) 1
1809 << GET_MODE_BITSIZE (m->savemode)))
1810 - 1),
1811 reg, 1, OPTAB_LIB_WIDEN);
1812 if (tem == 0)
1813 abort ();
1814 if (tem != reg)
1815 emit_move_insn (reg, tem);
1816 sequence = gen_sequence ();
1817 end_sequence ();
1818 i1 = emit_insn_before (sequence, loop_start);
1819 }
1820 else if (GET_CODE (p) == CALL_INSN)
1821 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1822 else
1823 i1 = emit_insn_before (PATTERN (p), loop_start);
1824
1825 REG_NOTES (i1) = REG_NOTES (p);
1826
2a5f595d
PR
1827 /* If there is a REG_EQUAL note present whose value is
1828 not loop invariant, then delete it, since it may
1829 cause problems with later optimization passes.
1830 It is possible for cse to create such notes
1831 like this as a result of record_jump_cond. */
1832
1833 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1834 && ! invariant_p (XEXP (temp, 0)))
1835 remove_note (i1, temp);
1836
9bf86ebb
PR
1837 if (new_start == 0)
1838 new_start = i1;
1839
1840 if (loop_dump_stream)
1841 fprintf (loop_dump_stream, " moved to %d",
1842 INSN_UID (i1));
1843
1844#if 0
1845 /* This isn't needed because REG_NOTES is copied
1846 below and is wrong since P might be a PARALLEL. */
1847 if (REG_NOTES (i1) == 0
1848 && ! m->partial /* But not if it's a zero-extend clr. */
1849 && ! m->global /* and not if used outside the loop
1850 (since it might get set outside). */
1851 && CONSTANT_P (SET_SRC (PATTERN (p))))
1852 REG_NOTES (i1)
1853 = gen_rtx (EXPR_LIST, REG_EQUAL,
1854 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1855#endif
1856
1857 /* If library call, now fix the REG_NOTES that contain
1858 insn pointers, namely REG_LIBCALL on FIRST
1859 and REG_RETVAL on I1. */
1860 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1861 {
1862 XEXP (temp, 0) = first;
1863 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1864 XEXP (temp, 0) = i1;
1865 }
1866
1867 delete_insn (p);
1868 do p = NEXT_INSN (p);
1869 while (p && GET_CODE (p) == NOTE);
1870 }
1871
1872 /* The more regs we move, the less we like moving them. */
1873 threshold -= 3;
1874 }
1875
1876 /* Any other movable that loads the same register
1877 MUST be moved. */
1878 already_moved[regno] = 1;
1879
1880 /* This reg has been moved out of one loop. */
1881 moved_once[regno] = 1;
1882
1883 /* The reg set here is now invariant. */
1884 if (! m->partial)
1885 n_times_set[regno] = 0;
1886
1887 m->done = 1;
1888
1889 /* Change the length-of-life info for the register
1890 to say it lives at least the full length of this loop.
1891 This will help guide optimizations in outer loops. */
1892
1893 if (uid_luid[regno_first_uid[regno]] > INSN_LUID (loop_start))
1894 /* This is the old insn before all the moved insns.
1895 We can't use the moved insn because it is out of range
1896 in uid_luid. Only the old insns have luids. */
1897 regno_first_uid[regno] = INSN_UID (loop_start);
1898 if (uid_luid[regno_last_uid[regno]] < INSN_LUID (end))
1899 regno_last_uid[regno] = INSN_UID (end);
1900
1901 /* Combine with this moved insn any other matching movables. */
1902
1903 if (! m->partial)
1904 for (m1 = movables; m1; m1 = m1->next)
1905 if (m1->match == m)
1906 {
1907 rtx temp;
1908
1909 /* Schedule the reg loaded by M1
1910 for replacement so that shares the reg of M.
1911 If the modes differ (only possible in restricted
1912 circumstances, make a SUBREG. */
1913 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
1914 reg_map[m1->regno] = m->set_dest;
1915 else
1916 reg_map[m1->regno]
1917 = gen_lowpart_common (GET_MODE (m1->set_dest),
1918 m->set_dest);
1919
1920 /* Get rid of the matching insn
1921 and prevent further processing of it. */
1922 m1->done = 1;
1923
1924 /* if library call, delete all insn except last, which
1925 is deleted below */
1926 if (temp = find_reg_note (m1->insn, REG_RETVAL,
1927 NULL_RTX))
1928 {
1929 for (temp = XEXP (temp, 0); temp != m1->insn;
1930 temp = NEXT_INSN (temp))
1931 delete_insn (temp);
1932 }
1933 delete_insn (m1->insn);
1934
1935 /* Any other movable that loads the same register
1936 MUST be moved. */
1937 already_moved[m1->regno] = 1;
1938
1939 /* The reg merged here is now invariant,
1940 if the reg it matches is invariant. */
1941 if (! m->partial)
1942 n_times_set[m1->regno] = 0;
1943 }
1944 }
1945 else if (loop_dump_stream)
1946 fprintf (loop_dump_stream, "not desirable");
1947 }
1948 else if (loop_dump_stream && !m->match)
1949 fprintf (loop_dump_stream, "not safe");
1950
1951 if (loop_dump_stream)
1952 fprintf (loop_dump_stream, "\n");
1953 }
1954
1955 if (new_start == 0)
1956 new_start = loop_start;
1957
1958 /* Go through all the instructions in the loop, making
1959 all the register substitutions scheduled in REG_MAP. */
1960 for (p = new_start; p != end; p = NEXT_INSN (p))
1961 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1962 || GET_CODE (p) == CALL_INSN)
1963 {
1964 replace_regs (PATTERN (p), reg_map, nregs, 0);
1965 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
1966 INSN_CODE (p) = -1;
1967 }
1968}
1969\f
1970#if 0
1971/* Scan X and replace the address of any MEM in it with ADDR.
1972 REG is the address that MEM should have before the replacement. */
1973
1974static void
1975replace_call_address (x, reg, addr)
1976 rtx x, reg, addr;
1977{
1978 register enum rtx_code code;
1979 register int i;
1980 register char *fmt;
1981
1982 if (x == 0)
1983 return;
1984 code = GET_CODE (x);
1985 switch (code)
1986 {
1987 case PC:
1988 case CC0:
1989 case CONST_INT:
1990 case CONST_DOUBLE:
1991 case CONST:
1992 case SYMBOL_REF:
1993 case LABEL_REF:
1994 case REG:
1995 return;
1996
1997 case SET:
1998 /* Short cut for very common case. */
1999 replace_call_address (XEXP (x, 1), reg, addr);
2000 return;
2001
2002 case CALL:
2003 /* Short cut for very common case. */
2004 replace_call_address (XEXP (x, 0), reg, addr);
2005 return;
2006
2007 case MEM:
2008 /* If this MEM uses a reg other than the one we expected,
2009 something is wrong. */
2010 if (XEXP (x, 0) != reg)
2011 abort ();
2012 XEXP (x, 0) = addr;
2013 return;
2014 }
2015
2016 fmt = GET_RTX_FORMAT (code);
2017 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2018 {
2019 if (fmt[i] == 'e')
2020 replace_call_address (XEXP (x, i), reg, addr);
2021 if (fmt[i] == 'E')
2022 {
2023 register int j;
2024 for (j = 0; j < XVECLEN (x, i); j++)
2025 replace_call_address (XVECEXP (x, i, j), reg, addr);
2026 }
2027 }
2028}
2029#endif
2030\f
2031/* Return the number of memory refs to addresses that vary
2032 in the rtx X. */
2033
2034static int
2035count_nonfixed_reads (x)
2036 rtx x;
2037{
2038 register enum rtx_code code;
2039 register int i;
2040 register char *fmt;
2041 int value;
2042
2043 if (x == 0)
2044 return 0;
2045
2046 code = GET_CODE (x);
2047 switch (code)
2048 {
2049 case PC:
2050 case CC0:
2051 case CONST_INT:
2052 case CONST_DOUBLE:
2053 case CONST:
2054 case SYMBOL_REF:
2055 case LABEL_REF:
2056 case REG:
2057 return 0;
2058
2059 case MEM:
2060 return ((invariant_p (XEXP (x, 0)) != 1)
2061 + count_nonfixed_reads (XEXP (x, 0)));
2062 }
2063
2064 value = 0;
2065 fmt = GET_RTX_FORMAT (code);
2066 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2067 {
2068 if (fmt[i] == 'e')
2069 value += count_nonfixed_reads (XEXP (x, i));
2070 if (fmt[i] == 'E')
2071 {
2072 register int j;
2073 for (j = 0; j < XVECLEN (x, i); j++)
2074 value += count_nonfixed_reads (XVECEXP (x, i, j));
2075 }
2076 }
2077 return value;
2078}
2079
2080\f
2081#if 0
2082/* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2083 Replace it with an instruction to load just the low bytes
2084 if the machine supports such an instruction,
2085 and insert above LOOP_START an instruction to clear the register. */
2086
2087static void
2088constant_high_bytes (p, loop_start)
2089 rtx p, loop_start;
2090{
2091 register rtx new;
2092 register int insn_code_number;
2093
2094 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2095 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2096
2097 new = gen_rtx (SET, VOIDmode,
2098 gen_rtx (STRICT_LOW_PART, VOIDmode,
2099 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2100 SET_DEST (PATTERN (p)),
2101 0)),
2102 XEXP (SET_SRC (PATTERN (p)), 0));
2103 insn_code_number = recog (new, p);
2104
2105 if (insn_code_number)
2106 {
2107 register int i;
2108
2109 /* Clear destination register before the loop. */
2110 emit_insn_before (gen_rtx (SET, VOIDmode,
2111 SET_DEST (PATTERN (p)),
2112 const0_rtx),
2113 loop_start);
2114
2115 /* Inside the loop, just load the low part. */
2116 PATTERN (p) = new;
2117 }
2118}
2119#endif
2120\f
2121/* Scan a loop setting the variables `unknown_address_altered',
2122 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2123 and `loop_has_volatile'.
2124 Also, fill in the array `loop_store_mems'. */
2125
2126static void
2127prescan_loop (start, end)
2128 rtx start, end;
2129{
2130 register int level = 1;
2131 register rtx insn;
2132
2133 unknown_address_altered = 0;
2134 loop_has_call = 0;
2135 loop_has_volatile = 0;
2136 loop_store_mems_idx = 0;
2137
2138 num_mem_sets = 0;
2139 loops_enclosed = 1;
2140 loop_continue = 0;
2141
2142 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2143 insn = NEXT_INSN (insn))
2144 {
2145 if (GET_CODE (insn) == NOTE)
2146 {
2147 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2148 {
2149 ++level;
2150 /* Count number of loops contained in this one. */
2151 loops_enclosed++;
2152 }
2153 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2154 {
2155 --level;
2156 if (level == 0)
2157 {
2158 end = insn;
2159 break;
2160 }
2161 }
2162 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2163 {
2164 if (level == 1)
2165 loop_continue = insn;
2166 }
2167 }
2168 else if (GET_CODE (insn) == CALL_INSN)
2169 {
2170 unknown_address_altered = 1;
2171 loop_has_call = 1;
2172 }
2173 else
2174 {
2175 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2176 {
2177 if (volatile_refs_p (PATTERN (insn)))
2178 loop_has_volatile = 1;
2179
2180 note_stores (PATTERN (insn), note_addr_stored);
2181 }
2182 }
2183 }
2184}
2185\f
2186/* Scan the function looking for loops. Record the start and end of each loop.
2187 Also mark as invalid loops any loops that contain a setjmp or are branched
2188 to from outside the loop. */
2189
2190static void
2191find_and_verify_loops (f)
2192 rtx f;
2193{
2194 rtx insn, label;
2195 int current_loop = -1;
2196 int next_loop = -1;
2197 int loop;
2198
2199 /* If there are jumps to undefined labels,
2200 treat them as jumps out of any/all loops.
2201 This also avoids writing past end of tables when there are no loops. */
2202 uid_loop_num[0] = -1;
2203
2204 /* Find boundaries of loops, mark which loops are contained within
2205 loops, and invalidate loops that have setjmp. */
2206
2207 for (insn = f; insn; insn = NEXT_INSN (insn))
2208 {
2209 if (GET_CODE (insn) == NOTE)
2210 switch (NOTE_LINE_NUMBER (insn))
2211 {
2212 case NOTE_INSN_LOOP_BEG:
2213 loop_number_loop_starts[++next_loop] = insn;
2214 loop_number_loop_ends[next_loop] = 0;
2215 loop_outer_loop[next_loop] = current_loop;
2216 loop_invalid[next_loop] = 0;
2217 loop_number_exit_labels[next_loop] = 0;
2218 current_loop = next_loop;
2219 break;
2220
2221 case NOTE_INSN_SETJMP:
2222 /* In this case, we must invalidate our current loop and any
2223 enclosing loop. */
2224 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2225 {
2226 loop_invalid[loop] = 1;
2227 if (loop_dump_stream)
2228 fprintf (loop_dump_stream,
2229 "\nLoop at %d ignored due to setjmp.\n",
2230 INSN_UID (loop_number_loop_starts[loop]));
2231 }
2232 break;
2233
2234 case NOTE_INSN_LOOP_END:
2235 if (current_loop == -1)
2236 abort ();
2237
2238 loop_number_loop_ends[current_loop] = insn;
2239 current_loop = loop_outer_loop[current_loop];
2240 break;
2241
2242 }
2243
2244 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2245 enclosing loop, but this doesn't matter. */
2246 uid_loop_num[INSN_UID (insn)] = current_loop;
2247 }
2248
2249 /* Any loop containing a label used in an initializer must be invalidated,
2250 because it can be jumped into from anywhere. */
2251
2252 for (label = forced_labels; label; label = XEXP (label, 1))
2253 {
2254 int loop_num;
2255
2256 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2257 loop_num != -1;
2258 loop_num = loop_outer_loop[loop_num])
2259 loop_invalid[loop_num] = 1;
2260 }
2261
2262 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2263 loop that it is not contained within, that loop is marked invalid.
2264 If any INSN or CALL_INSN uses a label's address, then the loop containing
2265 that label is marked invalid, because it could be jumped into from
2266 anywhere.
2267
2268 Also look for blocks of code ending in an unconditional branch that
2269 exits the loop. If such a block is surrounded by a conditional
2270 branch around the block, move the block elsewhere (see below) and
2271 invert the jump to point to the code block. This may eliminate a
2272 label in our loop and will simplify processing by both us and a
2273 possible second cse pass. */
2274
2275 for (insn = f; insn; insn = NEXT_INSN (insn))
2276 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2277 {
2278 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2279
2280 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2281 {
2282 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2283 if (note)
2284 {
2285 int loop_num;
2286
2287 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2288 loop_num != -1;
2289 loop_num = loop_outer_loop[loop_num])
2290 loop_invalid[loop_num] = 1;
2291 }
2292 }
2293
2294 if (GET_CODE (insn) != JUMP_INSN)
2295 continue;
2296
2297 mark_loop_jump (PATTERN (insn), this_loop_num);
2298
2299 /* See if this is an unconditional branch outside the loop. */
2300 if (this_loop_num != -1
2301 && (GET_CODE (PATTERN (insn)) == RETURN
2302 || (simplejump_p (insn)
2303 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2304 != this_loop_num)))
2305 && get_max_uid () < max_uid_for_loop)
2306 {
2307 rtx p;
2308 rtx our_next = next_real_insn (insn);
2309
2310 /* Go backwards until we reach the start of the loop, a label,
2311 or a JUMP_INSN. */
2312 for (p = PREV_INSN (insn);
2313 GET_CODE (p) != CODE_LABEL
2314 && ! (GET_CODE (p) == NOTE
2315 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2316 && GET_CODE (p) != JUMP_INSN;
2317 p = PREV_INSN (p))
2318 ;
2319
2320 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2321 we have a block of code to try to move.
2322
2323 We look backward and then forward from the target of INSN
2324 to find a BARRIER at the same loop depth as the target.
2325 If we find such a BARRIER, we make a new label for the start
2326 of the block, invert the jump in P and point it to that label,
2327 and move the block of code to the spot we found. */
2328
2329 if (GET_CODE (p) == JUMP_INSN
2330 && JUMP_LABEL (p) != 0
2331 /* Just ignore jumps to labels that were never emitted.
2332 These always indicate compilation errors. */
2333 && INSN_UID (JUMP_LABEL (p)) != 0
2334 && condjump_p (p)
2335 && ! simplejump_p (p)
2336 && next_real_insn (JUMP_LABEL (p)) == our_next)
2337 {
2338 rtx target
2339 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2340 int target_loop_num = uid_loop_num[INSN_UID (target)];
2341 rtx loc;
2342
2343 for (loc = target; loc; loc = PREV_INSN (loc))
2344 if (GET_CODE (loc) == BARRIER
2345 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2346 break;
2347
2348 if (loc == 0)
2349 for (loc = target; loc; loc = NEXT_INSN (loc))
2350 if (GET_CODE (loc) == BARRIER
2351 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2352 break;
2353
2354 if (loc)
2355 {
2356 rtx cond_label = JUMP_LABEL (p);
2357 rtx new_label = get_label_after (p);
2358
2359 /* Ensure our label doesn't go away. */
2360 LABEL_NUSES (cond_label)++;
2361
2362 /* Verify that uid_loop_num is large enough and that
2363 we can invert P. */
2364 if (invert_jump (p, new_label))
2365 {
2366 rtx q, r;
2367
2368 /* Include the BARRIER after INSN and copy the
2369 block after LOC. */
2370 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2371 reorder_insns (new_label, NEXT_INSN (insn), loc);
2372
2373 /* All those insns are now in TARGET_LOOP_NUM. */
2374 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2375 q = NEXT_INSN (q))
2376 uid_loop_num[INSN_UID (q)] = target_loop_num;
2377
2378 /* The label jumped to by INSN is no longer a loop exit.
2379 Unless INSN does not have a label (e.g., it is a
2380 RETURN insn), search loop_number_exit_labels to find
2381 its label_ref, and remove it. Also turn off
2382 LABEL_OUTSIDE_LOOP_P bit. */
2383 if (JUMP_LABEL (insn))
2384 {
2385 for (q = 0,
2386 r = loop_number_exit_labels[this_loop_num];
2387 r; q = r, r = LABEL_NEXTREF (r))
2388 if (XEXP (r, 0) == JUMP_LABEL (insn))
2389 {
2390 LABEL_OUTSIDE_LOOP_P (r) = 0;
2391 if (q)
2392 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2393 else
2394 loop_number_exit_labels[this_loop_num]
2395 = LABEL_NEXTREF (r);
2396 break;
2397 }
2398
2399 /* If we didn't find it, then something is wrong. */
2400 if (! r)
2401 abort ();
2402 }
2403
2404 /* P is now a jump outside the loop, so it must be put
2405 in loop_number_exit_labels, and marked as such.
