RETURN => return, remove syscontext.h
[unix-history] / usr / src / sys / kern / kern_clock.c
CommitLineData
da7c5cc6 1/*
0880b18e 2 * Copyright (c) 1982, 1986 Regents of the University of California.
da7c5cc6
KM
3 * All rights reserved. The Berkeley software License Agreement
4 * specifies the terms and conditions for redistribution.
5 *
d9c2f47f 6 * @(#)kern_clock.c 7.9 (Berkeley) %G%
da7c5cc6 7 */
961945a8 8
94368568
JB
9#include "param.h"
10#include "systm.h"
fb1db32c 11#include "dkstat.h"
94368568 12#include "callout.h"
d9c2f47f 13#include "user.h"
94368568
JB
14#include "kernel.h"
15#include "proc.h"
16#include "vm.h"
17#include "text.h"
83be5fac 18
40ed2c45
KM
19#include "machine/reg.h"
20#include "machine/psl.h"
8e8cbcca 21
fb1db32c 22#if defined(vax) || defined(tahoe)
40ed2c45
KM
23#include "machine/mtpr.h"
24#include "machine/clock.h"
961945a8 25#endif
933220e9
KM
26#if defined(hp300)
27#include "machine/mtpr.h"
28#endif
961945a8 29
8487304f 30#ifdef GPROF
94368568 31#include "gprof.h"
8487304f
KM
32#endif
33
45e9acec
MK
34#define ADJTIME /* For now... */
35#define ADJ_TICK 1000
36int adjtimedelta;
37
76b2a182
BJ
38/*
39 * Clock handling routines.
40 *
53a32545
SL
41 * This code is written to operate with two timers which run
42 * independently of each other. The main clock, running at hz
43 * times per second, is used to do scheduling and timeout calculations.
44 * The second timer does resource utilization estimation statistically
45 * based on the state of the machine phz times a second. Both functions
46 * can be performed by a single clock (ie hz == phz), however the
47 * statistics will be much more prone to errors. Ideally a machine
48 * would have separate clocks measuring time spent in user state, system
49 * state, interrupt state, and idle state. These clocks would allow a non-
50 * approximate measure of resource utilization.
76b2a182 51 */
6602c75b 52
76b2a182
BJ
53/*
54 * TODO:
88a7a62a
SL
55 * time of day, system/user timing, timeouts, profiling on separate timers
56 * allocate more timeout table slots when table overflows.
76b2a182 57 */
9c5cfb8b 58
ad8023d1
KM
59/*
60 * Bump a timeval by a small number of usec's.
61 */
ad8023d1
KM
62#define BUMPTIME(t, usec) { \
63 register struct timeval *tp = (t); \
64 \
65 tp->tv_usec += (usec); \
66 if (tp->tv_usec >= 1000000) { \
67 tp->tv_usec -= 1000000; \
68 tp->tv_sec++; \
69 } \
70}
83be5fac 71
76b2a182 72/*
53a32545
SL
73 * The hz hardware interval timer.
74 * We update the events relating to real time.
75 * If this timer is also being used to gather statistics,
76 * we run through the statistics gathering routine as well.
76b2a182 77 */
260ea681 78/*ARGSUSED*/
f403d99f 79hardclock(pc, ps)
4512b9a4 80 caddr_t pc;
460ab27f 81 int ps;
83be5fac 82{
0a34b6fd 83 register struct callout *p1;
53fbb3b3 84 register struct proc *p = u.u_procp;
0b355a6e 85 register int s;
83be5fac 86
76b2a182
BJ
87 /*
88 * Update real-time timeout queue.
89 * At front of queue are some number of events which are ``due''.
90 * The time to these is <= 0 and if negative represents the
91 * number of ticks which have passed since it was supposed to happen.
92 * The rest of the q elements (times > 0) are events yet to happen,
93 * where the time for each is given as a delta from the previous.
94 * Decrementing just the first of these serves to decrement the time
95 * to all events.
96 */
88a7a62a
SL
97 p1 = calltodo.c_next;
98 while (p1) {
99 if (--p1->c_time > 0)
100 break;
88a7a62a
SL
101 if (p1->c_time == 0)
102 break;
103 p1 = p1->c_next;
104 }
5da67d35 105
76b2a182
BJ
106 /*
107 * Charge the time out based on the mode the cpu is in.
108 * Here again we fudge for the lack of proper interval timers
109 * assuming that the current state has been around at least
110 * one tick.
