must rm before ln
[unix-history] / usr / src / sys / kern / uipc_socket2.c
CommitLineData
88a7a62a 1/* uipc_socket2.c 4.37 83/05/27 */
681ebb17
BJ
2
3#include "../h/param.h"
4#include "../h/systm.h"
5#include "../h/dir.h"
6#include "../h/user.h"
7#include "../h/proc.h"
8#include "../h/file.h"
9#include "../h/inode.h"
10#include "../h/buf.h"
11#include "../h/mbuf.h"
681ebb17
BJ
12#include "../h/protosw.h"
13#include "../h/socket.h"
14#include "../h/socketvar.h"
681ebb17
BJ
15
16/*
17 * Primitive routines for operating on sockets and socket buffers
18 */
19
20/*
21 * Procedures to manipulate state flags of socket
2deddea9
BJ
22 * and do appropriate wakeups. Normal sequence from the
23 * active (originating) side is that soisconnecting() is
24 * called during processing of connect() call,
4c078bb2
BJ
25 * resulting in an eventual call to soisconnected() if/when the
26 * connection is established. When the connection is torn down
27 * soisdisconnecting() is called during processing of disconnect() call,
28 * and soisdisconnected() is called when the connection to the peer
29 * is totally severed. The semantics of these routines are such that
30 * connectionless protocols can call soisconnected() and soisdisconnected()
31 * only, bypassing the in-progress calls when setting up a ``connection''
32 * takes no time.
33 *
88a7a62a
SL
34 * From the passive side, a socket is created with
35 * two queues of sockets: so_q0 for connections in progress
2deddea9
BJ
36 * and so_q for connections already made and awaiting user acceptance.
37 * As a protocol is preparing incoming connections, it creates a socket
38 * structure queued on so_q0 by calling sonewconn(). When the connection
39 * is established, soisconnected() is called, and transfers the
40 * socket structure to so_q, making it available to accept().
41 *
88a7a62a 42 * If a socket is closed with sockets on either
2deddea9
BJ
43 * so_q0 or so_q, these sockets are dropped.
44 *
88a7a62a 45 * If higher level protocols are implemented in
4c078bb2 46 * the kernel, the wakeups done here will sometimes
88a7a62a 47 * cause software-interrupt process scheduling.
681ebb17 48 */
4c078bb2 49
681ebb17 50soisconnecting(so)
88a7a62a 51 register struct socket *so;
681ebb17
BJ
52{
53
54 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
55 so->so_state |= SS_ISCONNECTING;
56 wakeup((caddr_t)&so->so_timeo);
57}
58
59soisconnected(so)
88a7a62a 60 register struct socket *so;
681ebb17 61{
2deddea9 62 register struct socket *head = so->so_head;
681ebb17 63
2deddea9
BJ
64 if (head) {
65 if (soqremque(so, 0) == 0)
66 panic("soisconnected");
67 soqinsque(head, so, 1);
ab303321 68 sorwakeup(head);
88a7a62a 69 wakeup((caddr_t)&head->so_timeo);
2deddea9 70 }
681ebb17
BJ
71 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
72 so->so_state |= SS_ISCONNECTED;
73 wakeup((caddr_t)&so->so_timeo);
f957a49a
BJ
74 sorwakeup(so);
75 sowwakeup(so);
681ebb17
BJ
76}
77
78soisdisconnecting(so)
88a7a62a 79 register struct socket *so;
681ebb17
BJ
80{
81
72857acf 82 so->so_state &= ~SS_ISCONNECTING;
681ebb17
BJ
83 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
84 wakeup((caddr_t)&so->so_timeo);
4c078bb2 85 sowwakeup(so);
b454c3ea 86 sorwakeup(so);
681ebb17
BJ
87}
88
89soisdisconnected(so)
88a7a62a 90 register struct socket *so;
681ebb17
BJ
91{
92
93 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
94 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
95 wakeup((caddr_t)&so->so_timeo);
96 sowwakeup(so);
97 sorwakeup(so);
98}
99
2deddea9
BJ
100/*
101 * When an attempt at a new connection is noted on a socket
102 * which accepts connections, sonewconn is called. If the
103 * connection is possible (subject to space constraints, etc.)
104 * then we allocate a new structure, propoerly linked into the
105 * data structure of the original socket, and return this.
