alloc tables at boot time version
[unix-history] / usr / src / sys / kern / kern_clock.c
/* kern_clock.c 4.14 %G% */
#include "../h/param.h"
#include "../h/systm.h"
#include "../h/dk.h"
#include "../h/callout.h"
#include "../h/seg.h"
#include "../h/dir.h"
#include "../h/user.h"
#include "../h/proc.h"
#include "../h/reg.h"
#include "../h/psl.h"
#include "../h/vm.h"
#include "../h/buf.h"
#include "../h/text.h"
#include "../h/vlimit.h"
#include "../h/mtpr.h"
#include "../h/clock.h"
#include "../h/cpu.h"
#include "dh.h"
#include "dz.h"
#define SCHMAG 9/10
/*
* Hardclock is called straight from
* the real time clock interrupt.
* We limit the work we do at real clock interrupt time to:
* reloading clock
* decrementing time to callouts
* recording cpu time usage
* modifying priority of current process
* arrange for soft clock interrupt
* kernel pc profiling
*
* At softclock interrupt time we:
* implement callouts
* maintain date
* lightning bolt wakeup (every second)
* alarm clock signals
* jab the scheduler
*
* On the vax softclock interrupts are implemented by
* software interrupts. Note that we may have multiple softclock
* interrupts compressed into one (due to excessive interrupt load),
* but that hardclock interrupts should never be lost.
*/
/*ARGSUSED*/
hardclock(pc, ps)
caddr_t pc;
{
register struct callout *p1;
register struct proc *pp;
register int s, cpstate;
/*
* reprime clock
*/
clkreld();
/*
* update callout times
*/
if(callout[0].c_func == NULL)
goto out;
p1 = &callout[0];
while(p1->c_time<=0 && p1->c_func!=NULL)
p1++;
p1->c_time--;
out:
/*
* Maintain iostat and per-process cpu statistics
*/
if (!noproc) {
s = u.u_procp->p_rssize;
u.u_vm.vm_idsrss += s;
if (u.u_procp->p_textp) {
register int xrss = u.u_procp->p_textp->x_rssize;
s += xrss;
u.u_vm.vm_ixrss += xrss;
}
if (s > u.u_vm.vm_maxrss)
u.u_vm.vm_maxrss = s;
if ((u.u_vm.vm_utime+u.u_vm.vm_stime+1)/hz > u.u_limit[LIM_CPU]) {
psignal(u.u_procp, SIGXCPU);
if (u.u_limit[LIM_CPU] < INFINITY - 5)
u.u_limit[LIM_CPU] += 5;
}
}
if (USERMODE(ps)) {
u.u_vm.vm_utime++;
if(u.u_procp->p_nice > NZERO)
cpstate = CP_NICE;
else
cpstate = CP_USER;
} else {
cpstate = CP_SYS;
if (noproc)
cpstate = CP_IDLE;
else
u.u_vm.vm_stime++;
}
cp_time[cpstate]++;
for (s = 0; s < DK_NDRIVE; s++)
if (dk_busy&(1<<s))
dk_time[s]++;
if (!noproc) {
pp = u.u_procp;
pp->p_cpticks++;
if(++pp->p_cpu == 0)
pp->p_cpu--;
if(pp->p_cpu % 16 == 0) {
(void) setpri(pp);
if (pp->p_pri >= PUSER)
pp->p_pri = pp->p_usrpri;
}
}
++lbolt;
#if VAX780
if (cpu == VAX_780 && !BASEPRI(ps))
unhang();
#endif
setsoftclock();
}
/*
* Constant for decay filter for cpu usage.
*/
double ccpu = 0.95122942450071400909; /* exp(-1/20) */
/*
* Software clock interrupt.
* This routine is blocked by spl1(),
* which doesn't block device interrupts!
*/
/*ARGSUSED*/
softclock(pc, ps)
caddr_t pc;
{
register struct callout *p1, *p2;
register struct proc *pp;
register int a, s;
/*
* callout
*/
if(callout[0].c_time <= 0) {
p1 = &callout[0];
while(p1->c_func != 0 && p1->c_time <= 0) {
(*p1->c_func)(p1->c_arg);
p1++;
}
p2 = &callout[0];
while(p2->c_func = p1->c_func) {
p2->c_time = p1->c_time;
p2->c_arg = p1->c_arg;
p1++;
p2++;
}
}
/*
* Drain silos.