2406 The easiest way to do this is to just call
2407 mark_loop_jump again for P. */
2408 mark_loop_jump (PATTERN (p), this_loop_num);
2409
2410 /* If INSN now jumps to the insn after it,
2411 delete INSN. */
2412 if (JUMP_LABEL (insn) != 0
2413 && (next_real_insn (JUMP_LABEL (insn))
2414 == next_real_insn (insn)))
2415 delete_insn (insn);
2416 }
2417
2418 /* Continue the loop after where the conditional
2419 branch used to jump, since the only branch insn
2420 in the block (if it still remains) is an inter-loop
2421 branch and hence needs no processing. */
2422 insn = NEXT_INSN (cond_label);
2423
2424 if (--LABEL_NUSES (cond_label) == 0)
2425 delete_insn (cond_label);
2426 }
2427 }
2428 }
2429 }
2430}
2431
2432/* If any label in X jumps to a loop different from LOOP_NUM and any of the
2433 loops it is contained in, mark the target loop invalid.
2434
2435 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2436
2437static void
2438mark_loop_jump (x, loop_num)
2439 rtx x;
2440 int loop_num;
2441{
2442 int dest_loop;
2443 int outer_loop;
2444 int i;
2445
2446 switch (GET_CODE (x))
2447 {
2448 case PC:
2449 case USE:
2450 case CLOBBER:
2451 case REG:
2452 case MEM:
2453 case CONST_INT:
2454 case CONST_DOUBLE:
2455 case RETURN:
2456 return;
2457
2458 case CONST:
2459 /* There could be a label reference in here. */
2460 mark_loop_jump (XEXP (x, 0), loop_num);
2461 return;
2462
2463 case PLUS:
2464 case MINUS:
2465 case MULT:
2466 case LSHIFT:
2467 mark_loop_jump (XEXP (x, 0), loop_num);
2468 mark_loop_jump (XEXP (x, 1), loop_num);
2469 return;
2470
2471 case SIGN_EXTEND:
2472 case ZERO_EXTEND:
2473 mark_loop_jump (XEXP (x, 0), loop_num);
2474 return;
2475
2476 case LABEL_REF:
2477 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2478
2479 /* Link together all labels that branch outside the loop. This
2480 is used by final_[bg]iv_value and the loop unrolling code. Also
2481 mark this LABEL_REF so we know that this branch should predict
2482 false. */
2483
2484 if (dest_loop != loop_num && loop_num != -1)
2485 {
2486 LABEL_OUTSIDE_LOOP_P (x) = 1;
2487 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2488 loop_number_exit_labels[loop_num] = x;
2489 }
2490
2491 /* If this is inside a loop, but not in the current loop or one enclosed
2492 by it, it invalidates at least one loop. */
2493
2494 if (dest_loop == -1)
2495 return;
2496
2497 /* We must invalidate every nested loop containing the target of this
2498 label, except those that also contain the jump insn. */
2499
2500 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2501 {
2502 /* Stop when we reach a loop that also contains the jump insn. */
2503 for (outer_loop = loop_num; outer_loop != -1;
2504 outer_loop = loop_outer_loop[outer_loop])
2505 if (dest_loop == outer_loop)
2506 return;
2507
2508 /* If we get here, we know we need to invalidate a loop. */
2509 if (loop_dump_stream && ! loop_invalid[dest_loop])
2510 fprintf (loop_dump_stream,
2511 "\nLoop at %d ignored due to multiple entry points.\n",
2512 INSN_UID (loop_number_loop_starts[dest_loop]));
2513
2514 loop_invalid[dest_loop] = 1;
2515 }
2516 return;
2517
2518 case SET:
2519 /* If this is not setting pc, ignore. */
2520 if (SET_DEST (x) == pc_rtx)
2521 mark_loop_jump (SET_SRC (x), loop_num);
2522 return;
2523
2524 case IF_THEN_ELSE:
2525 mark_loop_jump (XEXP (x, 1), loop_num);
2526 mark_loop_jump (XEXP (x, 2), loop_num);
2527 return;
2528
2529 case PARALLEL:
2530 case ADDR_VEC:
2531 for (i = 0; i < XVECLEN (x, 0); i++)
2532 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2533 return;
2534
2535 case ADDR_DIFF_VEC:
2536 for (i = 0; i < XVECLEN (x, 1); i++)
2537 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2538 return;
2539
2540 default:
2541 /* Nothing else should occur in a JUMP_INSN. */
2542 abort ();
2543 }
2544}
2545\f
2546/* Return nonzero if there is a label in the range from
2547 insn INSN to and including the insn whose luid is END
2548 INSN must have an assigned luid (i.e., it must not have
2549 been previously created by loop.c). */
2550
2551static int
2552labels_in_range_p (insn, end)
2553 rtx insn;
2554 int end;
2555{
2556 while (insn && INSN_LUID (insn) <= end)
2557 {
2558 if (GET_CODE (insn) == CODE_LABEL)
2559 return 1;
2560 insn = NEXT_INSN (insn);
2561 }
2562
2563 return 0;
2564}
2565
2566/* Record that a memory reference X is being set. */
2567
2568static void
2569note_addr_stored (x)
2570 rtx x;
2571{
2572 register int i;
2573
2574 if (x == 0 || GET_CODE (x) != MEM)
2575 return;
2576
2577 /* Count number of memory writes.
2578 This affects heuristics in strength_reduce. */
2579 num_mem_sets++;
2580
2581 if (unknown_address_altered)
2582 return;
2583
2584 for (i = 0; i < loop_store_mems_idx; i++)
2585 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2586 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2587 {
2588 /* We are storing at the same address as previously noted. Save the
2589 wider reference, treating BLKmode as wider. */
2590 if (GET_MODE (x) == BLKmode
2591 || (GET_MODE_SIZE (GET_MODE (x))
2592 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i]))))
2593 loop_store_mems[i] = x;
2594 break;
2595 }
2596
2597 if (i == NUM_STORES)
2598 unknown_address_altered = 1;
2599
2600 else if (i == loop_store_mems_idx)
2601 loop_store_mems[loop_store_mems_idx++] = x;
2602}
2603\f
2604/* Return nonzero if the rtx X is invariant over the current loop.
2605
2606 The value is 2 if we refer to something only conditionally invariant.
2607
2608 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2609 Otherwise, a memory ref is invariant if it does not conflict with
2610 anything stored in `loop_store_mems'. */
2611
2612int
2613invariant_p (x)
2614 register rtx x;
2615{
2616 register int i;
2617 register enum rtx_code code;
2618 register char *fmt;
2619 int conditional = 0;
2620
2621 if (x == 0)
2622 return 1;
2623 code = GET_CODE (x);
2624 switch (code)
2625 {
2626 case CONST_INT:
2627 case CONST_DOUBLE:
2628 case SYMBOL_REF:
2629 case CONST:
2630 return 1;
2631
2632 case LABEL_REF:
2633 /* A LABEL_REF is normally invariant, however, if we are unrolling
2634 loops, and this label is inside the loop, then it isn't invariant.
2635 This is because each unrolled copy of the loop body will have
2636 a copy of this label. If this was invariant, then an insn loading
2637 the address of this label into a register might get moved outside
2638 the loop, and then each loop body would end up using the same label.
2639
2640 We don't know the loop bounds here though, so just fail for all
2641 labels. */
2642 if (flag_unroll_loops)
2643 return 0;
2644 else
2645 return 1;
2646
2647 case PC:
2648 case CC0:
2649 case UNSPEC_VOLATILE:
2650 return 0;
2651
2652 case REG:
2653 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2654 since the reg might be set by initialization within the loop. */
2655 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
2656 return 1;
2657 if (loop_has_call
2658 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2659 return 0;
2660 if (n_times_set[REGNO (x)] < 0)
2661 return 2;
2662 return n_times_set[REGNO (x)] == 0;
2663
2664 case MEM:
2665 /* Read-only items (such as constants in a constant pool) are
2666 invariant if their address is. */
2667 if (RTX_UNCHANGING_P (x))
2668 break;
2669
2670 /* If we filled the table (or had a subroutine call), any location
2671 in memory could have been clobbered. */
2672 if (unknown_address_altered
2673 /* Don't mess with volatile memory references. */
2674 || MEM_VOLATILE_P (x))
2675 return 0;
2676
2677 /* See if there is any dependence between a store and this load. */
2678 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2679 if (true_dependence (loop_store_mems[i], x))
2680 return 0;
2681
2682 /* It's not invalidated by a store in memory
2683 but we must still verify the address is invariant. */
2684 break;
2685
2686 case ASM_OPERANDS:
2687 /* Don't mess with insns declared volatile. */
2688 if (MEM_VOLATILE_P (x))
2689 return 0;
2690 }
2691
2692 fmt = GET_RTX_FORMAT (code);
2693 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2694 {
2695 if (fmt[i] == 'e')
2696 {
2697 int tem = invariant_p (XEXP (x, i));
2698 if (tem == 0)
2699 return 0;
2700 if (tem == 2)
2701 conditional = 1;
2702 }
2703 else if (fmt[i] == 'E')
2704 {
2705 register int j;
2706 for (j = 0; j < XVECLEN (x, i); j++)
2707 {
2708 int tem = invariant_p (XVECEXP (x, i, j));
2709 if (tem == 0)
2710 return 0;
2711 if (tem == 2)
2712 conditional = 1;
2713 }
2714
2715 }
2716 }
2717
2718 return 1 + conditional;
2719}
2720
2721\f
2722/* Return nonzero if all the insns in the loop that set REG
2723 are INSN and the immediately following insns,
2724 and if each of those insns sets REG in an invariant way
2725 (not counting uses of REG in them).
2726
2727 The value is 2 if some of these insns are only conditionally invariant.
2728
2729 We assume that INSN itself is the first set of REG
2730 and that its source is invariant. */
2731
2732static int
2733consec_sets_invariant_p (reg, n_sets, insn)
2734 int n_sets;
2735 rtx reg, insn;
2736{
2737 register rtx p = insn;
2738 register int regno = REGNO (reg);
2739 rtx temp;
2740 /* Number of sets we have to insist on finding after INSN. */
2741 int count = n_sets - 1;
2742 int old = n_times_set[regno];
2743 int value = 0;
2744 int this;
2745
2746 /* If N_SETS hit the limit, we can't rely on its value. */
2747 if (n_sets == 127)
2748 return 0;
2749
2750 n_times_set[regno] = 0;
2751
2752 while (count > 0)
2753 {
2754 register enum rtx_code code;
2755 rtx set;
2756
2757 p = NEXT_INSN (p);
2758 code = GET_CODE (p);
2759
2760 /* If library call, skip to end of of it. */
2761 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2762 p = XEXP (temp, 0);
2763
2764 this = 0;
2765 if (code == INSN
2766 && (set = single_set (p))
2767 && GET_CODE (SET_DEST (set)) == REG
2768 && REGNO (SET_DEST (set)) == regno)
2769 {
2770 this = invariant_p (SET_SRC (set));
2771 if (this != 0)
2772 value |= this;
2773 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2774 {
2775 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
2776 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
2777 notes are OK. */
2778 this = (CONSTANT_P (XEXP (temp, 0))
2779 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
2780 && invariant_p (XEXP (temp, 0))));
2781 if (this != 0)
2782 value |= this;
2783 }
2784 }
2785 if (this != 0)
2786 count--;
2787 else if (code != NOTE)
2788 {
2789 n_times_set[regno] = old;
2790 return 0;
2791 }
2792 }
2793
2794 n_times_set[regno] = old;
2795 /* If invariant_p ever returned 2, we return 2. */
2796 return 1 + (value & 2);
2797}
2798
2799#if 0
2800/* I don't think this condition is sufficient to allow INSN
2801 to be moved, so we no longer test it. */
2802
2803/* Return 1 if all insns in the basic block of INSN and following INSN
2804 that set REG are invariant according to TABLE. */
2805
2806static int
2807all_sets_invariant_p (reg, insn, table)
2808 rtx reg, insn;
2809 short *table;
2810{
2811 register rtx p = insn;
2812 register int regno = REGNO (reg);
2813
2814 while (1)
2815 {
2816 register enum rtx_code code;
2817 p = NEXT_INSN (p);
2818 code = GET_CODE (p);
2819 if (code == CODE_LABEL || code == JUMP_INSN)
2820 return 1;
2821 if (code == INSN && GET_CODE (PATTERN (p)) == SET
2822 && GET_CODE (SET_DEST (PATTERN (p))) == REG
2823 && REGNO (SET_DEST (PATTERN (p))) == regno)
2824 {
2825 if (!invariant_p (SET_SRC (PATTERN (p)), table))
2826 return 0;
2827 }
2828 }
2829}
2830#endif /* 0 */
2831\f
2832/* Look at all uses (not sets) of registers in X. For each, if it is
2833 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
2834 a different insn, set USAGE[REGNO] to const0_rtx. */
2835
2836static void
2837find_single_use_in_loop (insn, x, usage)
2838 rtx insn;
2839 rtx x;
2840 rtx *usage;
2841{
2842 enum rtx_code code = GET_CODE (x);
2843 char *fmt = GET_RTX_FORMAT (code);
2844 int i, j;
2845
2846 if (code == REG)
2847 usage[REGNO (x)]
2848 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
2849 ? const0_rtx : insn;
2850
2851 else if (code == SET)
2852 {
2853 /* Don't count SET_DEST if it is a REG; otherwise count things
2854 in SET_DEST because if a register is partially modified, it won't
2855 show up as a potential movable so we don't care how USAGE is set
2856 for it. */
2857 if (GET_CODE (SET_DEST (x)) != REG)
2858 find_single_use_in_loop (insn, SET_DEST (x), usage);
2859 find_single_use_in_loop (insn, SET_SRC (x), usage);
2860 }
2861 else
2862 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2863 {
2864 if (fmt[i] == 'e' && XEXP (x, i) != 0)
2865 find_single_use_in_loop (insn, XEXP (x, i), usage);
2866 else if (fmt[i] == 'E')
2867 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2868 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
2869 }
2870}
2871\f
2872/* Increment N_TIMES_SET at the index of each register
2873 that is modified by an insn between FROM and TO.
2874 If the value of an element of N_TIMES_SET becomes 127 or more,
2875 stop incrementing it, to avoid overflow.
2876
2877 Store in SINGLE_USAGE[I] the single insn in which register I is
2878 used, if it is only used once. Otherwise, it is set to 0 (for no
2879 uses) or const0_rtx for more than one use. This parameter may be zero,
2880 in which case this processing is not done.
2881
2882 Store in *COUNT_PTR the number of actual instruction
2883 in the loop. We use this to decide what is worth moving out. */
2884
2885/* last_set[n] is nonzero iff reg n has been set in the current basic block.
2886 In that case, it is the insn that last set reg n. */
2887
2888static void
2889count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
2890 register rtx from, to;
2891 char *may_not_move;
2892 rtx *single_usage;
2893 int *count_ptr;
2894 int nregs;
2895{
2896 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
2897 register rtx insn;
2898 register int count = 0;
2899 register rtx dest;
2900
2901 bzero (last_set, nregs * sizeof (rtx));
2902 for (insn = from; insn != to; insn = NEXT_INSN (insn))
2903 {
2904 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2905 {
2906 ++count;
2907
2908 /* If requested, record registers that have exactly one use. */
2909 if (single_usage)
2910 {
2911 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
2912
2913 /* Include uses in REG_EQUAL notes. */
2914 if (REG_NOTES (insn))
2915 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
2916 }
2917
2918 if (GET_CODE (PATTERN (insn)) == CLOBBER
2919 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
2920 /* Don't move a reg that has an explicit clobber.
2921 We might do so sometimes, but it's not worth the pain. */
2922 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
2923
2924 if (GET_CODE (PATTERN (insn)) == SET
2925 || GET_CODE (PATTERN (insn)) == CLOBBER)
2926 {
2927 dest = SET_DEST (PATTERN (insn));
2928 while (GET_CODE (dest) == SUBREG
2929 || GET_CODE (dest) == ZERO_EXTRACT
2930 || GET_CODE (dest) == SIGN_EXTRACT
2931 || GET_CODE (dest) == STRICT_LOW_PART)
2932 dest = XEXP (dest, 0);
2933 if (GET_CODE (dest) == REG)
2934 {
2935 register int regno = REGNO (dest);
2936 /* If this is the first setting of this reg
2937 in current basic block, and it was set before,
2938 it must be set in two basic blocks, so it cannot
2939 be moved out of the loop. */
2940 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2941 may_not_move[regno] = 1;
2942 /* If this is not first setting in current basic block,
2943 see if reg was used in between previous one and this.
2944 If so, neither one can be moved. */
2945 if (last_set[regno] != 0
2946 && reg_used_between_p (dest, last_set[regno], insn))
2947 may_not_move[regno] = 1;
2948 if (n_times_set[regno] < 127)
2949 ++n_times_set[regno];
2950 last_set[regno] = insn;
2951 }
2952 }
2953 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2954 {
2955 register int i;
2956 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2957 {
2958 register rtx x = XVECEXP (PATTERN (insn), 0, i);
2959 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
2960 /* Don't move a reg that has an explicit clobber.
2961 It's not worth the pain to try to do it correctly. */
2962 may_not_move[REGNO (XEXP (x, 0))] = 1;
2963
2964 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2965 {
2966 dest = SET_DEST (x);
2967 while (GET_CODE (dest) == SUBREG
2968 || GET_CODE (dest) == ZERO_EXTRACT
2969 || GET_CODE (dest) == SIGN_EXTRACT
2970 || GET_CODE (dest) == STRICT_LOW_PART)
2971 dest = XEXP (dest, 0);
2972 if (GET_CODE (dest) == REG)
2973 {
2974 register int regno = REGNO (dest);
2975 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2976 may_not_move[regno] = 1;
2977 if (last_set[regno] != 0
2978 && reg_used_between_p (dest, last_set[regno], insn))
2979 may_not_move[regno] = 1;
2980 if (n_times_set[regno] < 127)
2981 ++n_times_set[regno];
2982 last_set[regno] = insn;
2983 }
2984 }
2985 }
2986 }
2987 }
2988 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
2989 bzero (last_set, nregs * sizeof (rtx));
2990 }
2991 *count_ptr = count;
2992}
2993\f
2994/* Given a loop that is bounded by LOOP_START and LOOP_END
2995 and that is entered at SCAN_START,
2996 return 1 if the register set in SET contained in insn INSN is used by
2997 any insn that precedes INSN in cyclic order starting
2998 from the loop entry point.
