date and time created 92/06/15 06:38:51 by fujita
[unix-history] / usr / src / sys / luna68k / luna68k / trap.c
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1992 OMRON Corporation.
* Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* %sccs.include.redist.c%
*
* from: Utah $Hdr: trap.c 1.35 91/12/26$
* OMRON: $Id: trap.c,v 1.2 92/06/14 06:23:41 moti Exp $
*
* from: hp300/hp300/trap.c 7.20 (Berkeley) 6/5/92
*
* @(#)trap.c 7.1 (Berkeley) %G%
*/
#include "param.h"
#include "systm.h"
#include "proc.h"
#include "acct.h"
#include "kernel.h"
#include "signalvar.h"
#include "resourcevar.h"
#include "syslog.h"
#include "user.h"
#ifdef KTRACE
#include "ktrace.h"
#endif
#include "../include/psl.h"
#include "../include/trap.h"
#include "../include/cpu.h"
#include "../include/reg.h"
#include "../include/mtpr.h"
#include "vm/vm.h"
#include "vm/pmap.h"
struct sysent sysent[];
int nsysent;
char *trap_type[] = {
"Bus error",
"Address error",
"Illegal instruction",
"Zero divide",
"CHK instruction",
"TRAPV instruction",
"Privilege violation",
"Trace trap",
"MMU fault",
"SSIR trap",
"Format error",
"68881 exception",
"Coprocessor violation",
"Async system trap"
};
#define TRAP_TYPES (sizeof trap_type / sizeof trap_type[0])
/*
* Size of various exception stack frames (minus the standard 8 bytes)
*/
short exframesize[] = {
FMT0SIZE, /* type 0 - normal (68020/030/040) */
FMT1SIZE, /* type 1 - throwaway (68020/030/040) */
FMT2SIZE, /* type 2 - normal 6-word (68020/030/040) */
FMT3SIZE, /* type 3 - FP post-instruction (68040) */
-1, -1, -1, /* type 4-6 - undefined */
FMT7SIZE, /* type 7 - access error (68040) */
58, /* type 8 - bus fault (68010) */
FMT9SIZE, /* type 9 - coprocessor mid-instruction (68020/030) */
FMTASIZE, /* type A - short bus fault (68020/030) */
FMTBSIZE, /* type B - long bus fault (68020/030) */
-1, -1, -1, -1 /* type C-F - undefined */
};
#define KDFAULT(c) (((c) & (SSW_DF|SSW_FCMASK)) == (SSW_DF|FC_SUPERD))
#define WRFAULT(c) (((c) & (SSW_DF|SSW_RW)) == SSW_DF)
#ifdef DEBUG
int mmudebug = 0;
int mmupid = -1;
#define MDB_FOLLOW 1
#define MDB_WBFOLLOW 2
#define MDB_WBFAILED 4
#define MDB_ISPID(p) (p) == mmupid
#endif
/*
* Trap is called from locore to handle most types of processor traps,
* including events such as simulated software interrupts/AST's.
* System calls are broken out for efficiency.
*/
/*ARGSUSED*/
trap(type, code, v, frame)
int type;
unsigned code;
register unsigned v;
struct frame frame;
{
register int i;
unsigned ucode = 0;
register struct proc *p = curproc;
struct timeval syst;
unsigned ncode;
int s;
cnt.v_trap++;
syst = p->p_stime;
if (USERMODE(frame.f_sr)) {
type |= T_USER;
p->p_md.md_regs = frame.f_regs;
}
switch (type) {
default:
dopanic:
printf("trap type %d, code = %x, v = %x\n", type, code, v);
regdump(frame.f_regs, 128);
type &= ~T_USER;
if ((unsigned)type < TRAP_TYPES)
panic(trap_type[type]);
panic("trap");
case T_BUSERR: /* kernel bus error */
if (!p->p_addr->u_pcb.pcb_onfault)
goto dopanic;
/*
* If we have arranged to catch this fault in any of the
* copy to/from user space routines, set PC to return to
* indicated location and set flag informing buserror code
* that it may need to clean up stack frame.
