Major rewrite of npx code (npx-0.5 + 2 patches to it)
[unix-history] / usr / src / sys.386bsd / i386 / i386 / machdep.c
/*-
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
* Copyright (c) 1992 Terrence R. Lambert.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)machdep.c 7.4 (Berkeley) 6/3/91
*
* PATCHES MAGIC LEVEL PATCH THAT GOT US HERE
* -------------------- ----- ----------------------
* CURRENT PATCH LEVEL: 4 00154
* -------------------- ----- ----------------------
*
* 15 Aug 92 William Jolitz Large memory bug
* 15 Aug 92 Terry Lambert Fixed CMOS RAM size bug
* 25 Mar 93 Sean Eric Fagan Added #ifdef HZ around microtime for
* the new microtime.s routine
* 08 Apr 93 Andrew Herbert Fixes for kmem_alloc panics
* 20 Apr 93 Bruce Evans New npx-0.5 code
*/
static char rcsid[] = "$Header: /usr/src/sys.386bsd/i386/i386/RCS/machdep.c,v 1.2 92/01/21 14:22:09 william Exp Locker: root $";
#include "param.h"
#include "systm.h"
#include "signalvar.h"
#include "kernel.h"
#include "proc.h"
#include "user.h"
#include "buf.h"
#include "reboot.h"
#include "conf.h"
#include "file.h"
#include "callout.h"
#include "malloc.h"
#include "mbuf.h"
#include "msgbuf.h"
#include "net/netisr.h"
#include "vm/vm.h"
#include "vm/vm_kern.h"
#include "vm/vm_page.h"
extern vm_offset_t avail_end;
#include "machine/cpu.h"
#include "machine/reg.h"
#include "machine/psl.h"
#include "machine/specialreg.h"
#include "i386/isa/rtc.h"
#define EXPECT_BASEMEM 640 /* The expected base memory*/
#define INFORM_WAIT 1 /* Set to pause berfore crash in weird cases*/
/*
* Declare these as initialized data so we can patch them.
*/
int nswbuf = 0;
#ifdef NBUF
int nbuf = NBUF;
#else
int nbuf = 0;
#endif
#ifdef BUFPAGES
int bufpages = BUFPAGES;
#else
int bufpages = 0;
#endif
int msgbufmapped; /* set when safe to use msgbuf */
extern int freebufspace;
/*
* Machine-dependent startup code
*/
int boothowto = 0, Maxmem = 0;
long dumplo;
int physmem, maxmem;
extern int bootdev;
#ifdef SMALL
extern int forcemaxmem;
#endif
int biosmem;
extern cyloffset;
cpu_startup()
{
register int unixsize;
register unsigned i;
register struct pte *pte;
int mapaddr, j;
register caddr_t v;
int maxbufs, base, residual;
extern long Usrptsize;
vm_offset_t minaddr, maxaddr;
vm_size_t size;
int firstaddr;
/*
* Initialize error message buffer (at end of core).
*/
/* avail_end was pre-decremented in pmap_bootstrap to compensate */
for (i = 0; i < btoc(sizeof (struct msgbuf)); i++)
pmap_enter(pmap_kernel(), msgbufp, avail_end + i * NBPG,
VM_PROT_ALL, TRUE);
msgbufmapped = 1;
#ifdef KDB
kdb_init(); /* startup kernel debugger */
#endif
/*
* Good {morning,afternoon,evening,night}.
*/
/*printf(version);
printf("real mem = %d\n", ctob(physmem));*/
/*
* Allocate space for system data structures.
* The first available kernel virtual address is in "v".
* As pages of kernel virtual memory are allocated, "v" is incremented.
* As pages of memory are allocated and cleared,
* "firstaddr" is incremented.
* An index into the kernel page table corresponding to the
* virtual memory address maintained in "v" is kept in "mapaddr".
*/
/*
* Make two passes. The first pass calculates how much memory is
* needed and allocates it. The second pass assigns virtual
* addresses to the various data structures.
