use Berkeley specific header
[unix-history] / usr / src / sys / netinet / tcp_subr.c
/*
* Copyright (c) 1982, 1986 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of California at Berkeley. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided ``as is'' without express or implied warranty.
*
* @(#)tcp_subr.c 7.13 (Berkeley) %G%
*/
#include "param.h"
#include "systm.h"
#include "mbuf.h"
#include "socket.h"
#include "socketvar.h"
#include "protosw.h"
#include "errno.h"
#include "../net/route.h"
#include "../net/if.h"
#include "in.h"
#include "in_pcb.h"
#include "in_systm.h"
#include "ip.h"
#include "ip_var.h"
#include "ip_icmp.h"
#include "tcp.h"
#include "tcp_fsm.h"
#include "tcp_seq.h"
#include "tcp_timer.h"
#include "tcp_var.h"
#include "tcpip.h"
int tcp_ttl = TCP_TTL;
/*
* Tcp initialization
*/
tcp_init()
{
tcp_iss = 1; /* wrong */
tcb.inp_next = tcb.inp_prev = &tcb;
}
/*
* Create template to be used to send tcp packets on a connection.
* Call after host entry created, allocates an mbuf and fills
* in a skeletal tcp/ip header, minimizing the amount of work
* necessary when the connection is used.
*/
struct tcpiphdr *
tcp_template(tp)
struct tcpcb *tp;
{
register struct inpcb *inp = tp->t_inpcb;
register struct mbuf *m;
register struct tcpiphdr *n;
if ((n = tp->t_template) == 0) {
m = m_get(M_DONTWAIT, MT_HEADER);
if (m == NULL)
return (0);
m->m_off = MMAXOFF - sizeof (struct tcpiphdr);
m->m_len = sizeof (struct tcpiphdr);
n = mtod(m, struct tcpiphdr *);
}
n->ti_next = n->ti_prev = 0;
n->ti_x1 = 0;
n->ti_pr = IPPROTO_TCP;
n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
n->ti_src = inp->inp_laddr;
n->ti_dst = inp->inp_faddr;
n->ti_sport = inp->inp_lport;
n->ti_dport = inp->inp_fport;
n->ti_seq = 0;
n->ti_ack = 0;
n->ti_x2 = 0;
n->ti_off = 5;
n->ti_flags = 0;
n->ti_win = 0;
n->ti_sum = 0;
n->ti_urp = 0;
return (n);
}
/*
* Send a single message to the TCP at address specified by
* the given TCP/IP header. If flags==0, then we make a copy
* of the tcpiphdr at ti and send directly to the addressed host.
* This is used to force keep alive messages out using the TCP
* template for a connection tp->t_template. If flags are given
* then we send a message back to the TCP which originated the
* segment ti, and discard the mbuf containing it and any other
* attached mbufs.
*
* In any case the ack and sequence number of the transmitted
* segment are as specified by the parameters.
*/
tcp_respond(tp, ti, ack, seq, flags)
struct tcpcb *tp;
register struct tcpiphdr *ti;
tcp_seq ack, seq;
int flags;
{
register struct mbuf *m;
int win = 0, tlen;
struct route *ro = 0;
if (tp) {
win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
ro = &tp->t_inpcb->inp_route;
}
if (flags == 0) {
m = m_get(M_DONTWAIT, MT_HEADER);
if (m == NULL)
return;
#ifdef TCP_COMPAT_42
tlen = 1;
#else
tlen = 0;
#endif
m->m_len = sizeof (struct tcpiphdr) + tlen;
*mtod(m, struct tcpiphdr *) = *ti;
ti = mtod(m, struct tcpiphdr *);
flags = TH_ACK;
} else {
m = dtom(ti);
m_freem(m->m_next);
m->m_next = 0;
m->m_off = (int)ti - (int)m;
tlen = 0;
m->m_len = sizeof (struct tcpiphdr);
#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_long);
xchg(ti->ti_dport, ti->ti_sport, u_short);
#undef xchg
}
ti->ti_next = ti->ti_prev = 0;
ti->ti_x1 = 0;
ti->ti_len = htons((u_short)(sizeof (struct tcphdr) + tlen));
ti->ti_seq = htonl(seq);
ti->ti_ack = htonl(ack);
ti->ti_x2 = 0;
ti->ti_off = sizeof (struct tcphdr) >> 2;
ti->ti_flags = flags;
ti->ti_win = htons((u_short)win);
ti->ti_urp = 0;
ti->ti_sum = in_cksum(m, sizeof (struct tcpiphdr) + tlen);
((struct ip *)ti)->ip_len = sizeof (struct tcpiphdr) + tlen;
((struct ip *)ti)->ip_ttl = tcp_ttl;
(void) ip_output(m, (struct mbuf *)0, ro, 0);
}
/*
* Create a new TCP control block, making an
* empty reassembly queue and hooking it to the argument
* protocol control block.