111 */
83be5fac 112 if (USERMODE(ps)) {
76b2a182
BJ
113 /*
114 * CPU was in user state. Increment
115 * user time counter, and process process-virtual time
877ef342 116 * interval timer.
76b2a182 117 */
53fbb3b3 118 BUMPTIME(&p->p_utime, tick);
27b91f59
BJ
119 if (timerisset(&u.u_timer[ITIMER_VIRTUAL].it_value) &&
120 itimerdecr(&u.u_timer[ITIMER_VIRTUAL], tick) == 0)
53fbb3b3 121 psignal(p, SIGVTALRM);
83be5fac 122 } else {
76b2a182 123 /*
0b355a6e 124 * CPU was in system state.
76b2a182 125 */
9c5cfb8b 126 if (!noproc)
53fbb3b3 127 BUMPTIME(&p->p_stime, tick);
83be5fac 128 }
27b91f59 129
9fb1a8d0
SL
130 /*
131 * If the cpu is currently scheduled to a process, then
132 * charge it with resource utilization for a tick, updating
133 * statistics which run in (user+system) virtual time,
134 * such as the cpu time limit and profiling timers.
135 * This assumes that the current process has been running
136 * the entire last tick.
137 */
405de916 138 if (noproc == 0) {
53fbb3b3 139 if ((p->p_utime.tv_sec+p->p_stime.tv_sec+1) >
9fb1a8d0 140 u.u_rlimit[RLIMIT_CPU].rlim_cur) {
53fbb3b3 141 psignal(p, SIGXCPU);
9fb1a8d0
SL
142 if (u.u_rlimit[RLIMIT_CPU].rlim_cur <
143 u.u_rlimit[RLIMIT_CPU].rlim_max)
144 u.u_rlimit[RLIMIT_CPU].rlim_cur += 5;
145 }
146 if (timerisset(&u.u_timer[ITIMER_PROF].it_value) &&
147 itimerdecr(&u.u_timer[ITIMER_PROF], tick) == 0)
53fbb3b3
MT
148 psignal(p, SIGPROF);
149 s = p->p_rssize;
9c5cfb8b
MK
150 u.u_ru.ru_idrss += s;
151#ifdef notdef
152 u.u_ru.ru_isrss += 0; /* XXX (haven't got this) */
153#endif
53fbb3b3
MT
154 if (p->p_textp) {
155 register int xrss = p->p_textp->x_rssize;
9fb1a8d0
SL
156
157 s += xrss;
158 u.u_ru.ru_ixrss += xrss;
159 }
160 if (s > u.u_ru.ru_maxrss)
161 u.u_ru.ru_maxrss = s;
162 }
163
76b2a182
BJ
164 /*
165 * We adjust the priority of the current process.
166 * The priority of a process gets worse as it accumulates
167 * CPU time. The cpu usage estimator (p_cpu) is increased here
168 * and the formula for computing priorities (in kern_synch.c)
169 * will compute a different value each time the p_cpu increases
170 * by 4. The cpu usage estimator ramps up quite quickly when
171 * the process is running (linearly), and decays away exponentially,
172 * at a rate which is proportionally slower when the system is
173 * busy. The basic principal is that the system will 90% forget
174 * that a process used a lot of CPU time in 5*loadav seconds.
175 * This causes the system to favor processes which haven't run
176 * much recently, and to round-robin among other processes.
177 */
83be5fac 178 if (!noproc) {
27b91f59
BJ
179 p->p_cpticks++;
180 if (++p->p_cpu == 0)
181 p->p_cpu--;
76b2a182 182 if ((p->p_cpu&3) == 0) {
27b91f59
BJ
183 (void) setpri(p);
184 if (p->p_pri >= PUSER)
185 p->p_pri = p->p_usrpri;
83be5fac
BJ
186 }
187 }
76b2a182 188
53a32545
SL
189 /*
190 * If the alternate clock has not made itself known then
191 * we must gather the statistics.
192 */
193 if (phz == 0)
194 gatherstats(pc, ps);
53a32545 195
76b2a182
BJ
196 /*
197 * Increment the time-of-day, and schedule
198 * processing of the callouts at a very low cpu priority,
199 * so we don't keep the relatively high clock interrupt
200 * priority any longer than necessary.