*/
firstaddr = 0;
again:
v = (caddr_t)firstaddr;
#define valloc(name, type, num) \
(name) = (type *)v; v = (caddr_t)((name)+(num))
#define valloclim(name, type, num, lim) \
(name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
valloc(callout, struct callout, ncallout);
#ifdef SYSVSHM
valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
#endif
/*
* Determine how many buffers to allocate.
* Use 10% of memory for the first 2 Meg, 5% of the remaining
* memory. Insure a minimum of 16 buffers.
* We allocate 1/2 as many swap buffer headers as file i/o buffers.
*/
if (bufpages == 0)
if (physmem < (2 * 1024 * 1024))
bufpages = physmem / 10 / CLSIZE;
else
bufpages = ((2 * 1024 * 1024 + physmem) / 20) / CLSIZE;
/*
* 15 Aug 92 William Jolitz bufpages fix for too large
*/
bufpages = min( NKMEMCLUSTERS*2/5, bufpages);
if (nbuf == 0) {
nbuf = bufpages / 2;
if (nbuf < 16)
nbuf = 16;
}
freebufspace = bufpages * NBPG;
if (nswbuf == 0) {
nswbuf = (nbuf / 2) &~ 1; /* force even */
if (nswbuf > 256)
nswbuf = 256; /* sanity */
}
valloc(swbuf, struct buf, nswbuf);
valloc(buf, struct buf, nbuf);
/*
* End of first pass, size has been calculated so allocate memory
*/
if (firstaddr == 0) {
size = (vm_size_t)(v - firstaddr);
firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
if (firstaddr == 0)
panic("startup: no room for tables");
goto again;
}
/*
* End of second pass, addresses have been assigned
*/
if ((vm_size_t)(v - firstaddr) != size)
panic("startup: table size inconsistency");
/*
* Allocate a submap for buffer space allocations.
*/
buffer_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
bufpages*NBPG, TRUE);
/*
* Allocate a submap for physio
*/
phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
VM_PHYS_SIZE, TRUE);
/*
* Finally, allocate mbuf pool. Since mclrefcnt is an off-size
* we use the more space efficient malloc in place of kmem_alloc.
*/
mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
M_MBUF, M_NOWAIT);
bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
mb_map = kmem_suballoc(kernel_map, (vm_offset_t)&mbutl, &maxaddr,
VM_MBUF_SIZE, FALSE);
/*
* Initialize callouts
*/
callfree = callout;
for (i = 1; i < ncallout; i++)
callout[i-1].c_next = &callout[i];
/*printf("avail mem = %d\n", ptoa(vm_page_free_count));*/
/*
* Set up CPU-specific registers, cache, etc.
*/
initcpu();
/*
* Set up buffers, so they can be used to read disk labels.
*/
bufinit();
/*
* Configure the system.
*/
configure();
}
#ifdef PGINPROF
/*
* Return the difference (in microseconds)
* between the current time and a previous
* time as represented by the arguments.
* If there is a pending clock interrupt
* which has not been serviced due to high
* ipl, return error code.
*/
/*ARGSUSED*/
vmtime(otime, olbolt, oicr)
register int otime, olbolt, oicr;
{
return (((time.tv_sec-otime)*60 + lbolt-olbolt)*16667);
}
#endif
struct sigframe {
int sf_signum;
int sf_code;
struct sigcontext *sf_scp;
sig_t sf_handler;
int sf_eax;
int sf_edx;
int sf_ecx;
struct sigcontext sf_sc;
} ;
extern int kstack[];
/*
* Send an interrupt to process.
*
* Stack is set up to allow sigcode stored
* in u. to call routine, followed by kcall
* to sigreturn routine below. After sigreturn
* resets the signal mask, the stack, and the
* frame pointer, it returns to the user
* specified pc, psl.