106 */
107struct socket *
108sonewconn(head)
109 register struct socket *head;
110{
111 register struct socket *so;
88a7a62a 112 register struct mbuf *m;
2deddea9
BJ
113
114 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
115 goto bad;
cce93e4b 116 m = m_getclr(M_DONTWAIT, MT_SOCKET);
5fe6f9d1 117 if (m == NULL)
2deddea9
BJ
118 goto bad;
119 so = mtod(m, struct socket *);
120 so->so_type = head->so_type;
121 so->so_options = head->so_options &~ SO_ACCEPTCONN;
122 so->so_linger = head->so_linger;
f7428e88 123 so->so_state = head->so_state | SS_NOFDREF;
2deddea9
BJ
124 so->so_proto = head->so_proto;
125 so->so_timeo = head->so_timeo;
126 so->so_pgrp = head->so_pgrp;
127 soqinsque(head, so, 0);
88a7a62a
SL
128 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
129 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
2deddea9 130 (void) soqremque(so, 0);
30c36259 131 (void) m_free(m);
2deddea9
BJ
132 goto bad;
133 }
134 return (so);
135bad:
136 return ((struct socket *)0);
137}
138
139soqinsque(head, so, q)
140 register struct socket *head, *so;
141 int q;
142{
143
144 so->so_head = head;
145 if (q == 0) {
146 head->so_q0len++;
147 so->so_q0 = head->so_q0;
148 head->so_q0 = so;
149 } else {
150 head->so_qlen++;
151 so->so_q = head->so_q;
152 head->so_q = so;
153 }
154}
155
156soqremque(so, q)
157 register struct socket *so;
158 int q;
159{
160 register struct socket *head, *prev, *next;
161
162 head = so->so_head;
163 prev = head;
164 for (;;) {
165 next = q ? prev->so_q : prev->so_q0;
166 if (next == so)
167 break;
168 if (next == head)
169 return (0);
170 prev = next;
171 }
172 if (q == 0) {
173 prev->so_q0 = next->so_q0;
174 head->so_q0len--;
175 } else {
176 prev->so_q = next->so_q;
177 head->so_qlen--;
178 }
179 next->so_q0 = next->so_q = 0;
180 next->so_head = 0;
181 return (1);
182}
183
4c078bb2
BJ
184/*
185 * Socantsendmore indicates that no more data will be sent on the
186 * socket; it would normally be applied to a socket when the user
187 * informs the system that no more data is to be sent, by the protocol
188 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
189 * will be received, and will normally be applied to the socket by a
190 * protocol when it detects that the peer will send no more data.
191 * Data queued for reading in the socket may yet be read.
192 */
193
ae921915
BJ
194socantsendmore(so)
195 struct socket *so;
196{
197
198 so->so_state |= SS_CANTSENDMORE;
199 sowwakeup(so);
200}
201
202socantrcvmore(so)
203 struct socket *so;
204{
205
206 so->so_state |= SS_CANTRCVMORE;
207 sorwakeup(so);
208}
209
681ebb17 210/*
4c078bb2
BJ
211 * Socket select/wakeup routines.
212 */
213
681ebb17
BJ
214/*
215 * Queue a process for a select on a socket buffer.
216 */
217sbselqueue(sb)
218 struct sockbuf *sb;
219{
220 register struct proc *p;
221
ae921915 222 if ((p = sb->sb_sel) && p->p_wchan == (caddr_t)&selwait)
681ebb17
BJ
223 sb->sb_flags |= SB_COLL;
224 else
225 sb->sb_sel = u.u_procp;
226}
227
ae921915
BJ
228/*
229 * Wait for data to arrive at/drain from a socket buffer.
230 */
231sbwait(sb)
232 struct sockbuf *sb;
233{
234
235 sb->sb_flags |= SB_WAIT;
236 sleep((caddr_t)&sb->sb_cc, PZERO+1);
237}
238
681ebb17
BJ
239/*
240 * Wakeup processes waiting on a socket buffer.
