delete USES_VOP_whatever (Kirk); use lfs_seglock/unlock instead of
[unix-history] / usr / src / sys / ufs / lfs / lfs_segment.c
/*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
*
* %sccs.include.redist.c%
*
* @(#)lfs_segment.c 7.21 (Berkeley) %G%
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/kernel.h>
#include <sys/resourcevar.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/vnode.h>
#include <sys/specdev.h>
#include <sys/fifo.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_extern.h>
/* In-memory description of a segment about to be written. */
struct segment {
struct buf **bpp; /* pointer to buffer array */
struct buf **cbpp; /* pointer to next available bp */
struct buf *ibp; /* buffer pointer to inode page */
struct finfo *fip; /* current fileinfo pointer */
void *segsum; /* segment summary info */
u_long ninodes; /* number of inodes in this segment */
u_long seg_bytes_left; /* bytes left in segment */
u_long sum_bytes_left; /* bytes left in summary block */
u_long seg_number; /* number of this segment */
#define SEGM_CKP 0x01 /* doing a checkpoint */
u_long seg_flags; /* run-time flags for this segment */
};
/*
* Determine if it's OK to start a partial in this segment, or if we need
* to go on to a new segment.
*/
#define LFS_PARTIAL_FITS(fs) \
((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
1 << (fs)->lfs_fsbtodb)
void lfs_callback __P((struct buf *));
void lfs_gather __P((struct lfs *, struct segment *,
struct vnode *, int (*) __P((struct lfs *, struct buf *))));
void lfs_initseg __P((struct lfs *, struct segment *));
void lfs_iset __P((struct inode *, daddr_t, time_t));
int lfs_match_data __P((struct lfs *, struct buf *));
int lfs_match_dindir __P((struct lfs *, struct buf *));
int lfs_match_indir __P((struct lfs *, struct buf *));
int lfs_match_tindir __P((struct lfs *, struct buf *));
struct buf *
lfs_newbuf __P((struct lfs *, daddr_t, size_t));
void lfs_newseg __P((struct lfs *));
void lfs_shellsort __P((struct buf **, daddr_t *, register int));
void lfs_updatemeta __P((struct lfs *,
struct segment *, struct vnode *, daddr_t *, struct buf **, int));
void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
int lfs_writeseg __P((struct lfs *, struct segment *));
void lfs_writesuper __P((struct lfs *, struct segment *));
void lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
struct segment *sp, int dirops));
int lfs_allclean_wakeup; /* Cleaner wakeup address. */
/*
* Ifile and meta data blocks are not marked busy, so segment writes MUST be
* single threaded. Currently, there are two paths into lfs_segwrite, sync()
* and getnewbuf(). They both mark the file system busy. Lfs_vflush()
* explicitly marks the file system busy. So lfs_segwrite is safe. I think.
*/
int
lfs_vflush(vp)
struct vnode *vp;
{
struct inode *ip;
struct lfs *fs;
struct segment *sp;
int error, s;
#ifdef VERBOSE
printf("lfs_vflush\n");
#endif
fs = VFSTOUFS(vp->v_mount)->um_lfs;
lfs_seglock(fs);
/*
* Allocate a segment structure and enough space to hold pointers to
* the maximum possible number of buffers which can be described in a
* single summary block.
*/
sp = malloc(sizeof(struct segment), M_SEGMENT, M_WAITOK);
sp->bpp = malloc(((LFS_SUMMARY_SIZE - sizeof(SEGSUM)) /
sizeof(daddr_t) + 1) * sizeof(struct buf *), M_SEGMENT, M_WAITOK);
sp->seg_flags = SEGM_CKP;
lfs_initseg(fs, sp);
/*
* Keep a cumulative count of the outstanding I/O operations. If the
* disk drive catches up with us it could go to zero before we finish,
* so we artificially increment it by one until we've scheduled all of
* the writes we intend to do.
*/
s = splbio();
++fs->lfs_iocount;
splx(s);
if (vp->v_dirtyblkhd != NULL)
lfs_writefile(fs, sp, vp);
ip = VTOI(vp);
(void) lfs_writeinode(fs, sp, ip);
ip->i_flags &= ~(IMOD | IACC | IUPD | ICHG);
(void)lfs_writeseg(fs, sp);
/*
* If the I/O count is non-zero, sleep until it reaches zero. At the
* moment, the user's process hangs around so we can sleep.