*/
void
sendsig(catcher, sig, mask, code)
sig_t catcher;
int sig, mask;
unsigned code;
{
register struct proc *p = curproc;
register int *regs;
register struct sigframe *fp;
struct sigacts *ps = p->p_sigacts;
int oonstack, frmtrap;
regs = p->p_regs;
oonstack = ps->ps_onstack;
frmtrap = curpcb->pcb_flags & FM_TRAP;
/*
* Allocate and validate space for the signal handler
* context. Note that if the stack is in P0 space, the
* call to grow() is a nop, and the useracc() check
* will fail if the process has not already allocated
* the space with a `brk'.
*/
if (!ps->ps_onstack && (ps->ps_sigonstack & sigmask(sig))) {
fp = (struct sigframe *)(ps->ps_sigsp
- sizeof(struct sigframe));
ps->ps_onstack = 1;
} else {
if (frmtrap)
fp = (struct sigframe *)(regs[tESP]
- sizeof(struct sigframe));
else
fp = (struct sigframe *)(regs[sESP]
- sizeof(struct sigframe));
}
if ((unsigned)fp <= (unsigned)p->p_vmspace->vm_maxsaddr + MAXSSIZ - ctob(p->p_vmspace->vm_ssize))
(void)grow(p, (unsigned)fp);
if (useracc((caddr_t)fp, sizeof (struct sigframe), B_WRITE) == 0) {
/*
* Process has trashed its stack; give it an illegal
* instruction to halt it in its tracks.
*/
SIGACTION(p, SIGILL) = SIG_DFL;
sig = sigmask(SIGILL);
p->p_sigignore &= ~sig;
p->p_sigcatch &= ~sig;
p->p_sigmask &= ~sig;
psignal(p, SIGILL);
return;
}
/*
* Build the argument list for the signal handler.
*/
fp->sf_signum = sig;
fp->sf_code = code;
fp->sf_scp = &fp->sf_sc;
fp->sf_handler = catcher;
/* save scratch registers */
if(frmtrap) {
fp->sf_eax = regs[tEAX];
fp->sf_edx = regs[tEDX];
fp->sf_ecx = regs[tECX];
} else {
fp->sf_eax = regs[sEAX];
fp->sf_edx = regs[sEDX];
fp->sf_ecx = regs[sECX];
}
/*
* Build the signal context to be used by sigreturn.
*/
fp->sf_sc.sc_onstack = oonstack;
fp->sf_sc.sc_mask = mask;
if(frmtrap) {
fp->sf_sc.sc_sp = regs[tESP];
fp->sf_sc.sc_fp = regs[tEBP];
fp->sf_sc.sc_pc = regs[tEIP];
fp->sf_sc.sc_ps = regs[tEFLAGS];
regs[tESP] = (int)fp;
regs[tEIP] = (int)((struct pcb *)kstack)->pcb_sigc;
} else {
fp->sf_sc.sc_sp = regs[sESP];
fp->sf_sc.sc_fp = regs[sEBP];
fp->sf_sc.sc_pc = regs[sEIP];
fp->sf_sc.sc_ps = regs[sEFLAGS];
regs[sESP] = (int)fp;
regs[sEIP] = (int)((struct pcb *)kstack)->pcb_sigc;
}
}
/*
* System call to cleanup state after a signal
* has been taken. Reset signal mask and
* stack state from context left by sendsig (above).
* Return to previous pc and psl as specified by
* context left by sendsig. Check carefully to
* make sure that the user has not modified the
* psl to gain improper priviledges or to cause
* a machine fault.