2999
3000 We don't want to use INSN_LUID here because if we restrict INSN to those
3001 that have a valid INSN_LUID, it means we cannot move an invariant out
3002 from an inner loop past two loops. */
3003
3004static int
3005loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3006 rtx set, insn, loop_start, scan_start, loop_end;
3007{
3008 rtx reg = SET_DEST (set);
3009 rtx p;
3010
3011 /* Scan forward checking for register usage. If we hit INSN, we
3012 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3013 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3014 {
3015 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3016 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3017 return 1;
3018
3019 if (p == loop_end)
3020 p = loop_start;
3021 }
3022
3023 return 0;
3024}
3025\f
3026/* A "basic induction variable" or biv is a pseudo reg that is set
3027 (within this loop) only by incrementing or decrementing it. */
3028/* A "general induction variable" or giv is a pseudo reg whose
3029 value is a linear function of a biv. */
3030
3031/* Bivs are recognized by `basic_induction_var';
3032 Givs by `general_induct_var'. */
3033
3034/* Indexed by register number, indicates whether or not register is an
3035 induction variable, and if so what type. */
3036
3037enum iv_mode *reg_iv_type;
3038
3039/* Indexed by register number, contains pointer to `struct induction'
3040 if register is an induction variable. This holds general info for
3041 all induction variables. */
3042
3043struct induction **reg_iv_info;
3044
3045/* Indexed by register number, contains pointer to `struct iv_class'
3046 if register is a basic induction variable. This holds info describing
3047 the class (a related group) of induction variables that the biv belongs
3048 to. */
3049
3050struct iv_class **reg_biv_class;
3051
3052/* The head of a list which links together (via the next field)
3053 every iv class for the current loop. */
3054
3055struct iv_class *loop_iv_list;
3056
3057/* Communication with routines called via `note_stores'. */
3058
3059static rtx note_insn;
3060
3061/* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3062
3063static rtx addr_placeholder;
3064
3065/* ??? Unfinished optimizations, and possible future optimizations,
3066 for the strength reduction code. */
3067
3068/* ??? There is one more optimization you might be interested in doing: to
3069 allocate pseudo registers for frequently-accessed memory locations.
3070 If the same memory location is referenced each time around, it might
3071 be possible to copy it into a register before and out after.
3072 This is especially useful when the memory location is a variable which
3073 is in a stack slot because somewhere its address is taken. If the
3074 loop doesn't contain a function call and the variable isn't volatile,
3075 it is safe to keep the value in a register for the duration of the
3076 loop. One tricky thing is that the copying of the value back from the
3077 register has to be done on all exits from the loop. You need to check that
3078 all the exits from the loop go to the same place. */
3079
3080/* ??? The interaction of biv elimination, and recognition of 'constant'
3081 bivs, may cause problems. */
3082
3083/* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3084 performance problems.
3085
3086 Perhaps don't eliminate things that can be combined with an addressing
3087 mode. Find all givs that have the same biv, mult_val, and add_val;
3088 then for each giv, check to see if its only use dies in a following
3089 memory address. If so, generate a new memory address and check to see
3090 if it is valid. If it is valid, then store the modified memory address,
3091 otherwise, mark the giv as not done so that it will get its own iv. */
3092
3093/* ??? Could try to optimize branches when it is known that a biv is always
3094 positive. */
3095
3096/* ??? When replace a biv in a compare insn, we should replace with closest
3097 giv so that an optimized branch can still be recognized by the combiner,
3098 e.g. the VAX acb insn. */
3099
3100/* ??? Many of the checks involving uid_luid could be simplified if regscan
3101 was rerun in loop_optimize whenever a register was added or moved.
3102 Also, some of the optimizations could be a little less conservative. */
3103\f
3104/* Perform strength reduction and induction variable elimination. */
3105
3106/* Pseudo registers created during this function will be beyond the last
3107 valid index in several tables including n_times_set and regno_last_uid.
3108 This does not cause a problem here, because the added registers cannot be
3109 givs outside of their loop, and hence will never be reconsidered.
3110 But scan_loop must check regnos to make sure they are in bounds. */
3111
3112static void
3113strength_reduce (scan_start, end, loop_top, insn_count,
3114 loop_start, loop_end)
3115 rtx scan_start;
3116 rtx end;
3117 rtx loop_top;
3118 int insn_count;
3119 rtx loop_start;
3120 rtx loop_end;
3121{
3122 rtx p;
3123 rtx set;
3124 rtx inc_val;
3125 rtx mult_val;
3126 rtx dest_reg;
3127 /* This is 1 if current insn is not executed at least once for every loop
3128 iteration. */
3129 int not_every_iteration = 0;
3130 /* This is 1 if current insn may be executed more than once for every
3131 loop iteration. */
3132 int maybe_multiple = 0;
3133 /* Temporary list pointers for traversing loop_iv_list. */
3134 struct iv_class *bl, **backbl;
3135 /* Ratio of extra register life span we can justify
3136 for saving an instruction. More if loop doesn't call subroutines
3137 since in that case saving an insn makes more difference
3138 and more registers are available. */
3139 /* ??? could set this to last value of threshold in move_movables */
3140 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3141 /* Map of pseudo-register replacements. */
3142 rtx *reg_map;
3143 int call_seen;
3144 rtx test;
3145 rtx end_insert_before;
3146
3147 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3148 * sizeof (enum iv_mode *));
3149 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3150 reg_iv_info = (struct induction **)
3151 alloca (max_reg_before_loop * sizeof (struct induction *));
3152 bzero ((char *) reg_iv_info, (max_reg_before_loop
3153 * sizeof (struct induction *)));
3154 reg_biv_class = (struct iv_class **)
3155 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3156 bzero ((char *) reg_biv_class, (max_reg_before_loop
3157 * sizeof (struct iv_class *)));
3158
3159 loop_iv_list = 0;
3160 addr_placeholder = gen_reg_rtx (Pmode);
3161
3162 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3163 must be put before this insn, so that they will appear in the right
3164 order (i.e. loop order).
3165
3166 If loop_end is the end of the current function, then emit a
3167 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3168 dummy note insn. */
3169 if (NEXT_INSN (loop_end) != 0)
3170 end_insert_before = NEXT_INSN (loop_end);
3171 else
3172 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3173
3174 /* Scan through loop to find all possible bivs. */
3175
3176 p = scan_start;
3177 while (1)
3178 {
3179 p = NEXT_INSN (p);
3180 /* At end of a straight-in loop, we are done.
3181 At end of a loop entered at the bottom, scan the top. */
3182 if (p == scan_start)
3183 break;
3184 if (p == end)
3185 {
3186 if (loop_top != 0)
3187 p = NEXT_INSN (loop_top);
3188 else
3189 break;
3190 if (p == scan_start)
3191 break;
3192 }
3193
3194 if (GET_CODE (p) == INSN
3195 && (set = single_set (p))
3196 && GET_CODE (SET_DEST (set)) == REG)
3197 {
3198 dest_reg = SET_DEST (set);
3199 if (REGNO (dest_reg) < max_reg_before_loop
3200 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3201 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3202 {
3203 if (basic_induction_var (SET_SRC (set), dest_reg, p,
3204 &inc_val, &mult_val))
3205 {
3206 /* It is a possible basic induction variable.
3207 Create and initialize an induction structure for it. */
3208
3209 struct induction *v
3210 = (struct induction *) alloca (sizeof (struct induction));
3211
3212 record_biv (v, p, dest_reg, inc_val, mult_val,
3213 not_every_iteration, maybe_multiple);
3214 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3215 }
3216 else if (REGNO (dest_reg) < max_reg_before_loop)
3217 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3218 }
3219 }
3220
3221 /* Past CODE_LABEL, we get to insns that may be executed multiple
3222 times. The only way we can be sure that they can't is if every
3223 every jump insn between here and the end of the loop either
3224 returns, exits the loop, or is a forward jump. */
3225
3226 if (GET_CODE (p) == CODE_LABEL)
3227 {
3228 rtx insn = p;
3229
3230 maybe_multiple = 0;
3231
3232 while (1)
3233 {
3234 insn = NEXT_INSN (insn);
3235 if (insn == scan_start)
3236 break;
3237 if (insn == end)
3238 {
3239 if (loop_top != 0)
3240 insn = NEXT_INSN (loop_top);
3241 else
3242 break;
3243 if (insn == scan_start)
3244 break;
3245 }
3246
3247 if (GET_CODE (insn) == JUMP_INSN
3248 && GET_CODE (PATTERN (insn)) != RETURN
3249 && (! condjump_p (insn)
3250 || (JUMP_LABEL (insn) != 0
3251 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3252 || INSN_UID (insn) >= max_uid_for_loop
3253 || (INSN_LUID (JUMP_LABEL (insn))
3254 < INSN_LUID (insn))))))
3255 {
3256 maybe_multiple = 1;
3257 break;
3258 }
3259 }
3260 }
3261
3262 /* Past a label or a jump, we get to insns for which we can't count
3263 on whether or how many times they will be executed during each
3264 iteration. */
3265 /* This code appears in three places, once in scan_loop, and twice
3266 in strength_reduce. */
3267 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3268 /* If we enter the loop in the middle, and scan around to the
3269 beginning, don't set not_every_iteration for that.
3270 This can be any kind of jump, since we want to know if insns
3271 will be executed if the loop is executed. */
3272 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3273 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3274 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3275 not_every_iteration = 1;
3276
3277 /* At the virtual top of a converted loop, insns are again known to
3278 be executed each iteration: logically, the loop begins here
3279 even though the exit code has been duplicated. */
3280
3281 else if (GET_CODE (p) == NOTE
3282 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3283 not_every_iteration = 0;
3284
3285 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3286 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3287 or not an insn is known to be executed each iteration of the
3288 loop, whether or not any iterations are known to occur.
3289
3290 Therefore, if we have just passed a label and have no more labels
3291 between here and the test insn of the loop, we know these insns
3292 will be executed each iteration. This can also happen if we
3293 have just passed a jump, for example, when there are nested loops. */
3294
3295 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3296 && no_labels_between_p (p, loop_end))
3297 not_every_iteration = 0;
3298 }
3299
3300 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3301 Make a sanity check against n_times_set. */
3302 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3303 {
3304 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3305 /* Above happens if register modified by subreg, etc. */
3306 /* Make sure it is not recognized as a basic induction var: */
3307 || n_times_set[bl->regno] != bl->biv_count
3308 /* If never incremented, it is invariant that we decided not to
3309 move. So leave it alone. */
3310 || ! bl->incremented)
3311 {
3312 if (loop_dump_stream)
3313 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3314 bl->regno,
3315 (reg_iv_type[bl->regno] != BASIC_INDUCT
3316 ? "not induction variable"
3317 : (! bl->incremented ? "never incremented"
3318 : "count error")));
3319
3320 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3321 *backbl = bl->next;
3322 }
3323 else
3324 {
3325 backbl = &bl->next;
3326
3327 if (loop_dump_stream)
3328 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3329 }
3330 }
3331
3332 /* Exit if there are no bivs. */
3333 if (! loop_iv_list)
3334 {
3335 /* Can still unroll the loop anyways, but indicate that there is no
3336 strength reduction info available. */
3337 if (flag_unroll_loops)
3338 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3339
3340 return;
3341 }
3342
3343 /* Find initial value for each biv by searching backwards from loop_start,
3344 halting at first label. Also record any test condition. */
3345
3346 call_seen = 0;
3347 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3348 {
3349 note_insn = p;
3350
3351 if (GET_CODE (p) == CALL_INSN)
3352 call_seen = 1;
3353
3354 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3355 || GET_CODE (p) == CALL_INSN)
3356 note_stores (PATTERN (p), record_initial);
3357
3358 /* Record any test of a biv that branches around the loop if no store
3359 between it and the start of loop. We only care about tests with
3360 constants and registers and only certain of those. */
3361 if (GET_CODE (p) == JUMP_INSN
3362 && JUMP_LABEL (p) != 0
3363 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3364 && (test = get_condition_for_loop (p)) != 0
3365 && GET_CODE (XEXP (test, 0)) == REG
3366 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3367 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3368 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3369 && bl->init_insn == 0)
3370 {
3371 /* If an NE test, we have an initial value! */
3372 if (GET_CODE (test) == NE)
3373 {
3374 bl->init_insn = p;
3375 bl->init_set = gen_rtx (SET, VOIDmode,
3376 XEXP (test, 0), XEXP (test, 1));
3377 }
3378 else
3379 bl->initial_test = test;
3380 }
3381 }
3382
3383 /* Look at the each biv and see if we can say anything better about its
3384 initial value from any initializing insns set up above. (This is done
3385 in two passes to avoid missing SETs in a PARALLEL.) */
3386 for (bl = loop_iv_list; bl; bl = bl->next)
3387 {
3388 rtx src;
3389
3390 if (! bl->init_insn)
3391 continue;
3392
3393 src = SET_SRC (bl->init_set);
3394
3395 if (loop_dump_stream)
3396 fprintf (loop_dump_stream,
3397 "Biv %d initialized at insn %d: initial value ",
3398 bl->regno, INSN_UID (bl->init_insn));
3399
3400 if (valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3401 {
3402 bl->initial_value = src;
3403
3404 if (loop_dump_stream)
3405 {
3406 if (GET_CODE (src) == CONST_INT)
3407 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3408 else
3409 {
3410 print_rtl (loop_dump_stream, src);
3411 fprintf (loop_dump_stream, "\n");
3412 }
3413 }
3414 }
3415 else
3416 {
3417 /* Biv initial value is not simple move,
3418 so let it keep initial value of "itself". */
3419
3420 if (loop_dump_stream)
3421 fprintf (loop_dump_stream, "is complex\n");
3422 }
3423 }
3424
3425 /* Search the loop for general induction variables. */
3426
3427 /* A register is a giv if: it is only set once, it is a function of a
3428 biv and a constant (or invariant), and it is not a biv. */
3429
3430 not_every_iteration = 0;
3431 p = scan_start;
3432 while (1)
3433 {
3434 p = NEXT_INSN (p);
3435 /* At end of a straight-in loop, we are done.
3436 At end of a loop entered at the bottom, scan the top. */
3437 if (p == scan_start)
3438 break;
3439 if (p == end)
3440 {
3441 if (loop_top != 0)
3442 p = NEXT_INSN (loop_top);
3443 else
3444 break;
3445 if (p == scan_start)
3446 break;
3447 }
3448
3449 /* Look for a general induction variable in a register. */
3450 if (GET_CODE (p) == INSN
3451 && (set = single_set (p))
3452 && GET_CODE (SET_DEST (set)) == REG
3453 && ! may_not_optimize[REGNO (SET_DEST (set))])
3454 {
3455 rtx src_reg;
3456 rtx add_val;
3457 rtx mult_val;
3458 int benefit;
3459 rtx regnote = 0;
3460
3461 dest_reg = SET_DEST (set);
3462 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3463 continue;
3464
3465 if (/* SET_SRC is a giv. */
3466 ((benefit = general_induction_var (SET_SRC (set),
3467 &src_reg, &add_val,
3468 &mult_val))
3469 /* Equivalent expression is a giv. */
3470 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3471 && (benefit = general_induction_var (XEXP (regnote, 0),
3472 &src_reg,
3473 &add_val, &mult_val))))
3474 /* Don't try to handle any regs made by loop optimization.
3475 We have nothing on them in regno_first_uid, etc. */
3476 && REGNO (dest_reg) < max_reg_before_loop
3477 /* Don't recognize a BASIC_INDUCT_VAR here. */
3478 && dest_reg != src_reg
3479 /* This must be the only place where the register is set. */
3480 && (n_times_set[REGNO (dest_reg)] == 1
3481 /* or all sets must be consecutive and make a giv. */
3482 || (benefit = consec_sets_giv (benefit, p,
3483 src_reg, dest_reg,
3484 &add_val, &mult_val))))
3485 {
3486 int count;
3487 struct induction *v
3488 = (struct induction *) alloca (sizeof (struct induction));
3489 rtx temp;
3490
3491 /* If this is a library call, increase benefit. */
3492 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3493 benefit += libcall_benefit (p);
3494
3495 /* Skip the consecutive insns, if there are any. */
3496 for (count = n_times_set[REGNO (dest_reg)] - 1;
3497 count > 0; count--)
3498 {
3499 /* If first insn of libcall sequence, skip to end.
3500 Do this at start of loop, since INSN is guaranteed to
3501 be an insn here. */
3502 if (GET_CODE (p) != NOTE
3503 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3504 p = XEXP (temp, 0);
3505
3506 do p = NEXT_INSN (p);
3507 while (GET_CODE (p) == NOTE);
3508 }
3509
3510 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3511 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3512 loop_end);
3513
3514 }
3515 }
3516
3517#ifndef DONT_REDUCE_ADDR
3518 /* Look for givs which are memory addresses. */
3519 /* This resulted in worse code on a VAX 8600. I wonder if it
3520 still does. */
3521 if (GET_CODE (p) == INSN)
3522 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3523 loop_end);
3524#endif
3525
3526 /* Update the status of whether giv can derive other givs. This can
3527 change when we pass a label or an insn that updates a biv. */
3528 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3529 || GET_CODE (p) == CODE_LABEL)
3530 update_giv_derive (p);
3531
3532 /* Past a label or a jump, we get to insns for which we can't count
3533 on whether or how many times they will be executed during each
3534 iteration. */
3535 /* This code appears in three places, once in scan_loop, and twice
3536 in strength_reduce. */
3537 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3538 /* If we enter the loop in the middle, and scan around
3539 to the beginning, don't set not_every_iteration for that.
3540 This can be any kind of jump, since we want to know if insns
3541 will be executed if the loop is executed. */
3542 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3543 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3544 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3545 not_every_iteration = 1;
3546
3547 /* At the virtual top of a converted loop, insns are again known to
3548 be executed each iteration: logically, the loop begins here
3549 even though the exit code has been duplicated. */
3550
3551 else if (GET_CODE (p) == NOTE
3552 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3553 not_every_iteration = 0;
3554
3555 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3556 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3557 or not an insn is known to be executed each iteration of the
3558 loop, whether or not any iterations are known to occur.
3559
3560 Therefore, if we have just passed a label and have no more labels
3561 between here and the test insn of the loop, we know these insns
3562 will be executed each iteration. */
3563
3564 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3565 && no_labels_between_p (p, loop_end))
3566 not_every_iteration = 0;
3567 }
3568
3569 /* Try to calculate and save the number of loop iterations. This is
3570 set to zero if the actual number can not be calculated. This must
3571 be called after all giv's have been identified, since otherwise it may
3572 fail if the iteration variable is a giv. */
3573
3574 loop_n_iterations = loop_iterations (loop_start, loop_end);
3575
3576 /* Now for each giv for which we still don't know whether or not it is
3577 replaceable, check to see if it is replaceable because its final value
3578 can be calculated. This must be done after loop_iterations is called,
3579 so that final_giv_value will work correctly. */
3580
3581 for (bl = loop_iv_list; bl; bl = bl->next)
3582 {
3583 struct induction *v;
3584
3585 for (v = bl->giv; v; v = v->next_iv)
3586 if (! v->replaceable && ! v->not_replaceable)
3587 check_final_value (v, loop_start, loop_end);
3588 }
3589
3590 /* Try to prove that the loop counter variable (if any) is always
3591 nonnegative; if so, record that fact with a REG_NONNEG note
3592 so that "decrement and branch until zero" insn can be used. */
3593 check_dbra_loop (loop_end, insn_count, loop_start);
3594
3595 /* Create reg_map to hold substitutions for replaceable giv regs. */
3596 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3597 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3598
3599 /* Examine each iv class for feasibility of strength reduction/induction
3600 variable elimination. */
3601
3602 for (bl = loop_iv_list; bl; bl = bl->next)
3603 {
3604 struct induction *v;
3605 int benefit;
3606 int all_reduced;
3607 rtx final_value = 0;
3608
3609 /* Test whether it will be possible to eliminate this biv
3610 provided all givs are reduced. This is possible if either
3611 the reg is not used outside the loop, or we can compute
3612 what its final value will be.