*/
copyfault:
frame.f_stackadj = exframesize[frame.f_format];
frame.f_format = frame.f_vector = 0;
frame.f_pc = (int) p->p_addr->u_pcb.pcb_onfault;
return;
case T_BUSERR|T_USER: /* bus error */
case T_ADDRERR|T_USER: /* address error */
ucode = v;
i = SIGBUS;
break;
#ifdef FPCOPROC
case T_COPERR: /* kernel coprocessor violation */
#endif
case T_FMTERR|T_USER: /* do all RTE errors come in as T_USER? */
case T_FMTERR: /* ...just in case... */
/*
* The user has most likely trashed the RTE or FP state info
* in the stack frame of a signal handler.
*/
type |= T_USER;
printf("pid %d: kernel %s exception\n", p->p_pid,
type==T_COPERR ? "coprocessor" : "format");
p->p_sigacts->ps_sigact[SIGILL] = SIG_DFL;
i = sigmask(SIGILL);
p->p_sigignore &= ~i;
p->p_sigcatch &= ~i;
p->p_sigmask &= ~i;
i = SIGILL;
ucode = frame.f_format; /* XXX was ILL_RESAD_FAULT */
break;
#ifdef FPCOPROC
case T_COPERR|T_USER: /* user coprocessor violation */
/* What is a proper response here? */
ucode = 0;
i = SIGFPE;
break;
case T_FPERR|T_USER: /* 68881 exceptions */
/*
* We pass along the 68881 status register which locore stashed
* in code for us. Note that there is a possibility that the
* bit pattern of this register will conflict with one of the
* FPE_* codes defined in signal.h. Fortunately for us, the
* only such codes we use are all in the range 1-7 and the low
* 3 bits of the status register are defined as 0 so there is
* no clash.
*/
ucode = code;
i = SIGFPE;
break;
#endif
case T_ILLINST|T_USER: /* illegal instruction fault */
case T_PRIVINST|T_USER: /* privileged instruction fault */
ucode = frame.f_format; /* XXX was ILL_PRIVIN_FAULT */
i = SIGILL;
break;
case T_ZERODIV|T_USER: /* Divide by zero */
ucode = frame.f_format; /* XXX was FPE_INTDIV_TRAP */
i = SIGFPE;
break;
case T_CHKINST|T_USER: /* CHK instruction trap */
ucode = frame.f_format; /* XXX was FPE_SUBRNG_TRAP */
i = SIGFPE;
break;
case T_TRAPVINST|T_USER: /* TRAPV instruction trap */
ucode = frame.f_format; /* XXX was FPE_INTOVF_TRAP */
i = SIGFPE;
break;
/*
* XXX: Trace traps are a nightmare.
*
* HP-UX uses trap #1 for breakpoints,
* HPBSD uses trap #2,
* SUN 3.x uses trap #15,
* KGDB uses trap #15 (for kernel breakpoints; handled elsewhere).
*
* HPBSD and HP-UX traps both get mapped by locore.s into T_TRACE.
* SUN 3.x traps get passed through as T_TRAP15 and are not really
* supported yet.
*/
case T_TRACE: /* kernel trace trap */
case T_TRAP15: /* SUN trace trap */
frame.f_sr &= ~PSL_T;
i = SIGTRAP;
break;
case T_TRACE|T_USER: /* user trace trap */
case T_TRAP15|T_USER: /* SUN user trace trap */
frame.f_sr &= ~PSL_T;
i = SIGTRAP;
break;
case T_ASTFLT: /* system async trap, cannot happen */
goto dopanic;
case T_ASTFLT|T_USER: /* user async trap */
astpending = 0;
/*
* We check for software interrupts first. This is because
* they are at a higher level than ASTs, and on a VAX would
* interrupt the AST. We assume that if we are processing
* an AST that we must be at IPL0 so we don't bother to
* check. Note that we ensure that we are at least at SIR
* IPL while processing the SIR.