*/
sigreturn(p, uap, retval)
struct proc *p;
struct args {
struct sigcontext *sigcntxp;
} *uap;
int *retval;
{
register struct sigcontext *scp;
register struct sigframe *fp;
register int *regs = p->p_regs;
fp = (struct sigframe *) regs[sESP] ;
if (useracc((caddr_t)fp, sizeof (*fp), 0) == 0)
return(EINVAL);
/* restore scratch registers */
regs[sEAX] = fp->sf_eax ;
regs[sEDX] = fp->sf_edx ;
regs[sECX] = fp->sf_ecx ;
scp = fp->sf_scp;
if (useracc((caddr_t)scp, sizeof (*scp), 0) == 0)
return(EINVAL);
#ifdef notyet
if ((scp->sc_ps & PSL_MBZ) != 0 || (scp->sc_ps & PSL_MBO) != PSL_MBO) {
return(EINVAL);
}
#endif
p->p_sigacts->ps_onstack = scp->sc_onstack & 01;
p->p_sigmask = scp->sc_mask &~
(sigmask(SIGKILL)|sigmask(SIGCONT)|sigmask(SIGSTOP));
regs[sEBP] = scp->sc_fp;
regs[sESP] = scp->sc_sp;
regs[sEIP] = scp->sc_pc;
regs[sEFLAGS] = scp->sc_ps;
return(EJUSTRETURN);
}
int waittime = -1;
struct pcb dumppcb;
boot(arghowto)
int arghowto;
{
register long dummy; /* r12 is reserved */
register int howto; /* r11 == how to boot */
register int devtype; /* r10 == major of root dev */
extern char *panicstr;
extern int cold;
int nomsg = 1;
if(cold) {
printf("hit reset please");
for(;;);
}
howto = arghowto;
if ((howto&RB_NOSYNC) == 0 && waittime < 0 && bfreelist[0].b_forw) {
register struct buf *bp;
int iter, nbusy;
waittime = 0;
(void) splnet();
/*
* Release inodes held by texts before update.
*/
if (panicstr == 0)
vnode_pager_umount(NULL);
sync((struct sigcontext *)0);
for (iter = 0; iter < 20; iter++) {
nbusy = 0;
for (bp = &buf[nbuf]; --bp >= buf; )
if ((bp->b_flags & (B_BUSY|B_INVAL)) == B_BUSY)
nbusy++;
if (nbusy == 0)
break;
if (nomsg) {
printf("updating disks before rebooting... ");
nomsg = 0;
}
/* printf("%d ", nbusy); */
DELAY(40000 * iter);
}
if (nbusy)
printf(" failed!\n");
else if (nomsg == 0)
printf("succeded.\n");
DELAY(10000); /* wait for printf to finish */
}
splhigh();
devtype = major(rootdev);
if (howto&RB_HALT) {
pg("\nThe operating system has halted. Please press any key to reboot.\n\n");
} else {
if (howto & RB_DUMP) {
savectx(&dumppcb, 0);
dumppcb.pcb_ptd = rcr3();
dumpsys();
/*NOTREACHED*/
}
}
#ifdef lint
dummy = 0; dummy = dummy;
printf("howto %d, devtype %d\n", arghowto, devtype);
#endif
cpu_reset();
for(;;) ;
/*NOTREACHED*/
}
int dumpmag = 0x8fca0101; /* magic number for savecore */
int dumpsize = 0; /* also for savecore */
/*
* Doadump comes here after turning off memory management and
* getting on the dump stack, either when called above, or by
* the auto-restart code.
*/
dumpsys()
{
if (dumpdev == NODEV)
return;
if ((minor(dumpdev)&07) != 1)
return;
printf("\nThe operating system is saving a copy of RAM memory to device %x, offset %d\n\
(hit any key to abort): [ amount left to save (MB) ] ", dumpdev, dumplo);
dumpsize = physmem;
switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
case ENXIO:
printf("-- device bad\n");
break;
case EFAULT:
printf("-- device not ready\n");
break;
case EINVAL:
printf("-- area improper\n");
break;
case EIO:
printf("-- i/o error\n");
break;
case EINTR:
printf("-- aborted from console\n");
break;
default:
printf(" succeeded\n");
break;
}
printf("system rebooting.\n\n");
DELAY(10000);
}
#ifdef HZ
/*
* If HZ is defined we use this code, otherwise the code in
* /sys/i386/i386/microtime.s is used. The othercode only works
* for HZ=100.