*/
#if NDH > 0
s = spl5(); dhtimer(); splx(s);
#endif
#if NDZ > 0
s = spl5(); dztimer(); splx(s);
#endif
/*
* If idling and processes are waiting to swap in,
* check on them.
*/
if (noproc && runin) {
runin = 0;
wakeup((caddr_t)&runin);
}
/*
* Run paging daemon and reschedule every 1/4 sec.
*/
if (lbolt % (hz/4) == 0) {
vmpago();
runrun++;
aston();
}
/*
* Lightning bolt every second:
* sleep timeouts
* process priority recomputation
* process %cpu averaging
* virtual memory metering
* kick swapper if processes want in
*/
if (lbolt >= hz) {
if (BASEPRI(ps))
return;
lbolt -= hz;
++time;
wakeup((caddr_t)&lbolt);
for(pp = proc; pp < procNPROC; pp++)
if (pp->p_stat && pp->p_stat!=SZOMB) {
if(pp->p_time != 127)
pp->p_time++;
if(pp->p_clktim)
if(--pp->p_clktim == 0)
if (pp->p_flag & STIMO) {
s = spl6();
switch (pp->p_stat) {
case SSLEEP:
setrun(pp);
break;
case SSTOP:
unsleep(pp);
break;
}
pp->p_flag &= ~STIMO;
splx(s);
} else
psignal(pp, SIGALRM);
if(pp->p_stat==SSLEEP||pp->p_stat==SSTOP)
if (pp->p_slptime != 127)
pp->p_slptime++;
if (pp->p_flag&SLOAD)
pp->p_pctcpu = ccpu * pp->p_pctcpu +
(1.0 - ccpu) * (pp->p_cpticks/(float)hz);
pp->p_cpticks = 0;
a = (pp->p_cpu & 0377)*SCHMAG + pp->p_nice - NZERO;
if(a < 0)
a = 0;
if(a > 255)
a = 255;
pp->p_cpu = a;
(void) setpri(pp);
s = spl6();
if(pp->p_pri >= PUSER) {
if ((pp != u.u_procp || noproc) &&
pp->p_stat == SRUN &&
(pp->p_flag & SLOAD) &&
pp->p_pri != pp->p_usrpri) {
remrq(pp);
pp->p_pri = pp->p_usrpri;
setrq(pp);
} else
pp->p_pri = pp->p_usrpri;
}
splx(s);
}
vmmeter();
if(runin!=0) {
runin = 0;
wakeup((caddr_t)&runin);
}
/*
* If there are pages that have been cleaned,
* jolt the pageout daemon to process them.
* We do this here so that these pages will be
* freed if there is an abundance of memory and the
* daemon would not be awakened otherwise.
*/
if (bclnlist != NULL)
wakeup((caddr_t)&proc[2]);
if (USERMODE(ps)) {
pp = u.u_procp;
if (pp->p_uid)
if (pp->p_nice == NZERO && u.u_vm.vm_utime > 600 * hz)
pp->p_nice = NZERO+4;
(void) setpri(pp);
pp->p_pri = pp->p_usrpri;
}
}
if (USERMODE(ps) && u.u_prof.pr_scale) {
u.u_procp->p_flag |= SOWEUPC;
aston();
}
}
/*
* timeout is called to arrange that
* fun(arg) is called in tim/hz seconds.
* An entry is sorted into the callout
* structure. The time in each structure
* entry is the number of hz's more
* than the previous entry.
* In this way, decrementing the
* first entry has the effect of
* updating all entries.
*
* The panic is there because there is nothing
* intelligent to be done if an entry won't fit.
*/
timeout(fun, arg, tim)
int (*fun)();
caddr_t arg;
{
register struct callout *p1, *p2, *p3;
register int t;
int s;
t = tim;
p1 = &callout[0];
s = spl7();
while(p1->c_func != 0 && p1->c_time <= t) {
t -= p1->c_time;
p1++;
}
p1->c_time -= t;
p2 = p1;
p3 = callout+(ncallout-2);
while(p2->c_func != 0) {
if (p2 >= p3)
panic("timeout");
p2++;
}
while(p2 >= p1) {
(p2+1)->c_time = p2->c_time;
(p2+1)->c_func = p2->c_func;
(p2+1)->c_arg = p2->c_arg;
p2--;
}
p1->c_time = t;
p1->c_func = fun;
p1->c_arg = arg;
splx(s);
}