*/
s = splbio();
if (--fs->lfs_iocount && (error =
tsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs vflush", 0))) {
free(sp->bpp, M_SEGMENT);
free(sp, M_SEGMENT);
return (error);
}
splx(s);
lfs_segunlock(fs);
/*
* XXX
* Should be writing a checkpoint?
*/
free(sp->bpp, M_SEGMENT);
free(sp, M_SEGMENT);
return (0);
}
void
lfs_writevnodes(fs, mp, sp, dirops)
struct lfs *fs;
struct mount *mp;
struct segment *sp;
int dirops;
{
struct inode *ip;
struct vnode *vp;
int error, s;
loop: for (vp = mp->mnt_mounth; vp; vp = vp->v_mountf) {
/*
* If the vnode that we are about to sync is no longer
* associated with this mount point, start over.
*/
if (vp->v_mount != mp)
goto loop;
if (dirops && !(vp->v_flag & VDIROP) ||
!dirops && (vp->v_flag & VDIROP))
continue;
/*
* XXX
* Up the ref count so we don't get tossed out of
* memory.
*/
VREF(vp);
/*
* Write the inode/file if dirty and it's not the
* the IFILE.
*/
ip = VTOI(vp);
if ((ip->i_flag & (IMOD | IACC | IUPD | ICHG) ||
vp->v_dirtyblkhd != NULL) &&
ip->i_number != LFS_IFILE_INUM) {
if (vp->v_dirtyblkhd != NULL)
lfs_writefile(fs, sp, vp);
(void) lfs_writeinode(fs, sp, ip);
ip->i_flags &= ~(IMOD | IACC | IUPD | ICHG);
}
vp->v_flag &= ~VDIROP;
vrele(vp);
}
}
int
lfs_segwrite(mp, do_ckp)
struct mount *mp;
int do_ckp; /* Do a checkpoint. */
{
struct inode *ip;
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
int error, s;
#ifdef VERBOSE
printf("lfs_segwrite\n");
#endif
fs = VFSTOUFS(mp)->um_lfs;
lfs_seglock(fs);
/*
* Allocate a segment structure and enough space to hold pointers to
* the maximum possible number of buffers which can be described in a
* single summary block.
*/
sp = malloc(sizeof(struct segment), M_SEGMENT, M_WAITOK);
sp->bpp = malloc(((LFS_SUMMARY_SIZE - sizeof(SEGSUM)) /
sizeof(daddr_t) + 1) * sizeof(struct buf *), M_SEGMENT, M_WAITOK);
sp->seg_flags = do_ckp ? SEGM_CKP : 0;
lfs_initseg(fs, sp);
/*
* Keep a cumulative count of the outstanding I/O operations. If the
* disk drive catches up with us it could go to zero before we finish,
* so we artificially increment it by one until we've scheduled all of
* the writes we intend to do. If not a checkpoint, we never do the
* final decrement, avoiding the wakeup in the callback routine.
*/
s = splbio();
fs->lfs_iocount++;
splx(s);
lfs_writevnodes(fs, mp, sp, 0);
s = splbio();
fs->lfs_writer = 1;
if (fs->lfs_dirops && (error =
tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
free(sp->bpp, M_SEGMENT);
free(sp, M_SEGMENT);
fs->lfs_writer = 0;
splx(s);
return(error);
}
splx(s);
lfs_writevnodes(fs, mp, sp, 1);
/*
* If this is a checkpoint, we need to loop on both the ifile and
* the writeseg to make sure that we don't end up with any dirty
* buffers left when this is all over.