*/
microtime(tvp)
register struct timeval *tvp;
{
int s = splhigh();
*tvp = time;
tvp->tv_usec += tick;
while (tvp->tv_usec > 1000000) {
tvp->tv_sec++;
tvp->tv_usec -= 1000000;
}
splx(s);
}
#endif /* HZ */
physstrat(bp, strat, prio)
struct buf *bp;
int (*strat)(), prio;
{
register int s;
caddr_t baddr;
/*
* vmapbuf clobbers b_addr so we must remember it so that it
* can be restored after vunmapbuf. This is truely rude, we
* should really be storing this in a field in the buf struct
* but none are available and I didn't want to add one at
* this time. Note that b_addr for dirty page pushes is
* restored in vunmapbuf. (ugh!)
*/
baddr = bp->b_un.b_addr;
vmapbuf(bp);
(*strat)(bp);
/* pageout daemon doesn't wait for pushed pages */
if (bp->b_flags & B_DIRTY)
return;
s = splbio();
while ((bp->b_flags & B_DONE) == 0)
sleep((caddr_t)bp, prio);
splx(s);
vunmapbuf(bp);
bp->b_un.b_addr = baddr;
}
initcpu()
{
}
/*
* Clear registers on exec
*/
setregs(p, entry)
struct proc *p;
u_long entry;
{
p->p_regs[sEBP] = 0; /* bottom of the fp chain */
p->p_regs[sEIP] = entry;
p->p_addr->u_pcb.pcb_flags = 0; /* no fp at all */
load_cr0(rcr0() | CR0_TS); /* start emulating */
#ifdef NPX
npxinit(__INITIAL_NPXCW__);
#endif
}
/*
* Initialize 386 and configure to run kernel
*/
/*
* Initialize segments & interrupt table
*/
#define GNULL_SEL 0 /* Null Descriptor */
#define GCODE_SEL 1 /* Kernel Code Descriptor */
#define GDATA_SEL 2 /* Kernel Data Descriptor */
#define GLDT_SEL 3 /* LDT - eventually one per process */
#define GTGATE_SEL 4 /* Process task switch gate */
#define GPANIC_SEL 5 /* Task state to consider panic from */
#define GPROC0_SEL 6 /* Task state process slot zero and up */
#define NGDT GPROC0_SEL+1
union descriptor gdt[GPROC0_SEL+1];
/* interrupt descriptor table */
struct gate_descriptor idt[NIDT];
/* local descriptor table */
union descriptor ldt[5];
#define LSYS5CALLS_SEL 0 /* forced by intel BCS */
#define LSYS5SIGR_SEL 1
#define L43BSDCALLS_SEL 2 /* notyet */
#define LUCODE_SEL 3
#define LUDATA_SEL 4
/* seperate stack, es,fs,gs sels ? */
/* #define LPOSIXCALLS_SEL 5 /* notyet */
struct i386tss tss, panic_tss;
extern struct user *proc0paddr;
/* software prototypes -- in more palitable form */
struct soft_segment_descriptor gdt_segs[] = {
/* Null Descriptor */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0,0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Code Descriptor for kernel */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0,0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* Data Descriptor for kernel */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0,0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* LDT Descriptor */
{ (int) ldt, /* segment base address */
sizeof(ldt)-1, /* length - all address space */
SDT_SYSLDT, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0,0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - Placeholder */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0,0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Panic Tss Descriptor */
{ (int) &panic_tss, /* segment base address */
sizeof(tss)-1, /* length - all address space */
SDT_SYS386TSS, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0,0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Proc 0 Tss Descriptor */
{ (int) kstack, /* segment base address */
sizeof(tss)-1, /* length - all address space */
SDT_SYS386TSS, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0,0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ }};
struct soft_segment_descriptor ldt_segs[] = {
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0,0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0,0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0,0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Code Descriptor for user */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMERA, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0,0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* Data Descriptor for user */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMRWA, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0,0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ } };
setidt(idx, func, typ, dpl) char *func; {
struct gate_descriptor *ip = idt + idx;
ip->gd_looffset = (int)func;
ip->gd_selector = 8;
ip->gd_stkcpy = 0;
ip->gd_xx = 0;
ip->gd_type = typ;
ip->gd_dpl = dpl;
ip->gd_p = 1;
ip->gd_hioffset = ((int)func)>>16 ;
}
#define IDTVEC(name) __CONCAT(X, name)
extern IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(dble), IDTVEC(fpusegm),
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
IDTVEC(page), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(rsvd0),
IDTVEC(rsvd1), IDTVEC(rsvd2), IDTVEC(rsvd3), IDTVEC(rsvd4),
IDTVEC(rsvd5), IDTVEC(rsvd6), IDTVEC(rsvd7), IDTVEC(rsvd8),
IDTVEC(rsvd9), IDTVEC(rsvd10), IDTVEC(rsvd11), IDTVEC(rsvd12),
IDTVEC(rsvd13), IDTVEC(rsvd14), IDTVEC(rsvd14), IDTVEC(syscall);
int lcr0(), lcr3(), rcr0(), rcr2();
int _udatasel, _ucodesel, _gsel_tss;
init386(first)
{
extern ssdtosd(), lgdt(), lidt(), lldt(), etext;
int x, *pi;
unsigned biosbasemem, biosextmem;
struct gate_descriptor *gdp;
extern int sigcode,szsigcode;
/* table descriptors - used to load tables by microp */
struct region_descriptor r_gdt, r_idt;
int pagesinbase, pagesinext;
proc0.p_addr = proc0paddr;
/*
* Initialize the console before we print anything out.
*/
cninit (KERNBASE+0xa0000);
/* make gdt memory segments */
gdt_segs[GCODE_SEL].ssd_limit = btoc((int) &etext + NBPG);
for (x=0; x < NGDT; x++) ssdtosd(gdt_segs+x, gdt+x);
/* make ldt memory segments */
ldt_segs[LUCODE_SEL].ssd_limit = btoc(UPT_MIN_ADDRESS);
ldt_segs[LUDATA_SEL].ssd_limit = btoc(UPT_MIN_ADDRESS);
/* Note. eventually want private ldts per process */
for (x=0; x < 5; x++) ssdtosd(ldt_segs+x, ldt+x);
/* exceptions */
setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL);
setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL);
setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL);
setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL);
setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_KPL);
setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL);
setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL);
setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL);
setidt(8, &IDTVEC(dble), SDT_SYS386TGT, SEL_KPL);
setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL);
setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL);
setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL);
setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL);
setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL);
setidt(14, &IDTVEC(page), SDT_SYS386TGT, SEL_KPL);
setidt(15, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL);
setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL);
setidt(17, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL);
setidt(18, &IDTVEC(rsvd1), SDT_SYS386TGT, SEL_KPL);
setidt(19, &IDTVEC(rsvd2), SDT_SYS386TGT, SEL_KPL);
setidt(20, &IDTVEC(rsvd3), SDT_SYS386TGT, SEL_KPL);
setidt(21, &IDTVEC(rsvd4), SDT_SYS386TGT, SEL_KPL);
setidt(22, &IDTVEC(rsvd5), SDT_SYS386TGT, SEL_KPL);
setidt(23, &IDTVEC(rsvd6), SDT_SYS386TGT, SEL_KPL);
setidt(24, &IDTVEC(rsvd7), SDT_SYS386TGT, SEL_KPL);
setidt(25, &IDTVEC(rsvd8), SDT_SYS386TGT, SEL_KPL);
setidt(26, &IDTVEC(rsvd9), SDT_SYS386TGT, SEL_KPL);
setidt(27, &IDTVEC(rsvd10), SDT_SYS386TGT, SEL_KPL);
setidt(28, &IDTVEC(rsvd11), SDT_SYS386TGT, SEL_KPL);
setidt(29, &IDTVEC(rsvd12), SDT_SYS386TGT, SEL_KPL);
setidt(30, &IDTVEC(rsvd13), SDT_SYS386TGT, SEL_KPL);
setidt(31, &IDTVEC(rsvd14), SDT_SYS386TGT, SEL_KPL);
#include "isa.h"
#if NISA >0
isa_defaultirq();
#endif
r_gdt.rd_limit = sizeof(gdt)-1;
r_gdt.rd_base = (int) gdt;
lgdt(&r_gdt);
r_idt.rd_limit = sizeof(idt)-1;
r_idt.rd_base = (int) idt;
lidt(&r_idt);
lldt(GSEL(GLDT_SEL, SEL_KPL));
#include "ddb.h"
#if NDDB > 0
kdb_init();
if (boothowto & RB_KDB)
Debugger();
#endif
/* Use BIOS values stored in RTC CMOS RAM, since probing
* breaks certain 386 AT relics.