3613
3614 For architectures with a decrement_and_branch_until_zero insn,
3615 don't do this if we put a REG_NONNEG note on the endtest for
3616 this biv. */
3617
3618 /* Compare against bl->init_insn rather than loop_start.
3619 We aren't concerned with any uses of the biv between
3620 init_insn and loop_start since these won't be affected
3621 by the value of the biv elsewhere in the function, so
3622 long as init_insn doesn't use the biv itself.
3623 March 14, 1989 -- self@bayes.arc.nasa.gov */
3624
3625 if ((uid_luid[regno_last_uid[bl->regno]] < INSN_LUID (loop_end)
3626 && bl->init_insn
3627 && INSN_UID (bl->init_insn) < max_uid_for_loop
3628 && uid_luid[regno_first_uid[bl->regno]] >= INSN_LUID (bl->init_insn)
3629#ifdef HAVE_decrement_and_branch_until_zero
3630 && ! bl->nonneg
3631#endif
3632 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3633 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3634#ifdef HAVE_decrement_and_branch_until_zero
3635 && ! bl->nonneg
3636#endif
3637 ))
3638 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3639 threshold, insn_count);
3640 else
3641 {
3642 if (loop_dump_stream)
3643 {
3644 fprintf (loop_dump_stream,
3645 "Cannot eliminate biv %d.\n",
3646 bl->regno);
3647 fprintf (loop_dump_stream,
3648 "First use: insn %d, last use: insn %d.\n",
3649 regno_first_uid[bl->regno],
3650 regno_last_uid[bl->regno]);
3651 }
3652 }
3653
3654 /* Combine all giv's for this iv_class. */
3655 combine_givs (bl);
3656
3657 /* This will be true at the end, if all givs which depend on this
3658 biv have been strength reduced.
3659 We can't (currently) eliminate the biv unless this is so. */
3660 all_reduced = 1;
3661
3662 /* Check each giv in this class to see if we will benefit by reducing
3663 it. Skip giv's combined with others. */
3664 for (v = bl->giv; v; v = v->next_iv)
3665 {
3666 struct induction *tv;
3667
3668 if (v->ignore || v->same)
3669 continue;
3670
3671 benefit = v->benefit;
3672
3673 /* Reduce benefit if not replaceable, since we will insert
3674 a move-insn to replace the insn that calculates this giv.
3675 Don't do this unless the giv is a user variable, since it
3676 will often be marked non-replaceable because of the duplication
3677 of the exit code outside the loop. In such a case, the copies
3678 we insert are dead and will be deleted. So they don't have
3679 a cost. Similar situations exist. */
3680 /* ??? The new final_[bg]iv_value code does a much better job
3681 of finding replaceable giv's, and hence this code may no longer
3682 be necessary. */
3683 if (! v->replaceable && ! bl->eliminable
3684 && REG_USERVAR_P (v->dest_reg))
3685 benefit -= copy_cost;
3686
3687 /* Decrease the benefit to count the add-insns that we will
3688 insert to increment the reduced reg for the giv. */
3689 benefit -= add_cost * bl->biv_count;
3690
3691 /* Decide whether to strength-reduce this giv or to leave the code
3692 unchanged (recompute it from the biv each time it is used).
3693 This decision can be made independently for each giv. */
3694
3695 /* ??? Perhaps attempt to guess whether autoincrement will handle
3696 some of the new add insns; if so, can increase BENEFIT
3697 (undo the subtraction of add_cost that was done above). */
3698
3699 /* If an insn is not to be strength reduced, then set its ignore
3700 flag, and clear all_reduced. */
3701
3702 if (v->lifetime * threshold * benefit < insn_count)
3703 {
3704 if (loop_dump_stream)
3705 fprintf (loop_dump_stream,
3706 "giv of insn %d not worth while, %d vs %d.\n",
3707 INSN_UID (v->insn),
3708 v->lifetime * threshold * benefit, insn_count);
3709 v->ignore = 1;
3710 all_reduced = 0;
3711 }
3712 else
3713 {
3714 /* Check that we can increment the reduced giv without a
3715 multiply insn. If not, reject it. */
3716
3717 for (tv = bl->biv; tv; tv = tv->next_iv)
3718 if (tv->mult_val == const1_rtx
3719 && ! product_cheap_p (tv->add_val, v->mult_val))
3720 {
3721 if (loop_dump_stream)
3722 fprintf (loop_dump_stream,
3723 "giv of insn %d: would need a multiply.\n",
3724 INSN_UID (v->insn));
3725 v->ignore = 1;
3726 all_reduced = 0;
3727 break;
3728 }
3729 }
3730 }
3731
3732 /* Reduce each giv that we decided to reduce. */
3733
3734 for (v = bl->giv; v; v = v->next_iv)
3735 {
3736 struct induction *tv;
3737 if (! v->ignore && v->same == 0)
3738 {
3739 v->new_reg = gen_reg_rtx (v->mode);
3740
3741 /* For each place where the biv is incremented,
3742 add an insn to increment the new, reduced reg for the giv. */
3743 for (tv = bl->biv; tv; tv = tv->next_iv)
3744 {
3745 if (tv->mult_val == const1_rtx)
3746 emit_iv_add_mult (tv->add_val, v->mult_val,
3747 v->new_reg, v->new_reg, tv->insn);
3748 else /* tv->mult_val == const0_rtx */
3749 /* A multiply is acceptable here
3750 since this is presumed to be seldom executed. */
3751 emit_iv_add_mult (tv->add_val, v->mult_val,
3752 v->add_val, v->new_reg, tv->insn);
3753 }
3754
3755 /* Add code at loop start to initialize giv's reduced reg. */
3756
3757 emit_iv_add_mult (bl->initial_value, v->mult_val,
3758 v->add_val, v->new_reg, loop_start);
3759 }
3760 }
3761
3762 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
3763 as not reduced.
3764
3765 For each giv register that can be reduced now: if replaceable,
3766 substitute reduced reg wherever the old giv occurs;
3767 else add new move insn "giv_reg = reduced_reg".
3768
3769 Also check for givs whose first use is their definition and whose
3770 last use is the definition of another giv. If so, it is likely
3771 dead and should not be used to eliminate a biv. */
3772 for (v = bl->giv; v; v = v->next_iv)
3773 {
3774 if (v->same && v->same->ignore)
3775 v->ignore = 1;
3776
3777 if (v->ignore)
3778 continue;
3779
3780 if (v->giv_type == DEST_REG
3781 && regno_first_uid[REGNO (v->dest_reg)] == INSN_UID (v->insn))
3782 {
3783 struct induction *v1;
3784
3785 for (v1 = bl->giv; v1; v1 = v1->next_iv)
3786 if (regno_last_uid[REGNO (v->dest_reg)] == INSN_UID (v1->insn))
3787 v->maybe_dead = 1;
3788 }
3789
3790 /* Update expression if this was combined, in case other giv was
3791 replaced. */
3792 if (v->same)
3793 v->new_reg = replace_rtx (v->new_reg,
3794 v->same->dest_reg, v->same->new_reg);
3795
3796 if (v->giv_type == DEST_ADDR)
3797 /* Store reduced reg as the address in the memref where we found
3798 this giv. */
3799 *v->location = v->new_reg;
3800 else if (v->replaceable)
3801 {
3802 reg_map[REGNO (v->dest_reg)] = v->new_reg;
3803
3804#if 0
3805 /* I can no longer duplicate the original problem. Perhaps
3806 this is unnecessary now? */
3807
3808 /* Replaceable; it isn't strictly necessary to delete the old
3809 insn and emit a new one, because v->dest_reg is now dead.
3810
3811 However, especially when unrolling loops, the special
3812 handling for (set REG0 REG1) in the second cse pass may
3813 make v->dest_reg live again. To avoid this problem, emit
3814 an insn to set the original giv reg from the reduced giv.
3815 We can not delete the original insn, since it may be part
3816 of a LIBCALL, and the code in flow that eliminates dead
3817 libcalls will fail if it is deleted. */
3818 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3819 v->insn);
3820#endif
3821 }
3822 else
3823 {
3824 /* Not replaceable; emit an insn to set the original giv reg from
3825 the reduced giv, same as above. */
3826 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3827 v->insn);
3828 }
3829
3830 /* When a loop is reversed, givs which depend on the reversed
3831 biv, and which are live outside the loop, must be set to their
3832 correct final value. This insn is only needed if the giv is
3833 not replaceable. The correct final value is the same as the
3834 value that the giv starts the reversed loop with. */
3835 if (bl->reversed && ! v->replaceable)
3836 emit_iv_add_mult (bl->initial_value, v->mult_val,
3837 v->add_val, v->dest_reg, end_insert_before);
3838 else if (v->final_value)
3839 {
3840 rtx insert_before;
3841
3842 /* If the loop has multiple exits, emit the insn before the
3843 loop to ensure that it will always be executed no matter
3844 how the loop exits. Otherwise, emit the insn after the loop,
3845 since this is slightly more efficient. */
3846 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3847 insert_before = loop_start;
3848 else
3849 insert_before = end_insert_before;
3850 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
3851 insert_before);
3852
3853#if 0
3854 /* If the insn to set the final value of the giv was emitted
3855 before the loop, then we must delete the insn inside the loop
3856 that sets it. If this is a LIBCALL, then we must delete
3857 every insn in the libcall. Note, however, that
3858 final_giv_value will only succeed when there are multiple
3859 exits if the giv is dead at each exit, hence it does not
3860 matter that the original insn remains because it is dead
3861 anyways. */
3862 /* Delete the insn inside the loop that sets the giv since
3863 the giv is now set before (or after) the loop. */
3864 delete_insn (v->insn);
3865#endif
3866 }
3867
3868 if (loop_dump_stream)
3869 {
3870 fprintf (loop_dump_stream, "giv at %d reduced to ",
3871 INSN_UID (v->insn));
3872 print_rtl (loop_dump_stream, v->new_reg);
3873 fprintf (loop_dump_stream, "\n");
3874 }
3875 }
3876
3877 /* All the givs based on the biv bl have been reduced if they
3878 merit it. */
3879
3880 /* For each giv not marked as maybe dead that has been combined with a
3881 second giv, clear any "maybe dead" mark on that second giv.
3882 v->new_reg will either be or refer to the register of the giv it
3883 combined with.
3884
3885 Doing this clearing avoids problems in biv elimination where a
3886 giv's new_reg is a complex value that can't be put in the insn but
3887 the giv combined with (with a reg as new_reg) is marked maybe_dead.
3888 Since the register will be used in either case, we'd prefer it be
3889 used from the simpler giv. */
3890
3891 for (v = bl->giv; v; v = v->next_iv)
3892 if (! v->maybe_dead && v->same)
3893 v->same->maybe_dead = 0;
3894
3895 /* Try to eliminate the biv, if it is a candidate.
3896 This won't work if ! all_reduced,
3897 since the givs we planned to use might not have been reduced.
3898
3899 We have to be careful that we didn't initially think we could eliminate
3900 this biv because of a giv that we now think may be dead and shouldn't
3901 be used as a biv replacement.
3902
3903 Also, there is the possibility that we may have a giv that looks
3904 like it can be used to eliminate a biv, but the resulting insn
3905 isn't valid. This can happen, for example, on the 88k, where a
3906 JUMP_INSN can compare a register only with zero. Attempts to
3907 replace it with a compare with a constant will fail.
3908
3909 Note that in cases where this call fails, we may have replaced some
3910 of the occurrences of the biv with a giv, but no harm was done in
3911 doing so in the rare cases where it can occur. */
3912
3913 if (all_reduced == 1 && bl->eliminable
3914 && maybe_eliminate_biv (bl, loop_start, end, 1,
3915 threshold, insn_count))
3916
3917 {
3918 /* ?? If we created a new test to bypass the loop entirely,
3919 or otherwise drop straight in, based on this test, then
3920 we might want to rewrite it also. This way some later
3921 pass has more hope of removing the initialization of this
3922 biv entirely. */
3923
3924 /* If final_value != 0, then the biv may be used after loop end
3925 and we must emit an insn to set it just in case.
3926
3927 Reversed bivs already have an insn after the loop setting their
3928 value, so we don't need another one. We can't calculate the
3929 proper final value for such a biv here anyways. */
3930 if (final_value != 0 && ! bl->reversed)
3931 {
3932 rtx insert_before;
3933
3934 /* If the loop has multiple exits, emit the insn before the
3935 loop to ensure that it will always be executed no matter
3936 how the loop exits. Otherwise, emit the insn after the
3937 loop, since this is slightly more efficient. */
3938 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3939 insert_before = loop_start;
3940 else
3941 insert_before = end_insert_before;
3942
3943 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
3944 end_insert_before);
3945 }
3946
3947#if 0
3948 /* Delete all of the instructions inside the loop which set
3949 the biv, as they are all dead. If is safe to delete them,
3950 because an insn setting a biv will never be part of a libcall. */
3951 /* However, deleting them will invalidate the regno_last_uid info,
3952 so keeping them around is more convenient. Final_biv_value
3953 will only succeed when there are multiple exits if the biv
3954 is dead at each exit, hence it does not matter that the original
3955 insn remains, because it is dead anyways. */
3956 for (v = bl->biv; v; v = v->next_iv)
3957 delete_insn (v->insn);
3958#endif
3959
3960 if (loop_dump_stream)
3961 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
3962 bl->regno);
3963 }
3964 }
3965
3966 /* Go through all the instructions in the loop, making all the
3967 register substitutions scheduled in REG_MAP. */
3968
3969 for (p = loop_start; p != end; p = NEXT_INSN (p))
3970 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3971 || GET_CODE (p) == CALL_INSN)
3972 {
3973 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
3974 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
3975 INSN_CODE (p) = -1;
3976 }
3977
3978 /* Unroll loops from within strength reduction so that we can use the
3979 induction variable information that strength_reduce has already
3980 collected. */
3981
3982 if (flag_unroll_loops)
3983 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
3984
3985 if (loop_dump_stream)
3986 fprintf (loop_dump_stream, "\n");
3987}
3988\f
3989/* Return 1 if X is a valid source for an initial value (or as value being
3990 compared against in an initial test).
3991
3992 X must be either a register or constant and must not be clobbered between
3993 the current insn and the start of the loop.
3994
3995 INSN is the insn containing X. */
3996
3997static int
3998valid_initial_value_p (x, insn, call_seen, loop_start)
3999 rtx x;
4000 rtx insn;
4001 int call_seen;
4002 rtx loop_start;
4003{
4004 if (CONSTANT_P (x))
4005 return 1;
4006
4007 /* Only consider pseudos we know about initialized in insns whose luids
4008 we know. */
4009 if (GET_CODE (x) != REG
4010 || REGNO (x) >= max_reg_before_loop)
4011 return 0;
4012
4013 /* Don't use call-clobbered registers across a call which clobbers it. On
4014 some machines, don't use any hard registers at all. */
4015 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4016#ifndef SMALL_REGISTER_CLASSES
4017 && call_used_regs[REGNO (x)] && call_seen
4018#endif
4019 )
4020 return 0;
4021
4022 /* Don't use registers that have been clobbered before the start of the
4023 loop. */
4024 if (reg_set_between_p (x, insn, loop_start))
4025 return 0;
4026
4027 return 1;
4028}
4029\f
4030/* Scan X for memory refs and check each memory address
4031 as a possible giv. INSN is the insn whose pattern X comes from.
4032 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4033 every loop iteration. */
4034
4035static void
4036find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4037 rtx x;
4038 rtx insn;
4039 int not_every_iteration;
4040 rtx loop_start, loop_end;
4041{
4042 register int i, j;
4043 register enum rtx_code code;
4044 register char *fmt;
4045
4046 if (x == 0)
4047 return;
4048
4049 code = GET_CODE (x);
4050 switch (code)
4051 {
4052 case REG:
4053 case CONST_INT:
4054 case CONST:
4055 case CONST_DOUBLE:
4056 case SYMBOL_REF:
4057 case LABEL_REF:
4058 case PC:
4059 case CC0:
4060 case ADDR_VEC:
4061 case ADDR_DIFF_VEC:
4062 case USE:
4063 case CLOBBER:
4064 return;
4065
4066 case MEM:
4067 {
4068 rtx src_reg;
4069 rtx add_val;
4070 rtx mult_val;
4071 int benefit;
4072
4073 benefit = general_induction_var (XEXP (x, 0),
4074 &src_reg, &add_val, &mult_val);
4075
4076 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4077 Such a giv isn't useful. */
4078 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4079 {
4080 /* Found one; record it. */
4081 struct induction *v
4082 = (struct induction *) oballoc (sizeof (struct induction));
4083
4084 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4085 add_val, benefit, DEST_ADDR, not_every_iteration,
4086 &XEXP (x, 0), loop_start, loop_end);
4087
4088 v->mem_mode = GET_MODE (x);
4089 }
4090 return;
4091 }
4092 }
4093
4094 /* Recursively scan the subexpressions for other mem refs. */
4095
4096 fmt = GET_RTX_FORMAT (code);
4097 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4098 if (fmt[i] == 'e')
4099 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4100 loop_end);
4101 else if (fmt[i] == 'E')
4102 for (j = 0; j < XVECLEN (x, i); j++)
4103 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4104 loop_start, loop_end);
4105}
4106\f
4107/* Fill in the data about one biv update.
4108 V is the `struct induction' in which we record the biv. (It is
4109 allocated by the caller, with alloca.)
4110 INSN is the insn that sets it.
4111 DEST_REG is the biv's reg.
4112
4113 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4114 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4115 being set to INC_VAL.
4116
4117 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4118 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4119 can be executed more than once per iteration. If MAYBE_MULTIPLE
4120 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4121 executed exactly once per iteration. */
4122
4123static void
4124record_biv (v, insn, dest_reg, inc_val, mult_val,
4125 not_every_iteration, maybe_multiple)
4126 struct induction *v;
4127 rtx insn;
4128 rtx dest_reg;
4129 rtx inc_val;
4130 rtx mult_val;
4131 int not_every_iteration;
4132 int maybe_multiple;
4133{
4134 struct iv_class *bl;
4135
4136 v->insn = insn;
4137 v->src_reg = dest_reg;
4138 v->dest_reg = dest_reg;
4139 v->mult_val = mult_val;
4140 v->add_val = inc_val;
4141 v->mode = GET_MODE (dest_reg);
4142 v->always_computable = ! not_every_iteration;
4143 v->maybe_multiple = maybe_multiple;
4144
4145 /* Add this to the reg's iv_class, creating a class
4146 if this is the first incrementation of the reg. */
4147
4148 bl = reg_biv_class[REGNO (dest_reg)];
4149 if (bl == 0)
4150 {
4151 /* Create and initialize new iv_class. */
4152
4153 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4154
4155 bl->regno = REGNO (dest_reg);
4156 bl->biv = 0;
4157 bl->giv = 0;
4158 bl->biv_count = 0;
4159 bl->giv_count = 0;
4160
4161 /* Set initial value to the reg itself. */
4162 bl->initial_value = dest_reg;
4163 /* We haven't seen the initializing insn yet */
4164 bl->init_insn = 0;
4165 bl->init_set = 0;
4166 bl->initial_test = 0;
4167 bl->incremented = 0;
4168 bl->eliminable = 0;
4169 bl->nonneg = 0;
4170 bl->reversed = 0;
4171 bl->total_benefit = 0;
4172
4173 /* Add this class to loop_iv_list. */
4174 bl->next = loop_iv_list;
4175 loop_iv_list = bl;
4176
4177 /* Put it in the array of biv register classes. */
4178 reg_biv_class[REGNO (dest_reg)] = bl;
4179 }
4180
4181 /* Update IV_CLASS entry for this biv. */
4182 v->next_iv = bl->biv;
4183 bl->biv = v;
4184 bl->biv_count++;
4185 if (mult_val == const1_rtx)
4186 bl->incremented = 1;
4187
4188 if (loop_dump_stream)
4189 {
4190 fprintf (loop_dump_stream,
4191 "Insn %d: possible biv, reg %d,",
4192 INSN_UID (insn), REGNO (dest_reg));
4193 if (GET_CODE (inc_val) == CONST_INT)
4194 fprintf (loop_dump_stream, " const = %d\n",
4195 INTVAL (inc_val));
4196 else
4197 {
4198 fprintf (loop_dump_stream, " const = ");
4199 print_rtl (loop_dump_stream, inc_val);
4200 fprintf (loop_dump_stream, "\n");
4201 }
4202 }
4203}
4204\f
4205/* Fill in the data about one giv.