*/
if (do_ckp || fs->lfs_doifile) {
redo:
vp = fs->lfs_ivnode;
while (vget(vp));
ip = VTOI(vp);
do {
if (vp->v_dirtyblkhd != NULL)
lfs_writefile(fs, sp, vp);
} while (lfs_writeinode(fs, sp, ip) && do_ckp);
ip->i_flags &= ~(IMOD | IACC | IUPD | ICHG);
vput(vp);
if (lfs_writeseg(fs, sp) && do_ckp) {
lfs_initseg(fs, sp);
goto redo;
}
} else
(void) lfs_writeseg(fs, sp);
/*
* If the I/O count is non-zero, sleep until it reaches zero. At the
* moment, the user's process hangs around so we can sleep.
*/
s = splbio();
--fs->lfs_iocount;
fs->lfs_writer = 0;
fs->lfs_doifile = 0;
wakeup(&fs->lfs_dirops);
if (do_ckp) {
if (fs->lfs_iocount && (error =
tsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs sync", 0))) {
free(sp->bpp, M_SEGMENT);
free(sp, M_SEGMENT);
return (error);
}
splx(s);
lfs_writesuper(fs, sp);
} else
splx(s);
lfs_segunlock(fs);
free(sp->bpp, M_SEGMENT);
free(sp, M_SEGMENT);
return (0);
}
/*
* Write the dirty blocks associated with a vnode.
*/
void
lfs_writefile(fs, sp, vp)
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
{
struct buf *bp;
struct finfo *fip;
IFILE *ifp;
#ifdef VERBOSE
printf("lfs_writefile\n");
#endif
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(struct finfo)) {
(void) lfs_writeseg(fs, sp);
lfs_initseg(fs, sp);
}
sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
fip = sp->fip;
fip->fi_nblocks = 0;
fip->fi_ino = VTOI(vp)->i_number;
LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
fip->fi_version = ifp->if_version;
brelse(bp);
/*
* It may not be necessary to write the meta-data blocks at this point,
* as the roll-forward recovery code should be able to reconstruct the
* list.
*/
lfs_gather(fs, sp, vp, lfs_match_data);
lfs_gather(fs, sp, vp, lfs_match_indir);
lfs_gather(fs, sp, vp, lfs_match_dindir);
#ifdef TRIPLE
lfs_gather(fs, sp, vp, lfs_match_tindir);
#endif
fip = sp->fip;
#ifdef META
printf("lfs_writefile: adding %d blocks\n", fip->fi_nblocks);
#endif
if (fip->fi_nblocks != 0) {
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
sp->fip =
(struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
sizeof(daddr_t) * (fip->fi_nblocks - 1));
} else
sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
}
int
lfs_writeinode(fs, sp, ip)
struct lfs *fs;
struct segment *sp;
struct inode *ip;
{
struct buf *bp, *ibp;
IFILE *ifp;
SEGUSE *sup;
daddr_t daddr;
ino_t ino;
int ndx;
int redo_ifile = 0;
#ifdef VERBOSE
printf("lfs_writeinode\n");
#endif
/* Allocate a new inode block if necessary. */
if (sp->ibp == NULL) {
/* Allocate a new segment if necessary. */
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(daddr_t)) {
(void) lfs_writeseg(fs, sp);
lfs_initseg(fs, sp);
}
/* Get next inode block. */
daddr = fs->lfs_offset;
fs->lfs_offset += fsbtodb(fs, 1);
sp->ibp = *sp->cbpp++ =
lfs_newbuf(fs, daddr, fs->lfs_bsize);
/* Set remaining space counters. */
sp->seg_bytes_left -= fs->lfs_bsize;
sp->sum_bytes_left -= sizeof(daddr_t);
ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
sp->ninodes / INOPB(fs) - 1;
((daddr_t *)(sp->segsum))[ndx] = daddr;
}
/* Update the inode times and copy the inode onto the inode page. */
ITIMES(ip, &time, &time);
bp = sp->ibp;
bp->b_un.b_dino[sp->ninodes % INOPB(fs)] = ip->i_din;
/* Increment inode count in segment summary block. */
++((SEGSUM *)(sp->segsum))->ss_ninos;
/* If this page is full, set flag to allocate a new page. */
if (++sp->ninodes % INOPB(fs) == 0)
sp->ibp = NULL;
/*
* If updating the ifile, update the super-block. Update the disk
* address and access times for this inode in the ifile.