*/
spl1();
/* fall into... */
case T_SSIR: /* software interrupt */
case T_SSIR|T_USER:
if (ssir & SIR_NET) {
siroff(SIR_NET);
cnt.v_soft++;
netintr();
}
if (ssir & SIR_CLOCK) {
siroff(SIR_CLOCK);
cnt.v_soft++;
softclock((caddr_t)frame.f_pc, (int)frame.f_sr);
}
/*
* If this was not an AST trap, we are all done.
*/
if (type != (T_ASTFLT|T_USER)) {
cnt.v_trap--;
return;
}
spl0();
#ifndef PROFTIMER
if ((p->p_flag&SOWEUPC) && p->p_stats->p_prof.pr_scale) {
addupc(frame.f_pc, &p->p_stats->p_prof, 1);
p->p_flag &= ~SOWEUPC;
}
#endif
goto out;
case T_MMUFLT: /* kernel mode page fault */
/* fall into ... */
case T_MMUFLT|T_USER: /* page fault */
{
register vm_offset_t va;
register struct vmspace *vm = p->p_vmspace;
register vm_map_t map;
int rv;
vm_prot_t ftype;
extern vm_map_t kernel_map;
#ifdef DEBUG
if ((mmudebug & MDB_WBFOLLOW) || MDB_ISPID(p->p_pid))
printf("trap: T_MMUFLT pid=%d, code=%x, v=%x, pc=%x, sr=%x\n",
p->p_pid, code, v, frame.f_pc, frame.f_sr);
#endif
/*
* It is only a kernel address space fault iff:
* 1. (type & T_USER) == 0 and
* 2. pcb_onfault not set or
* 3. pcb_onfault set but supervisor space data fault
* The last can occur during an exec() copyin where the
* argument space is lazy-allocated.
*/
if (type == T_MMUFLT &&
(!p->p_addr->u_pcb.pcb_onfault || KDFAULT(code)))
map = kernel_map;
else
map = &vm->vm_map;
if (WRFAULT(code))
ftype = VM_PROT_READ | VM_PROT_WRITE;
else
ftype = VM_PROT_READ;
va = trunc_page((vm_offset_t)v);
#ifdef DEBUG
if (map == kernel_map && va == 0) {
printf("trap: bad kernel access at %x\n", v);
goto dopanic;
}
#endif
rv = vm_fault(map, va, ftype, FALSE);
#ifdef DEBUG
if (rv && MDB_ISPID(p->p_pid))
printf("vm_fault(%x, %x, %x, 0) -> %x\n",
map, va, ftype, rv);
#endif
/*
* If this was a stack access we keep track of the maximum
* accessed stack size. Also, if vm_fault gets a protection
* failure it is due to accessing the stack region outside
* the current limit and we need to reflect that as an access
* error.
*/
if ((caddr_t)va >= vm->vm_maxsaddr && map != kernel_map) {
if (rv == KERN_SUCCESS) {
unsigned nss;
nss = clrnd(btoc(USRSTACK-(unsigned)va));
if (nss > vm->vm_ssize)
vm->vm_ssize = nss;
} else if (rv == KERN_PROTECTION_FAILURE)
rv = KERN_INVALID_ADDRESS;
}
if (rv == KERN_SUCCESS) {
if (type == T_MMUFLT) {
return;
}
goto out;
}
if (type == T_MMUFLT) {
if (p->p_addr->u_pcb.pcb_onfault)
goto copyfault;
printf("vm_fault(%x, %x, %x, 0) -> %x\n",
map, va, ftype, rv);
printf(" type %x, code [mmu,,ssw]: %x\n",
type, code);
goto dopanic;
}
ucode = v;
i = (rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV;
break;
}
}
trapsignal(p, i, ucode);
if ((type & T_USER) == 0)
return;
out:
while (i = CURSIG(p))
psig(i);
p->p_pri = p->p_usrpri;
if (want_resched) {
/*
* Since we are curproc, clock will normally just change
* our priority without moving us from one queue to another
* (since the running process is not on a queue.)
* If that happened after we setrq ourselves but before we
* swtch()'ed, we might not be on the queue indicated by
* our priority.