241 */
242sbwakeup(sb)
88a7a62a 243 register struct sockbuf *sb;
681ebb17
BJ
244{
245
246 if (sb->sb_sel) {
247 selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL);
248 sb->sb_sel = 0;
249 sb->sb_flags &= ~SB_COLL;
250 }
251 if (sb->sb_flags & SB_WAIT) {
252 sb->sb_flags &= ~SB_WAIT;
388ca8bd 253 wakeup((caddr_t)&sb->sb_cc);
681ebb17
BJ
254 }
255}
256
4c078bb2
BJ
257/*
258 * Socket buffer (struct sockbuf) utility routines.
259 *
260 * Each socket contains two socket buffers: one for sending data and
261 * one for receiving data. Each buffer contains a queue of mbufs,
262 * information about the number of mbufs and amount of data in the
263 * queue, and other fields allowing select() statements and notification
264 * on data availability to be implemented.
265 *
266 * Before using a new socket structure it is first necessary to reserve
267 * buffer space to the socket, by calling sbreserve. This commits
268 * some of the available buffer space in the system buffer pool for the
269 * socket. The space should be released by calling sbrelease when the
270 * socket is destroyed.
271 *
272 * The routine sbappend() is normally called to append new mbufs
273 * to a socket buffer, after checking that adequate space is available
274 * comparing the function spspace() with the amount of data to be added.
275 * Data is normally removed from a socket buffer in a protocol by
276 * first calling m_copy on the socket buffer mbuf chain and sending this
277 * to a peer, and then removing the data from the socket buffer with
278 * sbdrop when the data is acknowledged by the peer (or immediately
b454c3ea 279 * in the case of unreliable protocols.)
4c078bb2
BJ
280 *
281 * Protocols which do not require connections place both source address
282 * and data information in socket buffer queues. The source addresses
283 * are stored in single mbufs after each data item, and are easily found
284 * as the data items are all marked with end of record markers. The
285 * sbappendaddr() routine stores a datum and associated address in
286 * a socket buffer. Note that, unlike sbappend(), this routine checks
287 * for the caller that there will be enough space to store the data.
288 * It fails if there is not enough space, or if it cannot find
289 * a mbuf to store the address in.
290 *
291 * The higher-level routines sosend and soreceive (in socket.c)
b454c3ea 292 * also add data to, and remove data from socket buffers repectively.
4c078bb2
BJ
293 */
294
0e18ec4a 295soreserve(so, sndcc, rcvcc)
88a7a62a 296 register struct socket *so;
0e18ec4a
BJ
297 int sndcc, rcvcc;
298{
299
300 if (sbreserve(&so->so_snd, sndcc) == 0)
301 goto bad;
302 if (sbreserve(&so->so_rcv, rcvcc) == 0)
303 goto bad2;
304 return (0);
305bad2:
306 sbrelease(&so->so_snd);
307bad:
308 return (ENOBUFS);
309}
310
681ebb17
BJ
311/*
312 * Allot mbufs to a sockbuf.
313 */
314sbreserve(sb, cc)
315 struct sockbuf *sb;
316{
317
de48daf3 318 /* someday maybe this routine will fail... */
d028a086 319 sb->sb_hiwat = cc;
88a7a62a
SL
320 /* * 2 implies names can be no more than 1 mbuf each */
321 sb->sb_mbmax = cc<<1;
ae921915 322 return (1);
681ebb17
BJ
323}
324
325/*
326 * Free mbufs held by a socket, and reserved mbuf space.
327 */
328sbrelease(sb)
329 struct sockbuf *sb;
330{
331
332 sbflush(sb);
d028a086 333 sb->sb_hiwat = sb->sb_mbmax = 0;
681ebb17
BJ
334}
335
336/*
337 * Routines to add (at the end) and remove (from the beginning)
338 * data from a mbuf queue.
339 */
340
341/*
342 * Append mbuf queue m to sockbuf sb.