*/
ino = ip->i_number;
if (ino == LFS_IFILE_INUM)
fs->lfs_idaddr = bp->b_blkno;
LFS_IENTRY(ifp, fs, ino, ibp);
daddr = ifp->if_daddr;
ifp->if_daddr = bp->b_blkno;
LFS_UBWRITE(ibp);
redo_ifile = (ino == LFS_IFILE_INUM && !(ibp->b_flags & B_GATHERED));
/*
* No need to update segment usage if there was no former inode address
* or if the last inode address is in the current partial segment.
*/
if (daddr != LFS_UNUSED_DADDR &&
!(daddr >= fs->lfs_curseg && daddr <= ifp->if_daddr) ) {
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes < sizeof(struct dinode)) {
/* XXX -- Change to a panic. */
printf("lfs: negative bytes (segment %d)\n",
datosn(fs, daddr));
panic("negative bytes");
}
#endif
sup->su_nbytes -= sizeof(struct dinode);
LFS_UBWRITE(bp);
redo_ifile |=
(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
}
return(redo_ifile);
}
void
lfs_gather(fs, sp, vp, match)
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
int (*match) __P((struct lfs *, struct buf *));
{
struct buf **bpp, *bp;
struct buf *lastbp;
struct finfo *fip;
struct inode *ip;
daddr_t *lbp, *start_lbp;
u_long version;
int s;
#ifdef VERBOSE
printf("lfs_gather\n");
#endif
ip = VTOI(vp);
bpp = sp->cbpp;
fip = sp->fip;
start_lbp = lbp = &fip->fi_blocks[fip->fi_nblocks];
loop: s = splbio();
lastbp = NULL;
for (bp = vp->v_dirtyblkhd; bp; lastbp = bp, bp = bp->b_blockf) {
if (bp->b_flags & B_BUSY || !match(fs, bp) ||
bp->b_flags & B_GATHERED)
continue;
#ifdef DIAGNOSTIC
if (!(bp->b_flags & B_DELWRI))
panic("lfs_gather: bp not B_DELWRI");
if (!(bp->b_flags & B_LOCKED))
panic("lfs_gather: bp not B_LOCKED");
#endif
/*
* If full, finish this segment. We may be doing I/O, so
* release and reacquire the splbio().
*/
if (sp->sum_bytes_left < sizeof(daddr_t) ||
sp->seg_bytes_left < fs->lfs_bsize) {
splx(s);
lfs_updatemeta(fs,
sp, vp, start_lbp, bpp, lbp - start_lbp);
/* Add the current file to the segment summary. */
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
version = fip->fi_version;
(void) lfs_writeseg(fs, sp);
lfs_initseg(fs, sp);
fip = sp->fip;
fip->fi_version = version;
fip->fi_ino = ip->i_number;
start_lbp = lbp = fip->fi_blocks;
sp->sum_bytes_left -=
sizeof(struct finfo) - sizeof(daddr_t);
bpp = sp->cbpp;
goto loop;
}
/* Insert into the buffer list, update the FINFO block. */
bp->b_flags |= B_GATHERED;
*sp->cbpp++ = bp;
++fip->fi_nblocks;
*lbp++ = bp->b_lblkno;
sp->sum_bytes_left -= sizeof(daddr_t);
sp->seg_bytes_left -= bp->b_bufsize;
}
splx(s);
lfs_updatemeta(fs, sp, vp, start_lbp, bpp, lbp - start_lbp);
}
/*
* Update the metadata that points to the blocks listed in the FINFO
* array.
*/
void
lfs_updatemeta(fs, sp, vp, lbp, bpp, nblocks)
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
daddr_t *lbp;
struct buf **bpp;
int nblocks;
{
SEGUSE *sup;
struct buf *bp;
INDIR a[NIADDR], *ap;
struct inode *ip;
daddr_t daddr, lbn, off;
int db_per_fsb, error, i, num;
#ifdef VERBOSE
printf("lfs_updatemeta\n");
#endif
if (nblocks == 0)
return;
/* Sort the blocks. */
lfs_shellsort(bpp, lbp, nblocks);
/*
* Assign disk addresses, and update references to the logical
* block and the segment usage information.