*/
biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
/*printf("bios base %d ext %d ", biosbasemem, biosextmem);*/
/*
* 15 Aug 92 Terry Lambert The real fix for the CMOS bug
*/
if( biosbasemem != EXPECT_BASEMEM) {
printf( "Warning: Base memory %dK, assuming %dK\n", biosbasemem, EXPECT_BASEMEM);
biosbasemem = EXPECT_BASEMEM; /* assume base*/
}
if( biosextmem > 65536) {
printf( "Warning: Extended memory %dK(>64M), assuming 0K\n", biosextmem);
biosextmem = 0; /* assume none*/
}
/*
* Go into normal calculation; Note that we try to run in 640K, and
* that invalid CMOS values of non 0xffff are no longer a cause of
* ptdi problems. I have found a gutted kernel can run in 640K.
*/
pagesinbase = 640/4 - first/NBPG;
pagesinext = biosextmem/4;
/* use greater of either base or extended memory. do this
* until I reinstitue discontiguous allocation of vm_page
* array.
*/
if (pagesinbase > pagesinext)
Maxmem = 640/4;
else {
Maxmem = pagesinext + 0x100000/NBPG;
first = 0x100000; /* skip hole */
}
/* This used to explode, since Maxmem used to be 0 for bas CMOS*/
maxmem = Maxmem - 1; /* highest page of usable memory */
physmem = maxmem; /* number of pages of physmem addr space */
/*printf("using first 0x%x to 0x%x\n ", first, maxmem*NBPG);*/
if (maxmem < 2048/4) {
printf("Too little RAM memory. Warning, running in degraded mode.\n");
#ifdef INFORM_WAIT
/*
* People with less than 2 Meg have to hit return; this way
* we see the messages and can tell them why they blow up later.
* If they get working well enough to recompile, they can unset
* the flag; otherwise, it's a toy and they have to lump it.