*/
struct tcpcb *
tcp_newtcpcb(inp)
struct inpcb *inp;
{
struct mbuf *m = m_getclr(M_DONTWAIT, MT_PCB);
register struct tcpcb *tp;
if (m == NULL)
return ((struct tcpcb *)0);
tp = mtod(m, struct tcpcb *);
tp->seg_next = tp->seg_prev = (struct tcpiphdr *)tp;
tp->t_maxseg = TCP_MSS;
tp->t_flags = 0; /* sends options! */
tp->t_inpcb = inp;
/*
* Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
* rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
* reasonable initial retransmit time.
*/
tp->t_srtt = TCPTV_SRTTBASE;
tp->t_rttvar = TCPTV_SRTTDFLT << 2;
TCPT_RANGESET(tp->t_rxtcur,
((TCPTV_SRTTBASE >> 2) + (TCPTV_SRTTDFLT << 2)) >> 1,
TCPTV_MIN, TCPTV_REXMTMAX);
tp->snd_cwnd = sbspace(&inp->inp_socket->so_snd);
tp->snd_ssthresh = 65535; /* XXX */
inp->inp_ppcb = (caddr_t)tp;
return (tp);
}
/*
* Drop a TCP connection, reporting
* the specified error. If connection is synchronized,
* then send a RST to peer.
*/
struct tcpcb *
tcp_drop(tp, errno)
register struct tcpcb *tp;
int errno;
{
struct socket *so = tp->t_inpcb->inp_socket;
if (TCPS_HAVERCVDSYN(tp->t_state)) {
tp->t_state = TCPS_CLOSED;
(void) tcp_output(tp);
tcpstat.tcps_drops++;
} else
tcpstat.tcps_conndrops++;
so->so_error = errno;
return (tcp_close(tp));
}
/*
* Close a TCP control block:
* discard all space held by the tcp
* discard internet protocol block
* wake up any sleepers
*/
struct tcpcb *
tcp_close(tp)
register struct tcpcb *tp;
{
register struct tcpiphdr *t;
struct inpcb *inp = tp->t_inpcb;
struct socket *so = inp->inp_socket;
register struct mbuf *m;
t = tp->seg_next;
while (t != (struct tcpiphdr *)tp) {
t = (struct tcpiphdr *)t->ti_next;
m = dtom(t->ti_prev);
remque(t->ti_prev);
m_freem(m);
}
if (tp->t_template)
(void) m_free(dtom(tp->t_template));
(void) m_free(dtom(tp));
inp->inp_ppcb = 0;
soisdisconnected(so);
in_pcbdetach(inp);
tcpstat.tcps_closed++;
return ((struct tcpcb *)0);
}
tcp_drain()
{
}
/*
* Notify a tcp user of an asynchronous error;
* just wake up so that he can collect error status.
*/
tcp_notify(inp)
register struct inpcb *inp;
{
wakeup((caddr_t) &inp->inp_socket->so_timeo);
sorwakeup(inp->inp_socket);
sowwakeup(inp->inp_socket);
}
tcp_ctlinput(cmd, sa)
int cmd;
struct sockaddr *sa;
{
extern u_char inetctlerrmap[];
struct sockaddr_in *sin;
int tcp_quench(), in_rtchange();
if ((unsigned)cmd > PRC_NCMDS)
return;
if (sa->sa_family != AF_INET && sa->sa_family != AF_IMPLINK)
return;
sin = (struct sockaddr_in *)sa;
if (sin->sin_addr.s_addr == INADDR_ANY)
return;
switch (cmd) {
case PRC_QUENCH:
in_pcbnotify(&tcb, &sin->sin_addr, 0, tcp_quench);
break;
case PRC_ROUTEDEAD:
case PRC_REDIRECT_NET:
case PRC_REDIRECT_HOST:
case PRC_REDIRECT_TOSNET:
case PRC_REDIRECT_TOSHOST:
in_pcbnotify(&tcb, &sin->sin_addr, 0, in_rtchange);
break;
default:
if (inetctlerrmap[cmd] == 0)
return; /* XXX */
in_pcbnotify(&tcb, &sin->sin_addr, (int)inetctlerrmap[cmd],
tcp_notify);
}
}
/*
* When a source quench is received, close congestion window
* to one segment. We will gradually open it again as we proceed.
*/
tcp_quench(inp)
struct inpcb *inp;
{
struct tcpcb *tp = intotcpcb(inp);
if (tp)
tp->snd_cwnd = tp->t_maxseg;
}