*/
db_per_fsb = fsbtodb(fs, 1);
for (i = nblocks; i--; ++bpp) {
lbn = *lbp++;
(*bpp)->b_blkno = off = fs->lfs_offset;
fs->lfs_offset += db_per_fsb;
if (error = lfs_bmaparray(vp, lbn, &daddr, a, &num))
panic("lfs_updatemeta: lfs_bmaparray %d", error);
ip = VTOI(vp);
switch (num) {
case 0:
ip->i_db[lbn] = off;
break;
case 1:
ip->i_ib[a[0].in_off] = off;
break;
default:
ap = &a[num - 1];
if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
panic("lfs_updatemeta: bread bno %d",
ap->in_lbn);
bp->b_un.b_daddr[ap->in_off] = off;
VOP_BWRITE(bp);
}
/* Update segment usage information. */
if (daddr != UNASSIGNED) {
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes < fs->lfs_bsize) {
/* XXX -- Change to a panic. */
printf("lfs: negative bytes (segment %d)\n",
datosn(fs, daddr));
panic ("Negative Bytes");
}
#endif
sup->su_nbytes -= fs->lfs_bsize;
LFS_UBWRITE(bp);
}
}
}
/*
* Start a new segment.
*/
void
lfs_initseg(fs, sp)
struct lfs *fs;
struct segment *sp;
{
SEGUSE *sup;
SEGSUM *ssp;
struct buf *bp;
daddr_t lbn, *lbnp;
#ifdef VERBOSE
printf("lfs_initseg\n");
#endif
/* Advance to the next segment. */
if (!LFS_PARTIAL_FITS(fs)) {
/* Wake up any cleaning procs waiting on this file system. */
wakeup(&fs->lfs_nextseg);
wakeup(&lfs_allclean_wakeup);
lfs_newseg(fs);
fs->lfs_offset = fs->lfs_curseg;
sp->seg_number = datosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
/*
* If the segment contains a superblock, update the offset
* and summary address to skip over it.
*/
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
if (sup->su_flags & SEGUSE_SUPERBLOCK) {
fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
sp->seg_bytes_left -= LFS_SBPAD;
}
brelse(bp);
} else {
sp->seg_number = datosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = (fs->lfs_dbpseg -
(fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
}
fs->lfs_lastpseg = fs->lfs_offset;
sp->ibp = NULL;
sp->ninodes = 0;
/* Get a new buffer for SEGSUM and enter it into the buffer list. */
sp->cbpp = sp->bpp;
*sp->cbpp = lfs_newbuf(fs, fs->lfs_offset, LFS_SUMMARY_SIZE);
sp->segsum = (*sp->cbpp)->b_un.b_addr;
++sp->cbpp;
fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
/* Set point to SEGSUM, initialize it. */
ssp = sp->segsum;
ssp->ss_next = fs->lfs_nextseg;
ssp->ss_nfinfo = ssp->ss_ninos = 0;
/* Set pointer to first FINFO, initialize it. */
sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM));
sp->fip->fi_nblocks = 0;
sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
}
/*
* Return the next segment to write.
*/
void
lfs_newseg(fs)
struct lfs *fs;
{
CLEANERINFO *cip;
SEGUSE *sup;
struct buf *bp;
int curseg, isdirty, sn;
#ifdef VERBOSE
printf("lfs_newseg\n");
#endif
/*
* Turn off the active bit for the current segment, turn on the
* active and dirty bits for the next segment, update the cleaner
* info. Set the current segment to the next segment, get a new
* next segment.