201 */
45e9acec
MK
202#ifdef ADJTIME
203 if (adjtimedelta == 0)
204 bumptime(&time, tick);
205 else {
206 if (adjtimedelta < 0) {
207 bumptime(&time, tick-ADJ_TICK);
208 adjtimedelta++;
209 } else {
210 bumptime(&time, tick+ADJ_TICK);
211 adjtimedelta--;
212 }
213 }
214#else
4ca0d0d6 215 if (timedelta == 0)
99e47f6b
MK
216 BUMPTIME(&time, tick)
217 else {
218 register delta;
219
4ca0d0d6
MK
220 if (timedelta < 0) {
221 delta = tick - tickdelta;
222 timedelta += tickdelta;
99e47f6b 223 } else {
4ca0d0d6
MK
224 delta = tick + tickdelta;
225 timedelta -= tickdelta;
99e47f6b
MK
226 }
227 BUMPTIME(&time, delta);
228 }
45e9acec 229#endif
ca6b57a4 230 setsoftclock();
f403d99f
BJ
231}
232
d976d466 233int dk_ndrive = DK_NDRIVE;
53a32545
SL
234/*
235 * Gather statistics on resource utilization.
236 *
237 * We make a gross assumption: that the system has been in the
238 * state it is in (user state, kernel state, interrupt state,
239 * or idle state) for the entire last time interval, and
240 * update statistics accordingly.
241 */
88a7a62a 242/*ARGSUSED*/
53a32545
SL
243gatherstats(pc, ps)
244 caddr_t pc;
245 int ps;
246{
9c5cfb8b 247 register int cpstate, s;
53a32545
SL
248
249 /*
250 * Determine what state the cpu is in.
251 */
252 if (USERMODE(ps)) {
253 /*
254 * CPU was in user state.
255 */
256 if (u.u_procp->p_nice > NZERO)
257 cpstate = CP_NICE;
258 else
259 cpstate = CP_USER;
260 } else {
261 /*
262 * CPU was in system state. If profiling kernel
0b355a6e
JB
263 * increment a counter. If no process is running
264 * then this is a system tick if we were running
265 * at a non-zero IPL (in a driver). If a process is running,
266 * then we charge it with system time even if we were
267 * at a non-zero IPL, since the system often runs
268 * this way during processing of system calls.
269 * This is approximate, but the lack of true interval
270 * timers makes doing anything else difficult.
53a32545
SL
271 */
272 cpstate = CP_SYS;
273 if (noproc && BASEPRI(ps))
274 cpstate = CP_IDLE;
275#ifdef GPROF
276 s = pc - s_lowpc;
277 if (profiling < 2 && s < s_textsize)
278 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
279#endif
280 }
281 /*
282 * We maintain statistics shown by user-level statistics
283 * programs: the amount of time in each cpu state, and
284 * the amount of time each of DK_NDRIVE ``drives'' is busy.
285 */
286 cp_time[cpstate]++;
287 for (s = 0; s < DK_NDRIVE; s++)
fb1db32c 288 if (dk_busy&(1<<s))
53a32545
SL
289 dk_time[s]++;
290}
291
76b2a182
BJ
292/*
293 * Software priority level clock interrupt.
294 * Run periodic events from timeout queue.
295 */
260ea681 296/*ARGSUSED*/
f403d99f 297softclock(pc, ps)
4512b9a4 298 caddr_t pc;
460ab27f 299 int ps;
f403d99f 300{
f403d99f 301
27b91f59 302 for (;;) {
76b2a182
BJ
303 register struct callout *p1;
304 register caddr_t arg;
305 register int (*func)();
306 register int a, s;
307
9c5cfb8b 308 s = splhigh();
27b91f59
BJ
309 if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
310 splx(s);
311 break;
f403d99f 312 }
76b2a182 313 arg = p1->c_arg; func = p1->c_func; a = p1->c_time;
27b91f59 314 calltodo.c_next = p1->c_next;
27b91f59
BJ
315 p1->c_next = callfree;
316 callfree = p1;
4f083fd7 317 splx(s);
d01b68d6 318 (*func)(arg, a);
f403d99f 319 }
877ef342 320 /*
db1f1262
SL
321 * If trapped user-mode and profiling, give it
322 * a profiling tick.
877ef342 323 */
db1f1262
SL
324 if (USERMODE(ps)) {
325 register struct proc *p = u.u_procp;
326
327 if (u.u_prof.pr_scale) {
328 p->p_flag |= SOWEUPC;
329 aston();
330 }
db1f1262
SL
331 /*
332 * Check to see if process has accumulated
333 * more than 10 minutes of user time. If so
334 * reduce priority to give others a chance.