4206 V is the `struct induction' in which we record the giv. (It is
4207 allocated by the caller, with alloca.)
4208 INSN is the insn that sets it.
4209 BENEFIT estimates the savings from deleting this insn.
4210 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4211 into a register or is used as a memory address.
4212
4213 SRC_REG is the biv reg which the giv is computed from.
4214 DEST_REG is the giv's reg (if the giv is stored in a reg).
4215 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4216 LOCATION points to the place where this giv's value appears in INSN. */
4217
4218static void
4219record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4220 type, not_every_iteration, location, loop_start, loop_end)
4221 struct induction *v;
4222 rtx insn;
4223 rtx src_reg;
4224 rtx dest_reg;
4225 rtx mult_val, add_val;
4226 int benefit;
4227 enum g_types type;
4228 int not_every_iteration;
4229 rtx *location;
4230 rtx loop_start, loop_end;
4231{
4232 struct induction *b;
4233 struct iv_class *bl;
4234 rtx set = single_set (insn);
4235 rtx p;
4236
4237 v->insn = insn;
4238 v->src_reg = src_reg;
4239 v->giv_type = type;
4240 v->dest_reg = dest_reg;
4241 v->mult_val = mult_val;
4242 v->add_val = add_val;
4243 v->benefit = benefit;
4244 v->location = location;
4245 v->cant_derive = 0;
4246 v->combined_with = 0;
4247 v->maybe_multiple = 0;
4248 v->maybe_dead = 0;
4249 v->derive_adjustment = 0;
4250 v->same = 0;
4251 v->ignore = 0;
4252 v->new_reg = 0;
4253 v->final_value = 0;
4254
4255 /* The v->always_computable field is used in update_giv_derive, to
4256 determine whether a giv can be used to derive another giv. For a
4257 DEST_REG giv, INSN computes a new value for the giv, so its value
4258 isn't computable if INSN insn't executed every iteration.
4259 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4260 it does not compute a new value. Hence the value is always computable
4261 regardless of whether INSN is executed each iteration. */
4262
4263 if (type == DEST_ADDR)
4264 v->always_computable = 1;
4265 else
4266 v->always_computable = ! not_every_iteration;
4267
4268 if (type == DEST_ADDR)
4269 {
4270 v->mode = GET_MODE (*location);
4271 v->lifetime = 1;
4272 v->times_used = 1;
4273 }
4274 else /* type == DEST_REG */
4275 {
4276 v->mode = GET_MODE (SET_DEST (set));
4277
4278 v->lifetime = (uid_luid[regno_last_uid[REGNO (dest_reg)]]
4279 - uid_luid[regno_first_uid[REGNO (dest_reg)]]);
4280
4281 v->times_used = n_times_used[REGNO (dest_reg)];
4282
4283 /* If the lifetime is zero, it means that this register is
4284 really a dead store. So mark this as a giv that can be
4285 ignored. This will not prevent the biv from being eliminated. */
4286 if (v->lifetime == 0)
4287 v->ignore = 1;
4288
4289 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4290 reg_iv_info[REGNO (dest_reg)] = v;
4291 }
4292
4293 /* Add the giv to the class of givs computed from one biv. */
4294
4295 bl = reg_biv_class[REGNO (src_reg)];
4296 if (bl)
4297 {
4298 v->next_iv = bl->giv;
4299 bl->giv = v;
4300 /* Don't count DEST_ADDR. This is supposed to count the number of
4301 insns that calculate givs. */
4302 if (type == DEST_REG)
4303 bl->giv_count++;
4304 bl->total_benefit += benefit;
4305 }
4306 else
4307 /* Fatal error, biv missing for this giv? */
4308 abort ();
4309
4310 if (type == DEST_ADDR)
4311 v->replaceable = 1;
4312 else
4313 {
4314 /* The giv can be replaced outright by the reduced register only if all
4315 of the following conditions are true:
4316 - the insn that sets the giv is always executed on any iteration
4317 on which the giv is used at all
4318 (there are two ways to deduce this:
4319 either the insn is executed on every iteration,
4320 or all uses follow that insn in the same basic block),
4321 - the giv is not used outside the loop
4322 - no assignments to the biv occur during the giv's lifetime. */
4323
4324 if (regno_first_uid[REGNO (dest_reg)] == INSN_UID (insn)
4325 /* Previous line always fails if INSN was moved by loop opt. */
4326 && uid_luid[regno_last_uid[REGNO (dest_reg)]] < INSN_LUID (loop_end)
4327 && (! not_every_iteration
4328 || last_use_this_basic_block (dest_reg, insn)))
4329 {
4330 /* Now check that there are no assignments to the biv within the
4331 giv's lifetime. This requires two separate checks. */
4332
4333 /* Check each biv update, and fail if any are between the first
4334 and last use of the giv.
4335
4336 If this loop contains an inner loop that was unrolled, then
4337 the insn modifying the biv may have been emitted by the loop
4338 unrolling code, and hence does not have a valid luid. Just
4339 mark the biv as not replaceable in this case. It is not very
4340 useful as a biv, because it is used in two different loops.
4341 It is very unlikely that we would be able to optimize the giv
4342 using this biv anyways. */
4343
4344 v->replaceable = 1;
4345 for (b = bl->biv; b; b = b->next_iv)
4346 {
4347 if (INSN_UID (b->insn) >= max_uid_for_loop
4348 || ((uid_luid[INSN_UID (b->insn)]
4349 >= uid_luid[regno_first_uid[REGNO (dest_reg)]])
4350 && (uid_luid[INSN_UID (b->insn)]
4351 <= uid_luid[regno_last_uid[REGNO (dest_reg)]])))
4352 {
4353 v->replaceable = 0;
4354 v->not_replaceable = 1;
4355 break;
4356 }
4357 }
4358
4359 /* Check each insn between the first and last use of the giv,
4360 and fail if any of them are branches that jump to a named label
4361 outside this range, but still inside the loop. This catches
4362 cases of spaghetti code where the execution order of insns
4363 is not linear, and hence the above test fails. For example,
4364 in the following code, j is not replaceable:
4365 for (i = 0; i < 100; ) {
4366 L0: j = 4*i; goto L1;
4367 L2: k = j; goto L3;
4368 L1: i++; goto L2;
4369 L3: ; }
4370 printf ("k = %d\n", k); }
4371 This test is conservative, but this test succeeds rarely enough
4372 that it isn't a problem. See also check_final_value below. */
4373
4374 if (v->replaceable)
4375 for (p = insn;
4376 INSN_UID (p) >= max_uid_for_loop
4377 || INSN_LUID (p) < uid_luid[regno_last_uid[REGNO (dest_reg)]];
4378 p = NEXT_INSN (p))
4379 {
4380 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4381 && LABEL_NAME (JUMP_LABEL (p))
4382 && ((INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start)
4383 && (INSN_LUID (JUMP_LABEL (p))
4384 < uid_luid[regno_first_uid[REGNO (dest_reg)]]))
4385 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end)
4386 && (INSN_LUID (JUMP_LABEL (p))
4387 > uid_luid[regno_last_uid[REGNO (dest_reg)]]))))
4388 {
4389 v->replaceable = 0;
4390 v->not_replaceable = 1;
4391
4392 if (loop_dump_stream)
4393 fprintf (loop_dump_stream,
4394 "Found branch outside giv lifetime.\n");
4395
4396 break;
4397 }
4398 }
4399 }
4400 else
4401 {
4402 /* May still be replaceable, we don't have enough info here to
4403 decide. */
4404 v->replaceable = 0;
4405 v->not_replaceable = 0;
4406 }
4407 }
4408
4409 if (loop_dump_stream)
4410 {
4411 if (type == DEST_REG)
4412 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4413 INSN_UID (insn), REGNO (dest_reg));
4414 else
4415 fprintf (loop_dump_stream, "Insn %d: dest address",
4416 INSN_UID (insn));
4417
4418 fprintf (loop_dump_stream, " src reg %d benefit %d",
4419 REGNO (src_reg), v->benefit);
4420 fprintf (loop_dump_stream, " used %d lifetime %d",
4421 v->times_used, v->lifetime);
4422
4423 if (v->replaceable)
4424 fprintf (loop_dump_stream, " replaceable");
4425
4426 if (GET_CODE (mult_val) == CONST_INT)
4427 fprintf (loop_dump_stream, " mult %d",
4428 INTVAL (mult_val));
4429 else
4430 {
4431 fprintf (loop_dump_stream, " mult ");
4432 print_rtl (loop_dump_stream, mult_val);
4433 }
4434
4435 if (GET_CODE (add_val) == CONST_INT)
4436 fprintf (loop_dump_stream, " add %d",
4437 INTVAL (add_val));
4438 else
4439 {
4440 fprintf (loop_dump_stream, " add ");
4441 print_rtl (loop_dump_stream, add_val);
4442 }
4443 }
4444
4445 if (loop_dump_stream)
4446 fprintf (loop_dump_stream, "\n");
4447
4448}
4449
4450
4451/* All this does is determine whether a giv can be made replaceable because
4452 its final value can be calculated. This code can not be part of record_giv
4453 above, because final_giv_value requires that the number of loop iterations
4454 be known, and that can not be accurately calculated until after all givs
4455 have been identified. */
4456
4457static void
4458check_final_value (v, loop_start, loop_end)
4459 struct induction *v;
4460 rtx loop_start, loop_end;
4461{
4462 struct iv_class *bl;
4463 rtx final_value = 0;
4464 rtx tem;
4465
4466 bl = reg_biv_class[REGNO (v->src_reg)];
4467
4468 /* DEST_ADDR givs will never reach here, because they are always marked
4469 replaceable above in record_giv. */
4470
4471 /* The giv can be replaced outright by the reduced register only if all
4472 of the following conditions are true:
4473 - the insn that sets the giv is always executed on any iteration
4474 on which the giv is used at all
4475 (there are two ways to deduce this:
4476 either the insn is executed on every iteration,
4477 or all uses follow that insn in the same basic block),
4478 - its final value can be calculated (this condition is different
4479 than the one above in record_giv)
4480 - no assignments to the biv occur during the giv's lifetime. */
4481
4482#if 0
4483 /* This is only called now when replaceable is known to be false. */
4484 /* Clear replaceable, so that it won't confuse final_giv_value. */
4485 v->replaceable = 0;
4486#endif
4487
4488 if ((final_value = final_giv_value (v, loop_start, loop_end))
4489 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4490 {
4491 int biv_increment_seen = 0;
4492 rtx p = v->insn;
4493 rtx last_giv_use;
4494
4495 v->replaceable = 1;
4496
4497 /* When trying to determine whether or not a biv increment occurs
4498 during the lifetime of the giv, we can ignore uses of the variable
4499 outside the loop because final_value is true. Hence we can not
4500 use regno_last_uid and regno_first_uid as above in record_giv. */
4501
4502 /* Search the loop to determine whether any assignments to the
4503 biv occur during the giv's lifetime. Start with the insn
4504 that sets the giv, and search around the loop until we come
4505 back to that insn again.
4506
4507 Also fail if there is a jump within the giv's lifetime that jumps
4508 to somewhere outside the lifetime but still within the loop. This
4509 catches spaghetti code where the execution order is not linear, and
4510 hence the above test fails. Here we assume that the giv lifetime
4511 does not extend from one iteration of the loop to the next, so as
4512 to make the test easier. Since the lifetime isn't known yet,
4513 this requires two loops. See also record_giv above. */
4514
4515 last_giv_use = v->insn;
4516
4517 while (1)
4518 {
4519 p = NEXT_INSN (p);
4520 if (p == loop_end)
4521 p = NEXT_INSN (loop_start);
4522 if (p == v->insn)
4523 break;
4524
4525 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4526 || GET_CODE (p) == CALL_INSN)
4527 {
4528 if (biv_increment_seen)
4529 {
4530 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4531 {
4532 v->replaceable = 0;
4533 v->not_replaceable = 1;
4534 break;
4535 }
4536 }
4537 else if (GET_CODE (PATTERN (p)) == SET
4538 && SET_DEST (PATTERN (p)) == v->src_reg)
4539 biv_increment_seen = 1;
4540 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4541 last_giv_use = p;
4542 }
4543 }
4544
4545 /* Now that the lifetime of the giv is known, check for branches
4546 from within the lifetime to outside the lifetime if it is still
4547 replaceable. */
4548
4549 if (v->replaceable)
4550 {
4551 p = v->insn;
4552 while (1)
4553 {
4554 p = NEXT_INSN (p);
4555 if (p == loop_end)
4556 p = NEXT_INSN (loop_start);
4557 if (p == last_giv_use)
4558 break;
4559
4560 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4561 && LABEL_NAME (JUMP_LABEL (p))
4562 && ((INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4563 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4564 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4565 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4566 {
4567 v->replaceable = 0;
4568 v->not_replaceable = 1;
4569
4570 if (loop_dump_stream)
4571 fprintf (loop_dump_stream,
4572 "Found branch outside giv lifetime.\n");
4573
4574 break;
4575 }
4576 }
4577 }
4578
4579 /* If it is replaceable, then save the final value. */
4580 if (v->replaceable)
4581 v->final_value = final_value;
4582 }
4583
4584 if (loop_dump_stream && v->replaceable)
4585 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4586 INSN_UID (v->insn), REGNO (v->dest_reg));
4587}
4588\f
4589/* Update the status of whether a giv can derive other givs.
4590
4591 We need to do something special if there is or may be an update to the biv
4592 between the time the giv is defined and the time it is used to derive
4593 another giv.
4594
4595 In addition, a giv that is only conditionally set is not allowed to
4596 derive another giv once a label has been passed.
4597
4598 The cases we look at are when a label or an update to a biv is passed. */
4599
4600static void
4601update_giv_derive (p)
4602 rtx p;
4603{
4604 struct iv_class *bl;
4605 struct induction *biv, *giv;
4606 rtx tem;
4607 int dummy;
4608
4609 /* Search all IV classes, then all bivs, and finally all givs.
4610
4611 There are three cases we are concerned with. First we have the situation
4612 of a giv that is only updated conditionally. In that case, it may not
4613 derive any givs after a label is passed.
4614
4615 The second case is when a biv update occurs, or may occur, after the
4616 definition of a giv. For certain biv updates (see below) that are
4617 known to occur between the giv definition and use, we can adjust the
4618 giv definition. For others, or when the biv update is conditional,
4619 we must prevent the giv from deriving any other givs. There are two
4620 sub-cases within this case.
4621
4622 If this is a label, we are concerned with any biv update that is done
4623 conditionally, since it may be done after the giv is defined followed by
4624 a branch here (actually, we need to pass both a jump and a label, but
4625 this extra tracking doesn't seem worth it).
4626
4627 If this is a jump, we are concerned about any biv update that may be
4628 executed multiple times. We are actually only concerned about
4629 backward jumps, but it is probably not worth performing the test
4630 on the jump again here.
4631
4632 If this is a biv update, we must adjust the giv status to show that a
4633 subsequent biv update was performed. If this adjustment cannot be done,
4634 the giv cannot derive further givs. */
4635
4636 for (bl = loop_iv_list; bl; bl = bl->next)
4637 for (biv = bl->biv; biv; biv = biv->next_iv)
4638 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
4639 || biv->insn == p)
4640 {
4641 for (giv = bl->giv; giv; giv = giv->next_iv)
4642 {
4643 /* If cant_derive is already true, there is no point in
4644 checking all of these conditions again. */
4645 if (giv->cant_derive)
4646 continue;
4647
4648 /* If this giv is conditionally set and we have passed a label,
4649 it cannot derive anything. */
4650 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
4651 giv->cant_derive = 1;
4652
4653 /* Skip givs that have mult_val == 0, since
4654 they are really invariants. Also skip those that are
4655 replaceable, since we know their lifetime doesn't contain
4656 any biv update. */
4657 else if (giv->mult_val == const0_rtx || giv->replaceable)
4658 continue;
4659
4660 /* The only way we can allow this giv to derive another
4661 is if this is a biv increment and we can form the product
4662 of biv->add_val and giv->mult_val. In this case, we will
4663 be able to compute a compensation. */
4664 else if (biv->insn == p)
4665 {
4666 tem = 0;
4667
4668 if (biv->mult_val == const1_rtx)
4669 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
4670 biv->add_val,
4671 giv->mult_val),
4672 &dummy);
4673
4674 if (tem && giv->derive_adjustment)
4675 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
4676 giv->derive_adjustment),
4677 &dummy);
4678 if (tem)
4679 giv->derive_adjustment = tem;
4680 else
4681 giv->cant_derive = 1;
4682 }
4683 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
4684 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
4685 giv->cant_derive = 1;
4686 }
4687 }
4688}
4689\f
4690/* Check whether an insn is an increment legitimate for a basic induction var.
4691 X is the source of insn P.
4692 DEST_REG is the putative biv, also the destination of the insn.
4693 We accept patterns of these forms:
4694 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
4695 REG = INVARIANT + REG
4696
4697 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
4698 and store the additive term into *INC_VAL.
4699
4700 If X is an assignment of an invariant into DEST_REG, we set
4701 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
4702
4703 We also want to detect a BIV when it corresponds to a variable
4704 whose mode was promoted via PROMOTED_MODE. In that case, an increment
4705 of the variable may be a PLUS that adds a SUBREG of that variable to
4706 an invariant and then sign- or zero-extends the result of the PLUS
4707 into the variable.
4708
4709 Most GIVs in such cases will be in the promoted mode, since that is the
4710 probably the natural computation mode (and almost certainly the mode
4711 used for addresses) on the machine. So we view the pseudo-reg containing
4712 the variable as the BIV, as if it were simply incremented.
4713
4714 Note that treating the entire pseudo as a BIV will result in making
4715 simple increments to any GIVs based on it. However, if the variable
4716 overflows in its declared mode but not its promoted mode, the result will
4717 be incorrect. This is acceptable if the variable is signed, since
4718 overflows in such cases are undefined, but not if it is unsigned, since
4719 those overflows are defined. So we only check for SIGN_EXTEND and
4720 not ZERO_EXTEND.