*/
LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_curseg), bp);
sup->su_flags &= ~SEGUSE_ACTIVE;
LFS_UBWRITE(bp);
LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
sup->su_flags |= SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_LIVELOG;
LFS_UBWRITE(bp);
LFS_CLEANERINFO(cip, fs, bp);
--cip->clean;
++cip->dirty;
LFS_UBWRITE(bp);
fs->lfs_lastseg = fs->lfs_curseg;
fs->lfs_curseg = fs->lfs_nextseg;
for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
sn = (sn + 1) % fs->lfs_nseg;
if (sn == curseg)
panic("lfs_nextseg: no clean segments");
LFS_SEGENTRY(sup, fs, sn, bp);
isdirty = sup->su_flags & SEGUSE_DIRTY;
brelse(bp);
if (!isdirty)
break;
}
fs->lfs_nextseg = sntoda(fs, sn);
}
int
lfs_writeseg(fs, sp)
struct lfs *fs;
struct segment *sp;
{
struct buf **bpp, *bp, *cbp;
SEGUSE *sup;
SEGSUM *ssp;
dev_t i_dev;
size_t size;
u_long *datap, *dp;
int ch_per_blk, do_again, i, nblocks, num, s;
int (*strategy)__P((struct vop_strategy_args *));
struct vop_strategy_args vop_strategy_a;
char *p;
#ifdef VERBOSE
printf("lfs_writeseg\n");
#endif
/* Checkpoint always writes superblock, even if no data blocks. */
if ((nblocks = sp->cbpp - sp->bpp) == 0 && !(sp->seg_flags & SEGM_CKP))
return;
/*
* Compute checksum across data and then across summary; the first
* block (the summary block) is skipped. Set the create time here
* so that it's guaranteed to be later than the inode mod times.
*
* XXX
* Fix this to do it inline, instead of malloc/copy.
*/
datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
for (bpp = sp->bpp, i = nblocks - 1; i--;)
*dp++ = (*++bpp)->b_un.b_words[0];
ssp = (SEGSUM *)sp->segsum;
ssp->ss_create = time.tv_sec;
ssp->ss_datasum = cksum(datap, nblocks * sizeof(u_long));
ssp->ss_sumsum =
cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
free(datap, M_SEGMENT);
/* Update the segment usage information. */
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
sup->su_nbytes += nblocks - 1 -
(ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs) << fs->lfs_bshift;
sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
sup->su_lastmod = time.tv_sec;
LFS_UBWRITE(bp);
do_again = !(bp->b_flags & B_GATHERED);
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
/*
* When we simply write the blocks we lose a rotation for every block
* written. To avoid this problem, we allocate memory in chunks, copy
* the buffers into the chunk and write the chunk. 56K was chosen as
* some driver/controllers can't handle unsigned 16 bit transfers.
* When the data is copied to the chunk, turn off the the B_LOCKED bit
* and brelse the buffer (which will move them to the LRU list). Add
* the B_CALL flag to the buffer header so we can count I/O's for the
* checkpoints and so we can release the allocated memory.
*
* XXX
* This should be removed if the new virtual memory system allows us to
* easily make the buffers contiguous in kernel memory and if that's
* fast enough.
*/
#define LFS_CHUNKSIZE (56 * 1024)
ch_per_blk = LFS_CHUNKSIZE / fs->lfs_bsize;
for (bpp = sp->bpp, i = nblocks; i;) {
num = ch_per_blk;
if (num > i)
num = i;
i -= num;
size = num * fs->lfs_bsize;
cbp = lfs_newbuf(fs, (*bpp)->b_blkno, 0);
cbp->b_dev = i_dev;
cbp->b_flags = B_ASYNC | B_BUSY | B_CALL;
cbp->b_iodone = lfs_callback;
cbp->b_saveaddr = cbp->b_un.b_addr;
cbp->b_un.b_addr = malloc(size, M_SEGMENT, M_WAITOK);
s = splbio();
++fs->lfs_iocount;
for (p = cbp->b_un.b_addr; num--;) {
bp = *bpp++;
bcopy(bp->b_un.b_addr, p, bp->b_bcount);
p += bp->b_bcount;
bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI |
B_LOCKED | B_GATHERED);
if (!(bp->b_flags & (B_NOCACHE | B_INVAL))) {
bremfree(bp);
reassignbuf(bp, bp->b_vp);
}
brelse(bp);
}
splx(s);
cbp->b_bcount = p - cbp->b_un.b_addr;
vop_strategy_a.a_desc = VDESC(vop_strategy);
vop_strategy_a.a_bp = cbp;
(strategy)(&vop_strategy_a);
}
return(do_again);
}
void
lfs_writesuper(fs, sp)
struct lfs *fs;
struct segment *sp;
{
struct buf *bp;
dev_t i_dev;
int (*strategy) __P((struct vop_strategy_args *));
struct vop_strategy_args vop_strategy_a;
#ifdef VERBOSE
printf("lfs_writesuper\n");
#endif
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
/* Checksum the superblock and copy it into a buffer. */
fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
bp = lfs_newbuf(fs, fs->lfs_sboffs[0], LFS_SBPAD);
*bp->b_un.b_lfs = *fs;
/* Write the first superblock (wait). */
bp->b_dev = i_dev;
bp->b_flags |= B_BUSY;
bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
vop_strategy_a.a_desc = VDESC(vop_strategy);
vop_strategy_a.a_bp = bp;
(strategy)(&vop_strategy_a);
biowait(bp);
/* Write the second superblock (don't wait). */
bp->b_blkno = bp->b_lblkno = fs->lfs_sboffs[1];
bp->b_flags |= B_ASYNC | B_BUSY;
bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
(strategy)(&vop_strategy_a);
}
/*
* Logical block number match routines used when traversing the dirty block
* chain.