*/
getchar(); /* kernel getchar in /sys/i386/isa/pccons.c*/
#endif /* !INFORM_WAIT*/
}
/*
* End of CMOS bux fix
*/
/* call pmap initialization to make new kernel address space */
pmap_bootstrap (first, 0);
/* now running on new page tables, configured,and u/iom is accessible */
/* make a initial tss so microp can get interrupt stack on syscall! */
proc0.p_addr->u_pcb.pcb_tss.tss_esp0 = (int) kstack + UPAGES*NBPG;
proc0.p_addr->u_pcb.pcb_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
_gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
ltr(_gsel_tss);
/* make a call gate to reenter kernel with */
gdp = &ldt[LSYS5CALLS_SEL].gd;
x = (int) &IDTVEC(syscall);
gdp->gd_looffset = x++;
gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
gdp->gd_stkcpy = 0;
gdp->gd_type = SDT_SYS386CGT;
gdp->gd_dpl = SEL_UPL;
gdp->gd_p = 1;
gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
/* transfer to user mode */
_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
/* setup proc 0's pcb */
bcopy(&sigcode, proc0.p_addr->u_pcb.pcb_sigc, szsigcode);
proc0.p_addr->u_pcb.pcb_flags = 0;
proc0.p_addr->u_pcb.pcb_ptd = IdlePTD;
}
extern struct pte *CMAP1, *CMAP2;
extern caddr_t CADDR1, CADDR2;
/*
* zero out physical memory
* specified in relocation units (NBPG bytes)
*/
clearseg(n) {
*(int *)CMAP2 = PG_V | PG_KW | ctob(n);
load_cr3(rcr3());
bzero(CADDR2,NBPG);
*(int *) CADDR2 = 0;
}
/*
* copy a page of physical memory
* specified in relocation units (NBPG bytes)
*/
copyseg(frm, n) {
*(int *)CMAP2 = PG_V | PG_KW | ctob(n);
load_cr3(rcr3());
bcopy((void *)frm, (void *)CADDR2, NBPG);
}
/*
* copy a page of physical memory
* specified in relocation units (NBPG bytes)
*/
physcopyseg(frm, to) {
*(int *)CMAP1 = PG_V | PG_KW | ctob(frm);
*(int *)CMAP2 = PG_V | PG_KW | ctob(to);
load_cr3(rcr3());
bcopy(CADDR1, CADDR2, NBPG);
}
/*aston() {
schednetisr(NETISR_AST);
}*/
setsoftclock() {
schednetisr(NETISR_SCLK);
}
/*
* insert an element into a queue
*/
#undef insque
_insque(element, head)
register struct prochd *element, *head;
{
element->ph_link = head->ph_link;
head->ph_link = (struct proc *)element;
element->ph_rlink = (struct proc *)head;
((struct prochd *)(element->ph_link))->ph_rlink=(struct proc *)element;
}
/*
* remove an element from a queue
*/
#undef remque
_remque(element)
register struct prochd *element;
{
((struct prochd *)(element->ph_link))->ph_rlink = element->ph_rlink;
((struct prochd *)(element->ph_rlink))->ph_link = element->ph_link;
element->ph_rlink = (struct proc *)0;
}
vmunaccess() {}
/*
* Below written in C to allow access to debugging code
*/
copyinstr(fromaddr, toaddr, maxlength, lencopied) u_int *lencopied, maxlength;
void *toaddr, *fromaddr; {
int c,tally;
tally = 0;
while (maxlength--) {
c = fubyte(fromaddr++);
if (c == -1) {
if(lencopied) *lencopied = tally;
return(EFAULT);
}
tally++;
*(char *)toaddr++ = (char) c;
if (c == 0){
if(lencopied) *lencopied = (u_int)tally;
return(0);
}
}
if(lencopied) *lencopied = (u_int)tally;
return(ENAMETOOLONG);
}
copyoutstr(fromaddr, toaddr, maxlength, lencopied) u_int *lencopied, maxlength;
void *fromaddr, *toaddr; {
int c;
int tally;
tally = 0;
while (maxlength--) {
c = subyte(toaddr++, *(char *)fromaddr);
if (c == -1) return(EFAULT);
tally++;
if (*(char *)fromaddr++ == 0){
if(lencopied) *lencopied = tally;
return(0);
}
}
if(lencopied) *lencopied = tally;
return(ENAMETOOLONG);
}
copystr(fromaddr, toaddr, maxlength, lencopied) u_int *lencopied, maxlength;
void *fromaddr, *toaddr; {
u_int tally;
tally = 0;
while (maxlength--) {
*(u_char *)toaddr = *(u_char *)fromaddr++;
tally++;
if (*(u_char *)toaddr++ == 0) {
if(lencopied) *lencopied = tally;
return(0);
}
}
if(lencopied) *lencopied = tally;
return(ENAMETOOLONG);
}