4721
4722 If we cannot find a biv, we return 0. */
4723
4724static int
4725basic_induction_var (x, dest_reg, p, inc_val, mult_val)
4726 register rtx x;
4727 rtx p;
4728 rtx dest_reg;
4729 rtx *inc_val;
4730 rtx *mult_val;
4731{
4732 register enum rtx_code code;
4733 rtx arg;
4734 rtx insn, set = 0;
4735
4736 code = GET_CODE (x);
4737 switch (code)
4738 {
4739 case PLUS:
4740 if (XEXP (x, 0) == dest_reg
4741 || (GET_CODE (XEXP (x, 0)) == SUBREG
4742 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
4743 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
4744 arg = XEXP (x, 1);
4745 else if (XEXP (x, 1) == dest_reg
4746 || (GET_CODE (XEXP (x, 1)) == SUBREG
4747 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
4748 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
4749 arg = XEXP (x, 0);
4750 else
4751 return 0;
4752
4753 if (invariant_p (arg) != 1)
4754 return 0;
4755
4756 *inc_val = convert_to_mode (GET_MODE (dest_reg), arg, 0);;
4757 *mult_val = const1_rtx;
4758 return 1;
4759
4760 case SUBREG:
4761 /* If this is a SUBREG for a promoted variable, check the inner
4762 value. */
4763 if (SUBREG_PROMOTED_VAR_P (x))
4764 return basic_induction_var (SUBREG_REG (x), dest_reg, p,
4765 inc_val, mult_val);
4766
4767 case REG:
4768 /* If this register is assigned in the previous insn, look at its
4769 source, but don't go outside the loop or past a label. */
4770
4771 for (insn = PREV_INSN (p);
4772 (insn && GET_CODE (insn) == NOTE
4773 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4774 insn = PREV_INSN (insn))
4775 ;
4776
4777 if (insn)
4778 set = single_set (insn);
4779
4780 if (set != 0 && SET_DEST (set) == x)
4781 return basic_induction_var (SET_SRC (set), dest_reg, insn,
4782 inc_val, mult_val);
4783 /* ... fall through ... */
4784
4785 /* Can accept constant setting of biv only when inside inner most loop.
4786 Otherwise, a biv of an inner loop may be incorrectly recognized
4787 as a biv of the outer loop,
4788 causing code to be moved INTO the inner loop. */
4789 case MEM:
4790 if (invariant_p (x) != 1)
4791 return 0;
4792 case CONST_INT:
4793 case SYMBOL_REF:
4794 case CONST:
4795 if (loops_enclosed == 1)
4796 {
4797 *inc_val = convert_to_mode (GET_MODE (dest_reg), x, 0);;
4798 *mult_val = const0_rtx;
4799 return 1;
4800 }
4801 else
4802 return 0;
4803
4804 case SIGN_EXTEND:
4805 return basic_induction_var (XEXP (x, 0), dest_reg, p,
4806 inc_val, mult_val);
4807 case ASHIFTRT:
4808 /* Similar, since this can be a sign extension. */
4809 for (insn = PREV_INSN (p);
4810 (insn && GET_CODE (insn) == NOTE
4811 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4812 insn = PREV_INSN (insn))
4813 ;
4814
4815 if (insn)
4816 set = single_set (insn);
4817
4818 if (set && SET_DEST (set) == XEXP (x, 0)
4819 && GET_CODE (XEXP (x, 1)) == CONST_INT
4820 && INTVAL (XEXP (x, 1)) >= 0
4821 && GET_CODE (SET_SRC (set)) == ASHIFT
4822 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
4823 return basic_induction_var (XEXP (SET_SRC (set), 0), dest_reg, insn,
4824 inc_val, mult_val);
4825 return 0;
4826
4827 default:
4828 return 0;
4829 }
4830}
4831\f
4832/* A general induction variable (giv) is any quantity that is a linear
4833 function of a basic induction variable,
4834 i.e. giv = biv * mult_val + add_val.
4835 The coefficients can be any loop invariant quantity.
4836 A giv need not be computed directly from the biv;
4837 it can be computed by way of other givs. */
4838
4839/* Determine whether X computes a giv.
4840 If it does, return a nonzero value
4841 which is the benefit from eliminating the computation of X;
4842 set *SRC_REG to the register of the biv that it is computed from;
4843 set *ADD_VAL and *MULT_VAL to the coefficients,
4844 such that the value of X is biv * mult + add; */
4845
4846static int
4847general_induction_var (x, src_reg, add_val, mult_val)
4848 rtx x;
4849 rtx *src_reg;
4850 rtx *add_val;
4851 rtx *mult_val;
4852{
4853 rtx orig_x = x;
4854 int benefit = 0;
4855 char *storage;
4856
4857 /* If this is an invariant, forget it, it isn't a giv. */
4858 if (invariant_p (x) == 1)
4859 return 0;
4860
4861 /* See if the expression could be a giv and get its form.
4862 Mark our place on the obstack in case we don't find a giv. */
4863 storage = (char *) oballoc (0);
4864 x = simplify_giv_expr (x, &benefit);
4865 if (x == 0)
4866 {
4867 obfree (storage);
4868 return 0;
4869 }
4870
4871 switch (GET_CODE (x))
4872 {
4873 case USE:
4874 case CONST_INT:
4875 /* Since this is now an invariant and wasn't before, it must be a giv
4876 with MULT_VAL == 0. It doesn't matter which BIV we associate this
4877 with. */
4878 *src_reg = loop_iv_list->biv->dest_reg;
4879 *mult_val = const0_rtx;
4880 *add_val = x;
4881 break;
4882
4883 case REG:
4884 /* This is equivalent to a BIV. */
4885 *src_reg = x;
4886 *mult_val = const1_rtx;
4887 *add_val = const0_rtx;
4888 break;
4889
4890 case PLUS:
4891 /* Either (plus (biv) (invar)) or
4892 (plus (mult (biv) (invar_1)) (invar_2)). */
4893 if (GET_CODE (XEXP (x, 0)) == MULT)
4894 {
4895 *src_reg = XEXP (XEXP (x, 0), 0);
4896 *mult_val = XEXP (XEXP (x, 0), 1);
4897 }
4898 else
4899 {
4900 *src_reg = XEXP (x, 0);
4901 *mult_val = const1_rtx;
4902 }
4903 *add_val = XEXP (x, 1);
4904 break;
4905
4906 case MULT:
4907 /* ADD_VAL is zero. */
4908 *src_reg = XEXP (x, 0);
4909 *mult_val = XEXP (x, 1);
4910 *add_val = const0_rtx;
4911 break;
4912
4913 default:
4914 abort ();
4915 }
4916
4917 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
4918 unless they are CONST_INT). */
4919 if (GET_CODE (*add_val) == USE)
4920 *add_val = XEXP (*add_val, 0);
4921 if (GET_CODE (*mult_val) == USE)
4922 *mult_val = XEXP (*mult_val, 0);
4923
4924 benefit += rtx_cost (orig_x, SET);
4925
4926 /* Always return some benefit if this is a giv so it will be detected
4927 as such. This allows elimination of bivs that might otherwise
4928 not be eliminated. */
4929 return benefit == 0 ? 1 : benefit;
4930}
4931\f
4932/* Given an expression, X, try to form it as a linear function of a biv.
4933 We will canonicalize it to be of the form
4934 (plus (mult (BIV) (invar_1))
4935 (invar_2))
4936 with possible degeneracies.
4937
4938 The invariant expressions must each be of a form that can be used as a
4939 machine operand. We surround then with a USE rtx (a hack, but localized
4940 and certainly unambiguous!) if not a CONST_INT for simplicity in this
4941 routine; it is the caller's responsibility to strip them.
4942
4943 If no such canonicalization is possible (i.e., two biv's are used or an
4944 expression that is neither invariant nor a biv or giv), this routine
4945 returns 0.
4946
4947 For a non-zero return, the result will have a code of CONST_INT, USE,
4948 REG (for a BIV), PLUS, or MULT. No other codes will occur.
4949
4950 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
4951
4952static rtx
4953simplify_giv_expr (x, benefit)
4954 rtx x;
4955 int *benefit;
4956{
4957 enum machine_mode mode = GET_MODE (x);
4958 rtx arg0, arg1;
4959 rtx tem;
4960
4961 /* If this is not an integer mode, or if we cannot do arithmetic in this
4962 mode, this can't be a giv. */
4963 if (mode != VOIDmode
4964 && (GET_MODE_CLASS (mode) != MODE_INT
4965 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
4966 return 0;
4967
4968 switch (GET_CODE (x))
4969 {
4970 case PLUS:
4971 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
4972 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
4973 if (arg0 == 0 || arg1 == 0)
4974 return 0;
4975
4976 /* Put constant last, CONST_INT last if both constant. */
4977 if ((GET_CODE (arg0) == USE
4978 || GET_CODE (arg0) == CONST_INT)
4979 && GET_CODE (arg1) != CONST_INT)
4980 tem = arg0, arg0 = arg1, arg1 = tem;
4981
4982 /* Handle addition of zero, then addition of an invariant. */
4983 if (arg1 == const0_rtx)
4984 return arg0;
4985 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
4986 switch (GET_CODE (arg0))
4987 {
4988 case CONST_INT:
4989 case USE:
4990 /* Both invariant. Only valid if sum is machine operand.
4991 First strip off possible USE on first operand. */
4992 if (GET_CODE (arg0) == USE)
4993 arg0 = XEXP (arg0, 0);
4994
4995 tem = 0;
4996 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
4997 {
4998 tem = plus_constant (arg0, INTVAL (arg1));
4999 if (GET_CODE (tem) != CONST_INT)
5000 tem = gen_rtx (USE, mode, tem);
5001 }
5002
5003 return tem;
5004
5005 case REG:
5006 case MULT:
5007 /* biv + invar or mult + invar. Return sum. */
5008 return gen_rtx (PLUS, mode, arg0, arg1);
5009
5010 case PLUS:
5011 /* (a + invar_1) + invar_2. Associate. */
5012 return simplify_giv_expr (gen_rtx (PLUS, mode,
5013 XEXP (arg0, 0),
5014 gen_rtx (PLUS, mode,
5015 XEXP (arg0, 1), arg1)),
5016 benefit);
5017
5018 default:
5019 abort ();
5020 }
5021
5022 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5023 MULT to reduce cases. */
5024 if (GET_CODE (arg0) == REG)
5025 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5026 if (GET_CODE (arg1) == REG)
5027 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5028
5029 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5030 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5031 Recurse to associate the second PLUS. */
5032 if (GET_CODE (arg1) == MULT)
5033 tem = arg0, arg0 = arg1, arg1 = tem;
5034
5035 if (GET_CODE (arg1) == PLUS)
5036 return simplify_giv_expr (gen_rtx (PLUS, mode,
5037 gen_rtx (PLUS, mode,
5038 arg0, XEXP (arg1, 0)),
5039 XEXP (arg1, 1)),
5040 benefit);
5041
5042 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5043 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5044 abort ();
5045
5046 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5047 return 0;
5048
5049 return simplify_giv_expr (gen_rtx (MULT, mode,
5050 XEXP (arg0, 0),
5051 gen_rtx (PLUS, mode,
5052 XEXP (arg0, 1),
5053 XEXP (arg1, 1))),
5054 benefit);
5055
5056 case MINUS:
5057 /* Handle "a - b" as "a + b * (-1)". */
5058 return simplify_giv_expr (gen_rtx (PLUS, mode,
5059 XEXP (x, 0),
5060 gen_rtx (MULT, mode,
5061 XEXP (x, 1), constm1_rtx)),
5062 benefit);
5063
5064 case MULT:
5065 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5066 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5067 if (arg0 == 0 || arg1 == 0)
5068 return 0;
5069
5070 /* Put constant last, CONST_INT last if both constant. */
5071 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5072 && GET_CODE (arg1) != CONST_INT)
5073 tem = arg0, arg0 = arg1, arg1 = tem;
5074
5075 /* If second argument is not now constant, not giv. */
5076 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5077 return 0;
5078
5079 /* Handle multiply by 0 or 1. */
5080 if (arg1 == const0_rtx)
5081 return const0_rtx;
5082
5083 else if (arg1 == const1_rtx)
5084 return arg0;
5085
5086 switch (GET_CODE (arg0))
5087 {
5088 case REG:
5089 /* biv * invar. Done. */
5090 return gen_rtx (MULT, mode, arg0, arg1);
5091
5092 case CONST_INT:
5093 /* Product of two constants. */
5094 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5095
5096 case USE:
5097 /* invar * invar. Not giv. */
5098 return 0;
5099
5100 case MULT:
5101 /* (a * invar_1) * invar_2. Associate. */
5102 return simplify_giv_expr (gen_rtx (MULT, mode,
5103 XEXP (arg0, 0),
5104 gen_rtx (MULT, mode,
5105 XEXP (arg0, 1), arg1)),
5106 benefit);
5107
5108 case PLUS:
5109 /* (a + invar_1) * invar_2. Distribute. */
5110 return simplify_giv_expr (gen_rtx (PLUS, mode,
5111 gen_rtx (MULT, mode,
5112 XEXP (arg0, 0), arg1),
5113 gen_rtx (MULT, mode,
5114 XEXP (arg0, 1), arg1)),
5115 benefit);
5116
5117 default:
5118 abort ();
5119 }
5120
5121 case ASHIFT:
5122 case LSHIFT:
5123 /* Shift by constant is multiply by power of two. */
5124 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5125 return 0;
5126
5127 return simplify_giv_expr (gen_rtx (MULT, mode,
5128 XEXP (x, 0),
5129 GEN_INT ((HOST_WIDE_INT) 1
5130 << INTVAL (XEXP (x, 1)))),
5131 benefit);
5132
5133 case NEG:
5134 /* "-a" is "a * (-1)" */
5135 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
5136 benefit);
5137
5138 case NOT:
5139 /* "~a" is "-a - 1". Silly, but easy. */
5140 return simplify_giv_expr (gen_rtx (MINUS, mode,
5141 gen_rtx (NEG, mode, XEXP (x, 0)),
5142 const1_rtx),
5143 benefit);
5144
5145 case USE:
5146 /* Already in proper form for invariant. */
5147 return x;
5148
5149 case REG:
5150 /* If this is a new register, we can't deal with it. */
5151 if (REGNO (x) >= max_reg_before_loop)
5152 return 0;
5153
5154 /* Check for biv or giv. */
5155 switch (reg_iv_type[REGNO (x)])
5156 {
5157 case BASIC_INDUCT:
5158 return x;
5159 case GENERAL_INDUCT:
5160 {
5161 struct induction *v = reg_iv_info[REGNO (x)];
5162
5163 /* Form expression from giv and add benefit. Ensure this giv
5164 can derive another and subtract any needed adjustment if so. */
5165 *benefit += v->benefit;
5166 if (v->cant_derive)
5167 return 0;
5168
5169 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5170 v->src_reg, v->mult_val),
5171 v->add_val);
5172 if (v->derive_adjustment)
5173 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5174 return simplify_giv_expr (tem, benefit);
5175 }
5176 }
5177
5178 /* Fall through to general case. */
5179 default:
5180 /* If invariant, return as USE (unless CONST_INT).
5181 Otherwise, not giv. */
5182 if (GET_CODE (x) == USE)
5183 x = XEXP (x, 0);
5184
5185 if (invariant_p (x) == 1)
5186 {
5187 if (GET_CODE (x) == CONST_INT)
5188 return x;
5189 else
5190 return gen_rtx (USE, mode, x);
5191 }
5192 else
5193 return 0;
5194 }
5195}
5196\f
5197/* Help detect a giv that is calculated by several consecutive insns;
5198 for example,
5199 giv = biv * M
5200 giv = giv + A
5201 The caller has already identified the first insn P as having a giv as dest;
5202 we check that all other insns that set the same register follow
5203 immediately after P, that they alter nothing else,
5204 and that the result of the last is still a giv.
5205
5206 The value is 0 if the reg set in P is not really a giv.
5207 Otherwise, the value is the amount gained by eliminating
5208 all the consecutive insns that compute the value.
5209
5210 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5211 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5212
5213 The coefficients of the ultimate giv value are stored in
5214 *MULT_VAL and *ADD_VAL. */
5215
5216static int
5217consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5218 add_val, mult_val)
5219 int first_benefit;
5220 rtx p;
5221 rtx src_reg;
5222 rtx dest_reg;
5223 rtx *add_val;
5224 rtx *mult_val;
5225{
5226 int count;
5227 enum rtx_code code;
5228 int benefit;
5229 rtx temp;
5230 rtx set;
5231
5232 /* Indicate that this is a giv so that we can update the value produced in
5233 each insn of the multi-insn sequence.
5234
5235 This induction structure will be used only by the call to
5236 general_induction_var below, so we can allocate it on our stack.
5237 If this is a giv, our caller will replace the induct var entry with
5238 a new induction structure. */
5239 struct induction *v
5240 = (struct induction *) alloca (sizeof (struct induction));
5241 v->src_reg = src_reg;
5242 v->mult_val = *mult_val;
5243 v->add_val = *add_val;
5244 v->benefit = first_benefit;
5245 v->cant_derive = 0;
5246 v->derive_adjustment = 0;
5247
5248 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5249 reg_iv_info[REGNO (dest_reg)] = v;
5250
5251 count = n_times_set[REGNO (dest_reg)] - 1;
5252
5253 while (count > 0)
5254 {
5255 p = NEXT_INSN (p);
5256 code = GET_CODE (p);
5257
5258 /* If libcall, skip to end of call sequence. */
5259 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5260 p = XEXP (temp, 0);
5261
5262 if (code == INSN
5263 && (set = single_set (p))
5264 && GET_CODE (SET_DEST (set)) == REG
5265 && SET_DEST (set) == dest_reg
5266 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5267 add_val, mult_val))
5268 /* Giv created by equivalent expression. */
5269 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5270 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5271 add_val, mult_val))))
5272 && src_reg == v->src_reg)
5273 {
5274 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5275 benefit += libcall_benefit (p);
5276
5277 count--;
5278 v->mult_val = *mult_val;
5279 v->add_val = *add_val;
5280 v->benefit = benefit;
5281 }
5282 else if (code != NOTE)
5283 {
5284 /* Allow insns that set something other than this giv to a
5285 constant. Such insns are needed on machines which cannot
5286 include long constants and should not disqualify a giv. */
5287 if (code == INSN
5288 && (set = single_set (p))
5289 && SET_DEST (set) != dest_reg
5290 && CONSTANT_P (SET_SRC (set)))
5291 continue;
5292
5293 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5294 return 0;
5295 }
5296 }
5297
5298 return v->benefit;
5299}
5300\f
5301/* Return an rtx, if any, that expresses giv G2 as a function of the register
5302 represented by G1. If no such expression can be found, or it is clear that
5303 it cannot possibly be a valid address, 0 is returned.
5304
5305 To perform the computation, we note that
5306 G1 = a * v + b and
5307 G2 = c * v + d
5308 where `v' is the biv.