*/
int
lfs_match_data(fs, bp)
struct lfs *fs;
struct buf *bp;
{
return (bp->b_lblkno >= 0);
}
int
lfs_match_indir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
}
int
lfs_match_dindir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
}
int
lfs_match_tindir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
}
/*
* Allocate a new buffer header.
*/
struct buf *
lfs_newbuf(fs, daddr, size)
struct lfs *fs;
daddr_t daddr;
size_t size;
{
struct buf *bp;
#ifdef VERBOSE
printf("lfs_newbuf\n");
#endif
bp = getnewbuf();
bremhash(bp);
bgetvp(fs->lfs_ivnode, bp);
bp->b_bcount = 0;
bp->b_lblkno = daddr;
bp->b_blkno = daddr;
bp->b_error = 0;
bp->b_resid = 0;
if (size)
allocbuf(bp, size);
bp->b_flags |= B_NOCACHE;
bp->b_saveaddr = NULL;
binshash(bp, &bfreelist[BQ_AGE]);
return (bp);
}
void
lfs_callback(bp)
struct buf *bp;
{
struct lfs *fs;
fs = VFSTOUFS(bp->b_vp->v_mount)->um_lfs;
#ifdef DIAGNOSTIC
if (fs->lfs_iocount == 0)
panic("lfs_callback: zero iocount\n");
#endif
if (--fs->lfs_iocount == 0)
wakeup(&fs->lfs_iocount);
if (bp->b_saveaddr) {
free(bp->b_un.b_addr, M_SEGMENT);
bp->b_un.b_addr = bp->b_saveaddr;
bp->b_saveaddr = NULL;
}
brelse(bp);
}
/*
* Shellsort (diminishing increment sort) from Data Structures and
* Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
* see also Knuth Vol. 3, page 84. The increments are selected from
* formula (8), page 95. Roughly O(N^3/2).
*/
/*
* This is our own private copy of shellsort because we want to sort
* two parallel arrays (the array of buffer pointers and the array of
* logical block numbers) simultaneously. Note that we cast the array
* of logical block numbers to a unsigned in this routine so that the
* negative block numbers (meta data blocks) sort AFTER the data blocks.
*/
void
lfs_shellsort(bp_array, lb_array, nmemb)
struct buf **bp_array;
daddr_t *lb_array;
register int nmemb;
{
static int __rsshell_increments[] = { 4, 1, 0 };
register int incr, *incrp, t1, t2;
struct buf *bp_temp;
u_long lb_temp;
for (incrp = __rsshell_increments; incr = *incrp++;)
for (t1 = incr; t1 < nmemb; ++t1)
for (t2 = t1 - incr; t2 >= 0;)
if (lb_array[t2] > lb_array[t2 + incr]) {
lb_temp = lb_array[t2];
lb_array[t2] = lb_array[t2 + incr];
lb_array[t2 + incr] = lb_temp;
bp_temp = bp_array[t2];
bp_array[t2] = bp_array[t2 + incr];
bp_array[t2 + incr] = bp_temp;
t2 -= incr;
} else
break;
}