335 */
336 if (p->p_uid && p->p_nice == NZERO &&
53fbb3b3 337 p->p_utime.tv_sec > 10 * 60) {
db1f1262
SL
338 p->p_nice = NZERO+4;
339 (void) setpri(p);
340 p->p_pri = p->p_usrpri;
341 }
877ef342 342 }
83be5fac
BJ
343}
344
88a7a62a
SL
345/*
346 * Arrange that (*fun)(arg) is called in t/hz seconds.
83be5fac 347 */
88a7a62a 348timeout(fun, arg, t)
4512b9a4
BJ
349 int (*fun)();
350 caddr_t arg;
88a7a62a 351 register int t;
83be5fac 352{
c4710996 353 register struct callout *p1, *p2, *pnew;
9c5cfb8b 354 register int s = splhigh();
83be5fac 355
ba96129b 356 if (t <= 0)
88a7a62a 357 t = 1;
c4710996
BJ
358 pnew = callfree;
359 if (pnew == NULL)
360 panic("timeout table overflow");
361 callfree = pnew->c_next;
362 pnew->c_arg = arg;
363 pnew->c_func = fun;
364 for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
d45b61eb
SL
365 if (p2->c_time > 0)
366 t -= p2->c_time;
c4710996
BJ
367 p1->c_next = pnew;
368 pnew->c_next = p2;
369 pnew->c_time = t;
370 if (p2)
371 p2->c_time -= t;
83be5fac
BJ
372 splx(s);
373}
1fa9ff62
SL
374
375/*
376 * untimeout is called to remove a function timeout call
377 * from the callout structure.
378 */
27b91f59 379untimeout(fun, arg)
1fa9ff62
SL
380 int (*fun)();
381 caddr_t arg;
382{
1fa9ff62
SL
383 register struct callout *p1, *p2;
384 register int s;
385
9c5cfb8b 386 s = splhigh();
1fa9ff62
SL
387 for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) {
388 if (p2->c_func == fun && p2->c_arg == arg) {
d01b68d6 389 if (p2->c_next && p2->c_time > 0)
1fa9ff62
SL
390 p2->c_next->c_time += p2->c_time;
391 p1->c_next = p2->c_next;
392 p2->c_next = callfree;
393 callfree = p2;
394 break;
395 }
396 }
397 splx(s);
398}
d01b68d6 399
76b2a182
BJ
400/*
401 * Compute number of hz until specified time.
402 * Used to compute third argument to timeout() from an
403 * absolute time.
404 */
d01b68d6
BJ
405hzto(tv)
406 struct timeval *tv;
407{
76b2a182
BJ
408 register long ticks;
409 register long sec;
9c5cfb8b 410 int s = splhigh();
d01b68d6 411
76b2a182
BJ
412 /*
413 * If number of milliseconds will fit in 32 bit arithmetic,
414 * then compute number of milliseconds to time and scale to
415 * ticks. Otherwise just compute number of hz in time, rounding
416 * times greater than representible to maximum value.
417 *
418 * Delta times less than 25 days can be computed ``exactly''.
419 * Maximum value for any timeout in 10ms ticks is 250 days.
420 */
421 sec = tv->tv_sec - time.tv_sec;
422 if (sec <= 0x7fffffff / 1000 - 1000)
423 ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
424 (tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
425 else if (sec <= 0x7fffffff / hz)
426 ticks = sec * hz;
427 else
428 ticks = 0x7fffffff;
d01b68d6
BJ
429 splx(s);
430 return (ticks);
431}
88a7a62a 432
330a6ff9
KM
433/* ARGSUSED */
434profil(p, uap, retval)
435 struct proc *p;
436 register struct args {
88a7a62a
SL
437 short *bufbase;
438 unsigned bufsize;
439 unsigned pcoffset;
440 unsigned pcscale;
330a6ff9
KM
441 } *uap;
442 int *retval;
443{
88a7a62a
SL
444 register struct uprof *upp = &u.u_prof;
445
446 upp->pr_base = uap->bufbase;
447 upp->pr_size = uap->bufsize;
448 upp->pr_off = uap->pcoffset;
449 upp->pr_scale = uap->pcscale;
d9c2f47f 450 return (0);
88a7a62a 451}