5309
5310 So G2 = (c/a) * G1 + (d - b*c/a) */
5311
5312#ifdef ADDRESS_COST
5313static rtx
5314express_from (g1, g2)
5315 struct induction *g1, *g2;
5316{
5317 rtx mult, add;
5318
5319 /* The value that G1 will be multiplied by must be a constant integer. Also,
5320 the only chance we have of getting a valid address is if b*c/a (see above
5321 for notation) is also an integer. */
5322 if (GET_CODE (g1->mult_val) != CONST_INT
5323 || GET_CODE (g2->mult_val) != CONST_INT
5324 || GET_CODE (g1->add_val) != CONST_INT
5325 || g1->mult_val == const0_rtx
5326 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5327 return 0;
5328
5329 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5330 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5331
5332 /* Form simplified final result. */
5333 if (mult == const0_rtx)
5334 return add;
5335 else if (mult == const1_rtx)
5336 mult = g1->dest_reg;
5337 else
5338 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5339
5340 if (add == const0_rtx)
5341 return mult;
5342 else
5343 return gen_rtx (PLUS, g2->mode, mult, add);
5344}
5345#endif
5346\f
5347/* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5348 (either directly or via an address expression) a register used to represent
5349 G1. Set g2->new_reg to a represtation of G1 (normally just
5350 g1->dest_reg). */
5351
5352static int
5353combine_givs_p (g1, g2)
5354 struct induction *g1, *g2;
5355{
5356 rtx tem;
5357
5358 /* If these givs are identical, they can be combined. */
5359 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5360 && rtx_equal_p (g1->add_val, g2->add_val))
5361 {
5362 g2->new_reg = g1->dest_reg;
5363 return 1;
5364 }
5365
5366#ifdef ADDRESS_COST
5367 /* If G2 can be expressed as a function of G1 and that function is valid
5368 as an address and no more expensive than using a register for G2,
5369 the expression of G2 in terms of G1 can be used. */
5370 if (g2->giv_type == DEST_ADDR
5371 && (tem = express_from (g1, g2)) != 0
5372 && memory_address_p (g2->mem_mode, tem)
5373 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5374 {
5375 g2->new_reg = tem;
5376 return 1;
5377 }
5378#endif
5379
5380 return 0;
5381}
5382\f
5383/* Check all pairs of givs for iv_class BL and see if any can be combined with
5384 any other. If so, point SAME to the giv combined with and set NEW_REG to
5385 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5386 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5387
5388static void
5389combine_givs (bl)
5390 struct iv_class *bl;
5391{
5392 struct induction *g1, *g2;
5393 int pass;
5394
5395 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5396 for (pass = 0; pass <= 1; pass++)
5397 for (g2 = bl->giv; g2; g2 = g2->next_iv)
5398 if (g1 != g2
5399 /* First try to combine with replaceable givs, then all givs. */
5400 && (g1->replaceable || pass == 1)
5401 /* If either has already been combined or is to be ignored, can't
5402 combine. */
5403 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5404 /* If something has been based on G2, G2 cannot itself be based
5405 on something else. */
5406 && ! g2->combined_with
5407 && combine_givs_p (g1, g2))
5408 {
5409 /* g2->new_reg set by `combine_givs_p' */
5410 g2->same = g1;
5411 g1->combined_with = 1;
5412 g1->benefit += g2->benefit;
5413 /* ??? The new final_[bg]iv_value code does a much better job
5414 of finding replaceable giv's, and hence this code may no
5415 longer be necessary. */
5416 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5417 g1->benefit -= copy_cost;
5418 g1->lifetime += g2->lifetime;
5419 g1->times_used += g2->times_used;
5420
5421 if (loop_dump_stream)
5422 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5423 INSN_UID (g2->insn), INSN_UID (g1->insn));
5424 }
5425}
5426\f
5427/* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5428
5429void
5430emit_iv_add_mult (b, m, a, reg, insert_before)
5431 rtx b; /* initial value of basic induction variable */
5432 rtx m; /* multiplicative constant */
5433 rtx a; /* additive constant */
5434 rtx reg; /* destination register */
5435 rtx insert_before;
5436{
5437 rtx seq;
5438 rtx result;
5439
5440 /* Prevent unexpected sharing of these rtx. */
5441 a = copy_rtx (a);
5442 b = copy_rtx (b);
5443
5444 /* Increase the lifetime of any invariants moved further in code. */
5445 update_reg_last_use (a, insert_before);
5446 update_reg_last_use (b, insert_before);
5447 update_reg_last_use (m, insert_before);
5448
5449 start_sequence ();
5450 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5451 if (reg != result)
5452 emit_move_insn (reg, result);
5453 seq = gen_sequence ();
5454 end_sequence ();
5455
5456 emit_insn_before (seq, insert_before);
5457}
5458\f
5459/* Test whether A * B can be computed without
5460 an actual multiply insn. Value is 1 if so. */
5461
5462static int
5463product_cheap_p (a, b)
5464 rtx a;
5465 rtx b;
5466{
5467 int i;
5468 rtx tmp;
5469 struct obstack *old_rtl_obstack = rtl_obstack;
5470 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5471 int win = 1;
5472
5473 /* If only one is constant, make it B. */
5474 if (GET_CODE (a) == CONST_INT)
5475 tmp = a, a = b, b = tmp;
5476
5477 /* If first constant, both constant, so don't need multiply. */
5478 if (GET_CODE (a) == CONST_INT)
5479 return 1;
5480
5481 /* If second not constant, neither is constant, so would need multiply. */
5482 if (GET_CODE (b) != CONST_INT)
5483 return 0;
5484
5485 /* One operand is constant, so might not need multiply insn. Generate the
5486 code for the multiply and see if a call or multiply, or long sequence
5487 of insns is generated. */
5488
5489 rtl_obstack = &temp_obstack;
5490 start_sequence ();
5491 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5492 tmp = gen_sequence ();
5493 end_sequence ();
5494
5495 if (GET_CODE (tmp) == SEQUENCE)
5496 {
5497 if (XVEC (tmp, 0) == 0)
5498 win = 1;
5499 else if (XVECLEN (tmp, 0) > 3)
5500 win = 0;
5501 else
5502 for (i = 0; i < XVECLEN (tmp, 0); i++)
5503 {
5504 rtx insn = XVECEXP (tmp, 0, i);
5505
5506 if (GET_CODE (insn) != INSN
5507 || (GET_CODE (PATTERN (insn)) == SET
5508 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5509 || (GET_CODE (PATTERN (insn)) == PARALLEL
5510 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5511 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5512 {
5513 win = 0;
5514 break;
5515 }
5516 }
5517 }
5518 else if (GET_CODE (tmp) == SET
5519 && GET_CODE (SET_SRC (tmp)) == MULT)
5520 win = 0;
5521 else if (GET_CODE (tmp) == PARALLEL
5522 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5523 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5524 win = 0;
5525
5526 /* Free any storage we obtained in generating this multiply and restore rtl
5527 allocation to its normal obstack. */
5528 obstack_free (&temp_obstack, storage);
5529 rtl_obstack = old_rtl_obstack;
5530
5531 return win;
5532}
5533\f
5534/* Check to see if loop can be terminated by a "decrement and branch until
5535 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5536 Also try reversing an increment loop to a decrement loop
5537 to see if the optimization can be performed.
5538 Value is nonzero if optimization was performed. */
5539
5540/* This is useful even if the architecture doesn't have such an insn,
5541 because it might change a loops which increments from 0 to n to a loop
5542 which decrements from n to 0. A loop that decrements to zero is usually
5543 faster than one that increments from zero. */
5544
5545/* ??? This could be rewritten to use some of the loop unrolling procedures,
5546 such as approx_final_value, biv_total_increment, loop_iterations, and
5547 final_[bg]iv_value. */
5548
5549static int
5550check_dbra_loop (loop_end, insn_count, loop_start)
5551 rtx loop_end;
5552 int insn_count;
5553 rtx loop_start;
5554{
5555 struct iv_class *bl;
5556 rtx reg;
5557 rtx jump_label;
5558 rtx final_value;
5559 rtx start_value;
5560 enum rtx_code branch_code;
5561 rtx new_add_val;
5562 rtx comparison;
5563 rtx before_comparison;
5564 rtx p;
5565
5566 /* If last insn is a conditional branch, and the insn before tests a
5567 register value, try to optimize it. Otherwise, we can't do anything. */
5568
5569 comparison = get_condition_for_loop (PREV_INSN (loop_end));
5570 if (comparison == 0)
5571 return 0;
5572
5573 /* Check all of the bivs to see if the compare uses one of them.
5574 Skip biv's set more than once because we can't guarantee that
5575 it will be zero on the last iteration. Also skip if the biv is
5576 used between its update and the test insn. */
5577
5578 for (bl = loop_iv_list; bl; bl = bl->next)
5579 {
5580 if (bl->biv_count == 1
5581 && bl->biv->dest_reg == XEXP (comparison, 0)
5582 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
5583 PREV_INSN (PREV_INSN (loop_end))))
5584 break;
5585 }
5586
5587 if (! bl)
5588 return 0;
5589
5590 /* Look for the case where the basic induction variable is always
5591 nonnegative, and equals zero on the last iteration.
5592 In this case, add a reg_note REG_NONNEG, which allows the
5593 m68k DBRA instruction to be used. */
5594
5595 if (((GET_CODE (comparison) == GT
5596 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5597 && INTVAL (XEXP (comparison, 1)) == -1)
5598 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
5599 && GET_CODE (bl->biv->add_val) == CONST_INT
5600 && INTVAL (bl->biv->add_val) < 0)
5601 {
5602 /* Initial value must be greater than 0,
5603 init_val % -dec_value == 0 to ensure that it equals zero on
5604 the last iteration */
5605
5606 if (GET_CODE (bl->initial_value) == CONST_INT
5607 && INTVAL (bl->initial_value) > 0
5608 && (INTVAL (bl->initial_value) %
5609 (-INTVAL (bl->biv->add_val))) == 0)
5610 {
5611 /* register always nonnegative, add REG_NOTE to branch */
5612 REG_NOTES (PREV_INSN (loop_end))
5613 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5614 REG_NOTES (PREV_INSN (loop_end)));
5615 bl->nonneg = 1;
5616
5617 return 1;
5618 }
5619
5620 /* If the decrement is 1 and the value was tested as >= 0 before
5621 the loop, then we can safely optimize. */
5622 for (p = loop_start; p; p = PREV_INSN (p))
5623 {
5624 if (GET_CODE (p) == CODE_LABEL)
5625 break;
5626 if (GET_CODE (p) != JUMP_INSN)
5627 continue;
5628
5629 before_comparison = get_condition_for_loop (p);
5630 if (before_comparison
5631 && XEXP (before_comparison, 0) == bl->biv->dest_reg
5632 && GET_CODE (before_comparison) == LT
5633 && XEXP (before_comparison, 1) == const0_rtx
5634 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
5635 && INTVAL (bl->biv->add_val) == -1)
5636 {
5637 REG_NOTES (PREV_INSN (loop_end))
5638 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5639 REG_NOTES (PREV_INSN (loop_end)));
5640 bl->nonneg = 1;
5641
5642 return 1;
5643 }
5644 }
5645 }
5646 else if (num_mem_sets <= 1)
5647 {
5648 /* Try to change inc to dec, so can apply above optimization. */
5649 /* Can do this if:
5650 all registers modified are induction variables or invariant,
5651 all memory references have non-overlapping addresses
5652 (obviously true if only one write)
5653 allow 2 insns for the compare/jump at the end of the loop. */
5654 int num_nonfixed_reads = 0;
5655 /* 1 if the iteration var is used only to count iterations. */
5656 int no_use_except_counting = 0;
5657
5658 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5659 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5660 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
5661
5662 if (bl->giv_count == 0
5663 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
5664 {
5665 rtx bivreg = regno_reg_rtx[bl->regno];
5666
5667 /* If there are no givs for this biv, and the only exit is the
5668 fall through at the end of the the loop, then
5669 see if perhaps there are no uses except to count. */
5670 no_use_except_counting = 1;
5671 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5672 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5673 {
5674 rtx set = single_set (p);
5675
5676 if (set && GET_CODE (SET_DEST (set)) == REG
5677 && REGNO (SET_DEST (set)) == bl->regno)
5678 /* An insn that sets the biv is okay. */
5679 ;
5680 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
5681 || p == prev_nonnote_insn (loop_end))
5682 /* Don't bother about the end test. */
5683 ;
5684 else if (reg_mentioned_p (bivreg, PATTERN (p)))
5685 /* Any other use of the biv is no good. */
5686 {
5687 no_use_except_counting = 0;
5688 break;
5689 }
5690 }
5691 }
5692
5693 /* This code only acts for innermost loops. Also it simplifies
5694 the memory address check by only reversing loops with
5695 zero or one memory access.
5696 Two memory accesses could involve parts of the same array,
5697 and that can't be reversed. */
5698
5699 if (num_nonfixed_reads <= 1
5700 && !loop_has_call
5701 && !loop_has_volatile
5702 && (no_use_except_counting
5703 || (bl->giv_count + bl->biv_count + num_mem_sets
5704 + num_movables + 2 == insn_count)))
5705 {
5706 rtx condition = get_condition_for_loop (PREV_INSN (loop_end));
5707 int win;
5708 rtx tem;
5709
5710 /* Loop can be reversed. */
5711 if (loop_dump_stream)
5712 fprintf (loop_dump_stream, "Can reverse loop\n");
5713
5714 /* Now check other conditions:
5715 initial_value must be zero,
5716 final_value % add_val == 0, so that when reversed, the
5717 biv will be zero on the last iteration.
5718
5719 This test can probably be improved since +/- 1 in the constant
5720 can be obtained by changing LT to LE and vice versa; this is
5721 confusing. */
5722
5723 if (comparison && bl->initial_value == const0_rtx
5724 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5725 /* LE gets turned into LT */
5726 && GET_CODE (comparison) == LT
5727 && (INTVAL (XEXP (comparison, 1))
5728 % INTVAL (bl->biv->add_val)) == 0)
5729 {
5730 /* Register will always be nonnegative, with value
5731 0 on last iteration if loop reversed */
5732
5733 /* Save some info needed to produce the new insns. */
5734 reg = bl->biv->dest_reg;
5735 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
5736 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
5737
5738 final_value = XEXP (comparison, 1);
5739 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
5740 - INTVAL (bl->biv->add_val));
5741
5742 /* Initialize biv to start_value before loop start.
5743 The old initializing insn will be deleted as a
5744 dead store by flow.c. */
5745 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
5746
5747 /* Add insn to decrement register, and delete insn
5748 that incremented the register. */
5749 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
5750 bl->biv->insn);
5751 delete_insn (bl->biv->insn);
5752
5753 /* Update biv info to reflect its new status. */
5754 bl->biv->insn = p;
5755 bl->initial_value = start_value;
5756 bl->biv->add_val = new_add_val;
5757
5758 /* Inc LABEL_NUSES so that delete_insn will
5759 not delete the label. */
5760 LABEL_NUSES (XEXP (jump_label, 0)) ++;
5761
5762 /* Emit an insn after the end of the loop to set the biv's
5763 proper exit value if it is used anywhere outside the loop. */
5764 if ((regno_last_uid[bl->regno]
5765 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
5766 || ! bl->init_insn
5767 || regno_first_uid[bl->regno] != INSN_UID (bl->init_insn))
5768 emit_insn_after (gen_move_insn (reg, final_value),
5769 loop_end);
5770
5771 /* Delete compare/branch at end of loop. */
5772 delete_insn (PREV_INSN (loop_end));
5773 delete_insn (PREV_INSN (loop_end));
5774
5775 /* Add new compare/branch insn at end of loop. */
5776 start_sequence ();
5777 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
5778 GET_MODE (reg), 0, 0);
5779 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
5780 tem = gen_sequence ();
5781 end_sequence ();
5782 emit_jump_insn_before (tem, loop_end);
5783
5784 for (tem = PREV_INSN (loop_end);
5785 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
5786 ;
5787 if (tem)
5788 {
5789 JUMP_LABEL (tem) = XEXP (jump_label, 0);
5790
5791 /* Increment of LABEL_NUSES done above. */
5792 /* Register is now always nonnegative,
5793 so add REG_NONNEG note to the branch. */
5794 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5795 REG_NOTES (tem));
5796 }
5797
5798 bl->nonneg = 1;
5799
5800 /* Mark that this biv has been reversed. Each giv which depends
5801 on this biv, and which is also live past the end of the loop
5802 will have to be fixed up. */
5803
5804 bl->reversed = 1;
5805
5806 if (loop_dump_stream)
5807 fprintf (loop_dump_stream,
5808 "Reversed loop and added reg_nonneg\n");
5809
5810 return 1;
5811 }
5812 }
5813 }
5814
5815 return 0;
5816}
5817\f
5818/* Verify whether the biv BL appears to be eliminable,
5819 based on the insns in the loop that refer to it.
5820 LOOP_START is the first insn of the loop, and END is the end insn.
5821
5822 If ELIMINATE_P is non-zero, actually do the elimination.
5823
5824 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
5825 determine whether invariant insns should be placed inside or at the
5826 start of the loop. */
5827
5828static int
5829maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
5830 struct iv_class *bl;
5831 rtx loop_start;
5832 rtx end;
5833 int eliminate_p;
5834 int threshold, insn_count;
5835{
5836 rtx reg = bl->biv->dest_reg;
5837 rtx p, set;
5838 struct induction *v;
5839
5840 /* Scan all insns in the loop, stopping if we find one that uses the
5841 biv in a way that we cannot eliminate. */
5842
5843 for (p = loop_start; p != end; p = NEXT_INSN (p))
5844 {
5845 enum rtx_code code = GET_CODE (p);
5846 rtx where = threshold >= insn_count ? loop_start : p;
5847
5848 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
5849 && reg_mentioned_p (reg, PATTERN (p))
5850 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
5851 {
5852 if (loop_dump_stream)
5853 fprintf (loop_dump_stream,
5854 "Cannot eliminate biv %d: biv used in insn %d.\n",
5855 bl->regno, INSN_UID (p));
5856 break;
5857 }
5858 }
5859
5860 if (p == end)
5861 {
5862 if (loop_dump_stream)
5863 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
5864 bl->regno, eliminate_p ? "was" : "can be");
5865 return 1;
5866 }
5867
5868 return 0;
5869}
5870\f
5871/* If BL appears in X (part of the pattern of INSN), see if we can
5872 eliminate its use. If so, return 1. If not, return 0.