343 */
344sbappend(sb, m)
345 register struct mbuf *m;
346 register struct sockbuf *sb;
347{
e495e1cc 348 register struct mbuf *n;
681ebb17 349
e495e1cc
BJ
350 n = sb->sb_mb;
351 if (n)
352 while (n->m_next)
353 n = n->m_next;
681ebb17 354 while (m) {
a73ab5ae 355 if (m->m_len == 0 && (int)m->m_act == 0) {
c64d826c 356 m = m_free(m);
a73ab5ae
BJ
357 continue;
358 }
681ebb17
BJ
359 if (n && n->m_off <= MMAXOFF && m->m_off <= MMAXOFF &&
360 (int)n->m_act == 0 && (int)m->m_act == 0 &&
76a6e254
BJ
361 (n->m_off + n->m_len + m->m_len) <= MMAXOFF) {
362 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
ae921915 363 (unsigned)m->m_len);
681ebb17
BJ
364 n->m_len += m->m_len;
365 sb->sb_cc += m->m_len;
366 m = m_free(m);
367 continue;
368 }
369 sballoc(sb, m);
e495e1cc
BJ
370 if (n == 0)
371 sb->sb_mb = m;
372 else
373 n->m_next = m;
681ebb17 374 n = m;
681ebb17 375 m = m->m_next;
e495e1cc 376 n->m_next = 0;
681ebb17
BJ
377 }
378}
379
4c078bb2
BJ
380/*
381 * Append data and address.
382 * Return 0 if no space in sockbuf or if
383 * can't get mbuf to stuff address in.
384 */
88a7a62a 385sbappendaddr(sb, asa, m0, rights0)
2b4b57cd
BJ
386 struct sockbuf *sb;
387 struct sockaddr *asa;
88a7a62a 388 struct mbuf *m0, *rights0;
2b4b57cd 389{
2b4b57cd
BJ
390 register struct mbuf *m;
391 register int len = sizeof (struct sockaddr);
88a7a62a 392 register struct mbuf *rights;
2b4b57cd 393
88a7a62a
SL
394 if (rights0)
395 len += rights0->m_len;
76a6e254
BJ
396 m = m0;
397 if (m == 0)
398 panic("sbappendaddr");
399 for (;;) {
2b4b57cd 400 len += m->m_len;
76a6e254
BJ
401 if (m->m_next == 0) {
402 m->m_act = (struct mbuf *)1;
403 break;
404 }
405 m = m->m_next;
406 }
509e40dd 407 if (len > sbspace(sb))
2b4b57cd 408 return (0);
cce93e4b 409 m = m_get(M_DONTWAIT, MT_SONAME);
88a7a62a 410 if (m == NULL)
2b4b57cd 411 return (0);
2b4b57cd 412 m->m_len = sizeof (struct sockaddr);
2b4b57cd 413 m->m_act = (struct mbuf *)1;
88a7a62a
SL
414 *mtod(m, struct sockaddr *) = *asa;
415 if (rights0 == 0 || rights0->m_len == 0) {
416 rights = m_get(M_DONTWAIT, MT_SONAME);
417 if (rights)
418 rights->m_len = 0;
419 } else
420 rights = m_copy(rights0, 0, rights0->m_len);
421 if (rights == 0) {
422 m_freem(m);
423 return (0);
424 }
425 rights->m_act = (struct mbuf *)1;
426 m->m_next = rights;
427 rights->m_next = m0;
2b4b57cd 428 sbappend(sb, m);
2b4b57cd
BJ
429 return (1);
430}
431
681ebb17
BJ
432/*
433 * Free all mbufs on a sockbuf mbuf chain.
434 * Check that resource allocations return to 0.
435 */
436sbflush(sb)
88a7a62a 437 register struct sockbuf *sb;
681ebb17
BJ
438{
439
440 if (sb->sb_flags & SB_LOCK)
441 panic("sbflush");
a73ab5ae
BJ
442 if (sb->sb_cc)
443 sbdrop(sb, sb->sb_cc);
681ebb17
BJ
444 if (sb->sb_cc || sb->sb_mbcnt || sb->sb_mb)
445 panic("sbflush 2");
446}
447
448/*
449 * Drop data from (the front of) a sockbuf chain.
450 */
451sbdrop(sb, len)
452 register struct sockbuf *sb;
453 register int len;
454{
455 register struct mbuf *m = sb->sb_mb, *mn;
456
457 while (len > 0) {
458 if (m == 0)
459 panic("sbdrop");
b9f0d37f 460 if (m->m_len > len) {
681ebb17
BJ
461 m->m_len -= len;
462 m->m_off += len;
463 sb->sb_cc -= len;
464 break;
465 }
b9f0d37f
BJ
466 len -= m->m_len;
467 sbfree(sb, m);
468 MFREE(m, mn);
469 m = mn;
681ebb17
BJ
470 }
471 sb->sb_mb = m;
472}