*/
s = splclock();
setrq(p);
p->p_stats->p_ru.ru_nivcsw++;
swtch();
splx(s);
while (i = CURSIG(p))
psig(i);
}
if (p->p_stats->p_prof.pr_scale) {
int ticks;
struct timeval *tv = &p->p_stime;
ticks = ((tv->tv_sec - syst.tv_sec) * 1000 +
(tv->tv_usec - syst.tv_usec) / 1000) / (tick / 1000);
if (ticks) {
#ifdef PROFTIMER
extern int profscale;
addupc(frame.f_pc, &p->p_stats->p_prof,
ticks * profscale);
#else
addupc(frame.f_pc, &p->p_stats->p_prof, ticks);
#endif
}
}
curpri = p->p_pri;
}
/*
* Proces a system call.
*/
syscall(code, frame)
volatile unsigned code;
struct frame frame;
{
register caddr_t params;
register int i;
register struct sysent *callp;
register struct proc *p = curproc;
int error, opc, numsys, s;
struct args {
int i[8];
} args;
int rval[2];
struct timeval syst;
struct sysent *systab;
cnt.v_syscall++;
syst = p->p_stime;
if (!USERMODE(frame.f_sr))
panic("syscall");
p->p_md.md_regs = frame.f_regs;
opc = frame.f_pc - 2;
systab = sysent;
numsys = nsysent;
params = (caddr_t)frame.f_regs[SP] + sizeof(int);
if (code == 0) { /* indir */
code = fuword(params);
params += sizeof(int);
}
if (code >= numsys)
callp = &systab[0]; /* indir (illegal) */
else
callp = &systab[code];
if ((i = callp->sy_narg * sizeof (int)) &&
(error = copyin(params, (caddr_t)&args, (u_int)i))) {
frame.f_regs[D0] = error;
frame.f_sr |= PSL_C; /* carry bit */
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSCALL))
ktrsyscall(p->p_tracep, code, callp->sy_narg, args.i);
#endif
goto done;
}
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSCALL))
ktrsyscall(p->p_tracep, code, callp->sy_narg, args.i);
#endif
rval[0] = 0;
rval[1] = frame.f_regs[D1];
error = (*callp->sy_call)(p, &args, rval);
if (error == ERESTART)
frame.f_pc = opc;
else if (error != EJUSTRETURN) {
if (error) {
frame.f_regs[D0] = error;
frame.f_sr |= PSL_C; /* carry bit */
} else {
frame.f_regs[D0] = rval[0];
frame.f_regs[D1] = rval[1];
frame.f_sr &= ~PSL_C;
}
}
/* else if (error == EJUSTRETURN) */
/* nothing to do */
done:
/*
* Reinitialize proc pointer `p' as it may be different
* if this is a child returning from fork syscall.
*/
p = curproc;
while (i = CURSIG(p))
psig(i);
p->p_pri = p->p_usrpri;
if (want_resched) {
/*
* Since we are curproc, clock will normally just change
* our priority without moving us from one queue to another
* (since the running process is not on a queue.)
* If that happened after we setrq ourselves but before we
* swtch()'ed, we might not be on the queue indicated by
* our priority.
*/
s = splclock();
setrq(p);
p->p_stats->p_ru.ru_nivcsw++;
swtch();
splx(s);
while (i = CURSIG(p))
psig(i);
}
if (p->p_stats->p_prof.pr_scale) {
int ticks;
struct timeval *tv = &p->p_stime;
ticks = ((tv->tv_sec - syst.tv_sec) * 1000 +
(tv->tv_usec - syst.tv_usec) / 1000) / (tick / 1000);
if (ticks) {
#ifdef PROFTIMER
extern int profscale;
addupc(frame.f_pc, &p->p_stats->p_prof,
ticks * profscale);
#else
addupc(frame.f_pc, &p->p_stats->p_prof, ticks);
#endif
}
}
curpri = p->p_pri;
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSRET))
ktrsysret(p->p_tracep, code, error, rval[0]);
#endif
}