5873
5874 If BIV does not appear in X, return 1.
5875
5876 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
5877 where extra insns should be added. Depending on how many items have been
5878 moved out of the loop, it will either be before INSN or at the start of
5879 the loop. */
5880
5881static int
5882maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
5883 rtx x, insn;
5884 struct iv_class *bl;
5885 int eliminate_p;
5886 rtx where;
5887{
5888 enum rtx_code code = GET_CODE (x);
5889 rtx reg = bl->biv->dest_reg;
5890 enum machine_mode mode = GET_MODE (reg);
5891 struct induction *v;
5892 rtx arg, new, tem;
5893 int arg_operand;
5894 char *fmt;
5895 int i, j;
5896
5897 switch (code)
5898 {
5899 case REG:
5900 /* If we haven't already been able to do something with this BIV,
5901 we can't eliminate it. */
5902 if (x == reg)
5903 return 0;
5904 return 1;
5905
5906 case SET:
5907 /* If this sets the BIV, it is not a problem. */
5908 if (SET_DEST (x) == reg)
5909 return 1;
5910
5911 /* If this is an insn that defines a giv, it is also ok because
5912 it will go away when the giv is reduced. */
5913 for (v = bl->giv; v; v = v->next_iv)
5914 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
5915 return 1;
5916
5917#ifdef HAVE_cc0
5918 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
5919 {
5920 /* Can replace with any giv that was reduced and
5921 that has (MULT_VAL != 0) and (ADD_VAL == 0).
5922 Require a constant for MULT_VAL, so we know it's nonzero. */
5923
5924 for (v = bl->giv; v; v = v->next_iv)
5925 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5926 && v->add_val == const0_rtx
5927 && ! v->ignore && ! v->maybe_dead
5928 && v->mode == mode)
5929 {
5930 if (! eliminate_p)
5931 return 1;
5932
5933 /* If the giv has the opposite direction of change,
5934 then reverse the comparison. */
5935 if (INTVAL (v->mult_val) < 0)
5936 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
5937 const0_rtx, v->new_reg);
5938 else
5939 new = v->new_reg;
5940
5941 /* We can probably test that giv's reduced reg. */
5942 if (validate_change (insn, &SET_SRC (x), new, 0))
5943 return 1;
5944 }
5945
5946 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
5947 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
5948 Require a constant for MULT_VAL, so we know it's nonzero. */
5949
5950 for (v = bl->giv; v; v = v->next_iv)
5951 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5952 && ! v->ignore && ! v->maybe_dead
5953 && v->mode == mode)
5954 {
5955 if (! eliminate_p)
5956 return 1;
5957
5958 /* If the giv has the opposite direction of change,
5959 then reverse the comparison. */
5960 if (INTVAL (v->mult_val) < 0)
5961 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
5962 v->new_reg);
5963 else
5964 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
5965 copy_rtx (v->add_val));
5966
5967 /* Replace biv with the giv's reduced register. */
5968 update_reg_last_use (v->add_val, insn);
5969 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
5970 return 1;
5971
5972 /* Insn doesn't support that constant or invariant. Copy it
5973 into a register (it will be a loop invariant.) */
5974 tem = gen_reg_rtx (GET_MODE (v->new_reg));
5975
5976 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
5977 where);
5978
5979 if (validate_change (insn, &SET_SRC (PATTERN (insn)),
5980 gen_rtx (COMPARE, VOIDmode,
5981 v->new_reg, tem), 0))
5982 return 1;
5983 }
5984 }
5985#endif
5986 break;
5987
5988 case COMPARE:
5989 case EQ: case NE:
5990 case GT: case GE: case GTU: case GEU:
5991 case LT: case LE: case LTU: case LEU:
5992 /* See if either argument is the biv. */
5993 if (XEXP (x, 0) == reg)
5994 arg = XEXP (x, 1), arg_operand = 1;
5995 else if (XEXP (x, 1) == reg)
5996 arg = XEXP (x, 0), arg_operand = 0;
5997 else
5998 break;
5999
6000 if (CONSTANT_P (arg))
6001 {
6002 /* First try to replace with any giv that has constant positive
6003 mult_val and constant add_val. We might be able to support
6004 negative mult_val, but it seems complex to do it in general. */
6005
6006 for (v = bl->giv; v; v = v->next_iv)
6007 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6008 && CONSTANT_P (v->add_val)
6009 && ! v->ignore && ! v->maybe_dead
6010 && v->mode == mode)
6011 {
6012 if (! eliminate_p)
6013 return 1;
6014
6015 /* Replace biv with the giv's reduced reg. */
6016 XEXP (x, 1-arg_operand) = v->new_reg;
6017
6018 /* If all constants are actually constant integers and
6019 the derived constant can be directly placed in the COMPARE,
6020 do so. */
6021 if (GET_CODE (arg) == CONST_INT
6022 && GET_CODE (v->mult_val) == CONST_INT
6023 && GET_CODE (v->add_val) == CONST_INT
6024 && validate_change (insn, &XEXP (x, arg_operand),
6025 GEN_INT (INTVAL (arg)
6026 * INTVAL (v->mult_val)
6027 + INTVAL (v->add_val)), 0))
6028 return 1;
6029
6030 /* Otherwise, load it into a register. */
6031 tem = gen_reg_rtx (mode);
6032 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6033 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6034 return 1;
6035
6036 /* If that failed, put back the change we made above. */
6037 XEXP (x, 1-arg_operand) = reg;
6038 }
6039
6040 /* Look for giv with positive constant mult_val and nonconst add_val.
6041 Insert insns to calculate new compare value. */
6042
6043 for (v = bl->giv; v; v = v->next_iv)
6044 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6045 && ! v->ignore && ! v->maybe_dead
6046 && v->mode == mode)
6047 {
6048 rtx tem;
6049
6050 if (! eliminate_p)
6051 return 1;
6052
6053 tem = gen_reg_rtx (mode);
6054
6055 /* Replace biv with giv's reduced register. */
6056 validate_change (insn, &XEXP (x, 1 - arg_operand),
6057 v->new_reg, 1);
6058
6059 /* Compute value to compare against. */
6060 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6061 /* Use it in this insn. */
6062 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6063 if (apply_change_group ())
6064 return 1;
6065 }
6066 }
6067 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6068 {
6069 if (invariant_p (arg) == 1)
6070 {
6071 /* Look for giv with constant positive mult_val and nonconst
6072 add_val. Insert insns to compute new compare value. */
6073
6074 for (v = bl->giv; v; v = v->next_iv)
6075 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6076 && ! v->ignore && ! v->maybe_dead
6077 && v->mode == mode)
6078 {
6079 rtx tem;
6080
6081 if (! eliminate_p)
6082 return 1;
6083
6084 tem = gen_reg_rtx (mode);
6085
6086 /* Replace biv with giv's reduced register. */
6087 validate_change (insn, &XEXP (x, 1 - arg_operand),
6088 v->new_reg, 1);
6089
6090 /* Compute value to compare against. */
6091 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6092 tem, where);
6093 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6094 if (apply_change_group ())
6095 return 1;
6096 }
6097 }
6098
6099 /* This code has problems. Basically, you can't know when
6100 seeing if we will eliminate BL, whether a particular giv
6101 of ARG will be reduced. If it isn't going to be reduced,
6102 we can't eliminate BL. We can try forcing it to be reduced,
6103 but that can generate poor code.
6104
6105 The problem is that the benefit of reducing TV, below should
6106 be increased if BL can actually be eliminated, but this means
6107 we might have to do a topological sort of the order in which
6108 we try to process biv. It doesn't seem worthwhile to do
6109 this sort of thing now. */
6110
6111#if 0
6112 /* Otherwise the reg compared with had better be a biv. */
6113 if (GET_CODE (arg) != REG
6114 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6115 return 0;
6116
6117 /* Look for a pair of givs, one for each biv,
6118 with identical coefficients. */
6119 for (v = bl->giv; v; v = v->next_iv)
6120 {
6121 struct induction *tv;
6122
6123 if (v->ignore || v->maybe_dead || v->mode != mode)
6124 continue;
6125
6126 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6127 if (! tv->ignore && ! tv->maybe_dead
6128 && rtx_equal_p (tv->mult_val, v->mult_val)
6129 && rtx_equal_p (tv->add_val, v->add_val)
6130 && tv->mode == mode)
6131 {
6132 if (! eliminate_p)
6133 return 1;
6134
6135 /* Replace biv with its giv's reduced reg. */
6136 XEXP (x, 1-arg_operand) = v->new_reg;
6137 /* Replace other operand with the other giv's
6138 reduced reg. */
6139 XEXP (x, arg_operand) = tv->new_reg;
6140 return 1;
6141 }
6142 }
6143#endif
6144 }
6145
6146 /* If we get here, the biv can't be eliminated. */
6147 return 0;
6148
6149 case MEM:
6150 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6151 biv is used in it, since it will be replaced. */
6152 for (v = bl->giv; v; v = v->next_iv)
6153 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6154 return 1;
6155 break;
6156 }
6157
6158 /* See if any subexpression fails elimination. */
6159 fmt = GET_RTX_FORMAT (code);
6160 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6161 {
6162 switch (fmt[i])
6163 {
6164 case 'e':
6165 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6166 eliminate_p, where))
6167 return 0;
6168 break;
6169
6170 case 'E':
6171 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6172 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6173 eliminate_p, where))
6174 return 0;
6175 break;
6176 }
6177 }
6178
6179 return 1;
6180}
6181\f
6182/* Return nonzero if the last use of REG
6183 is in an insn following INSN in the same basic block. */
6184
6185static int
6186last_use_this_basic_block (reg, insn)
6187 rtx reg;
6188 rtx insn;
6189{
6190 rtx n;
6191 for (n = insn;
6192 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6193 n = NEXT_INSN (n))
6194 {
6195 if (regno_last_uid[REGNO (reg)] == INSN_UID (n))
6196 return 1;
6197 }
6198 return 0;
6199}
6200\f
6201/* Called via `note_stores' to record the initial value of a biv. Here we
6202 just record the location of the set and process it later. */
6203
6204static void
6205record_initial (dest, set)
6206 rtx dest;
6207 rtx set;
6208{
6209 struct iv_class *bl;
6210
6211 if (GET_CODE (dest) != REG
6212 || REGNO (dest) >= max_reg_before_loop
2a5f595d
PR
6213 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT
6214 /* Reject this insn if the source isn't valid for the mode of DEST. */
6215 || GET_MODE (dest) != GET_MODE (SET_DEST (set)))
9bf86ebb
PR
6216 return;
6217
6218 bl = reg_biv_class[REGNO (dest)];
6219
6220 /* If this is the first set found, record it. */
6221 if (bl->init_insn == 0)
6222 {
6223 bl->init_insn = note_insn;
6224 bl->init_set = set;
6225 }
6226}
6227\f
6228/* If any of the registers in X are "old" and currently have a last use earlier
6229 than INSN, update them to have a last use of INSN. Their actual last use
6230 will be the previous insn but it will not have a valid uid_luid so we can't
6231 use it. */
6232
6233static void
6234update_reg_last_use (x, insn)
6235 rtx x;
6236 rtx insn;
6237{
6238 /* Check for the case where INSN does not have a valid luid. In this case,
6239 there is no need to modify the regno_last_uid, as this can only happen
6240 when code is inserted after the loop_end to set a pseudo's final value,
6241 and hence this insn will never be the last use of x. */
6242 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6243 && INSN_UID (insn) < max_uid_for_loop
6244 && uid_luid[regno_last_uid[REGNO (x)]] < uid_luid[INSN_UID (insn)])
6245 regno_last_uid[REGNO (x)] = INSN_UID (insn);
6246 else
6247 {
6248 register int i, j;
6249 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6250 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6251 {
6252 if (fmt[i] == 'e')
6253 update_reg_last_use (XEXP (x, i), insn);
6254 else if (fmt[i] == 'E')
6255 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6256 update_reg_last_use (XVECEXP (x, i, j), insn);
6257 }
6258 }
6259}
6260\f
6261/* Given a jump insn JUMP, return the condition that will cause it to branch
6262 to its JUMP_LABEL. If the condition cannot be understood, or is an
6263 inequality floating-point comparison which needs to be reversed, 0 will
6264 be returned.
6265
6266 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6267 insn used in locating the condition was found. If a replacement test
6268 of the condition is desired, it should be placed in front of that
6269 insn and we will be sure that the inputs are still valid.
6270
6271 The condition will be returned in a canonical form to simplify testing by
6272 callers. Specifically:
6273
6274 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6275 (2) Both operands will be machine operands; (cc0) will have been replaced.
6276 (3) If an operand is a constant, it will be the second operand.
6277 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6278 for GE, GEU, and LEU. */
6279
6280rtx
6281get_condition (jump, earliest)
6282 rtx jump;
6283 rtx *earliest;
6284{
6285 enum rtx_code code;
6286 rtx prev = jump;
6287 rtx set;
6288 rtx tem;
6289 rtx op0, op1;
6290 int reverse_code = 0;
6291 int did_reverse_condition = 0;
6292
6293 /* If this is not a standard conditional jump, we can't parse it. */
6294 if (GET_CODE (jump) != JUMP_INSN
6295 || ! condjump_p (jump) || simplejump_p (jump))
6296 return 0;
6297
6298 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6299 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6300 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6301
6302 if (earliest)
6303 *earliest = jump;
6304
6305 /* If this branches to JUMP_LABEL when the condition is false, reverse
6306 the condition. */
6307 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6308 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6309 code = reverse_condition (code), did_reverse_condition ^= 1;
6310
6311 /* If we are comparing a register with zero, see if the register is set
6312 in the previous insn to a COMPARE or a comparison operation. Perform
6313 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6314 in cse.c */
6315
6316 while (GET_RTX_CLASS (code) == '<' && op1 == const0_rtx)
6317 {
6318 /* Set non-zero when we find something of interest. */
6319 rtx x = 0;
6320
6321#ifdef HAVE_cc0
6322 /* If comparison with cc0, import actual comparison from compare
6323 insn. */
6324 if (op0 == cc0_rtx)
6325 {
6326 if ((prev = prev_nonnote_insn (prev)) == 0
6327 || GET_CODE (prev) != INSN
6328 || (set = single_set (prev)) == 0
6329 || SET_DEST (set) != cc0_rtx)
6330 return 0;
6331
6332 op0 = SET_SRC (set);
6333 op1 = CONST0_RTX (GET_MODE (op0));
6334 if (earliest)
6335 *earliest = prev;
6336 }
6337#endif
6338
6339 /* If this is a COMPARE, pick up the two things being compared. */
6340 if (GET_CODE (op0) == COMPARE)
6341 {
6342 op1 = XEXP (op0, 1);
6343 op0 = XEXP (op0, 0);
6344 continue;
6345 }
6346 else if (GET_CODE (op0) != REG)
6347 break;
6348
6349 /* Go back to the previous insn. Stop if it is not an INSN. We also
6350 stop if it isn't a single set or if it has a REG_INC note because
6351 we don't want to bother dealing with it. */
6352
6353 if ((prev = prev_nonnote_insn (prev)) == 0
6354 || GET_CODE (prev) != INSN
6355 || FIND_REG_INC_NOTE (prev, 0)
6356 || (set = single_set (prev)) == 0)
6357 break;
6358
6359 /* If this is setting OP0, get what it sets it to if it looks
6360 relevant. */
6361 if (SET_DEST (set) == op0)
6362 {
6363 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6364
6365 if ((GET_CODE (SET_SRC (set)) == COMPARE
6366 || (((code == NE
6367 || (code == LT
6368 && GET_MODE_CLASS (inner_mode) == MODE_INT
6369 && (GET_MODE_BITSIZE (inner_mode)
6370 <= HOST_BITS_PER_WIDE_INT)
6371 && (STORE_FLAG_VALUE
6372 & ((HOST_WIDE_INT) 1
6373 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6374#ifdef FLOAT_STORE_FLAG_VALUE
6375 || (code == LT
6376 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6377 && FLOAT_STORE_FLAG_VALUE < 0)
6378#endif
6379 ))
6380 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6381 x = SET_SRC (set);
6382 else if (((code == EQ
6383 || (code == GE
6384 && (GET_MODE_BITSIZE (inner_mode)
6385 <= HOST_BITS_PER_WIDE_INT)
6386 && GET_MODE_CLASS (inner_mode) == MODE_INT
6387 && (STORE_FLAG_VALUE
6388 & ((HOST_WIDE_INT) 1
6389 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6390#ifdef FLOAT_STORE_FLAG_VALUE
6391 || (code == GE
6392 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6393 && FLOAT_STORE_FLAG_VALUE < 0)
6394#endif
6395 ))
6396 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6397 {
6398 /* We might have reversed a LT to get a GE here. But this wasn't
6399 actually the comparison of data, so we don't flag that we
6400 have had to reverse the condition. */
6401 did_reverse_condition ^= 1;
6402 reverse_code = 1;
6403 x = SET_SRC (set);
6404 }
6405 }
6406
6407 else if (reg_set_p (op0, prev))
6408 /* If this sets OP0, but not directly, we have to give up. */
6409 break;
6410
6411 if (x)
6412 {
6413 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6414 code = GET_CODE (x);
6415 if (reverse_code)
6416 {
6417 code = reverse_condition (code);
6418 did_reverse_condition ^= 1;
6419 reverse_code = 0;
6420 }
6421
6422 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6423 if (earliest)
6424 *earliest = prev;
6425 }
6426 }
6427
6428 /* If constant is first, put it last. */
6429 if (CONSTANT_P (op0))
6430 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6431
6432 /* If OP0 is the result of a comparison, we weren't able to find what
6433 was really being compared, so fail. */
6434 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6435 return 0;
6436
6437 /* Canonicalize any ordered comparison with integers involving equality
6438 if we can do computations in the relevant mode and we do not
6439 overflow. */
6440
6441 if (GET_CODE (op1) == CONST_INT
6442 && GET_MODE (op0) != VOIDmode
6443 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
6444 {
6445 HOST_WIDE_INT const_val = INTVAL (op1);
6446 unsigned HOST_WIDE_INT uconst_val = const_val;
6447 unsigned HOST_WIDE_INT max_val
6448 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
6449
6450 switch (code)
6451 {
6452 case LE:
6453 if (const_val != max_val >> 1)
6454 code = LT, op1 = GEN_INT (const_val + 1);
6455 break;
6456
6457 case GE:
6458 if (const_val
6459 != (((HOST_WIDE_INT) 1
6460 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
6461 code = GT, op1 = GEN_INT (const_val - 1);
6462 break;
6463
6464 case LEU:
6465 if (uconst_val != max_val)
6466 code = LTU, op1 = GEN_INT (uconst_val + 1);
6467 break;
6468
6469 case GEU:
6470 if (uconst_val != 0)
6471 code = GTU, op1 = GEN_INT (uconst_val - 1);
6472 break;
6473 }
6474 }
6475
6476 /* If this was floating-point and we reversed anything other than an
6477 EQ or NE, return zero. */
6478 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
6479 && did_reverse_condition && code != NE && code != EQ
6480 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
6481 return 0;
6482
6483#ifdef HAVE_cc0
6484 /* Never return CC0; return zero instead. */
6485 if (op0 == cc0_rtx)
6486 return 0;
6487#endif
6488
6489 return gen_rtx (code, VOIDmode, op0, op1);
6490}
6491
6492/* Similar to above routine, except that we also put an invariant last
6493 unless both operands are invariants. */
6494
6495rtx
6496get_condition_for_loop (x)
6497 rtx x;
6498{
6499 rtx comparison = get_condition (x, NULL_PTR);
6500
6501 if (comparison == 0
6502 || ! invariant_p (XEXP (comparison, 0))
6503 || invariant_p (XEXP (comparison, 1)))
6504 return comparison;
6505
6506 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
6507 XEXP (comparison, 1), XEXP (comparison, 0));
6508}