add Berkeley specific copyright
[unix-history] / usr / src / lib / libm / common_source / atanh.c
/*
* Copyright (c) 1985 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of California at Berkeley. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided ``as is'' without express or implied warranty.
*
* All recipients should regard themselves as participants in an ongoing
* research project and hence should feel obligated to report their
* experiences (good or bad) with these elementary function codes, using
* the sendbug(8) program, to the authors.
*/
#ifndef lint
static char sccsid[] = "@(#)atanh.c 5.2 (Berkeley) %G%";
#endif /* not lint */
/* ATANH(X)
* RETURN THE HYPERBOLIC ARC TANGENT OF X
* DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
* CODED IN C BY K.C. NG, 1/8/85;
* REVISED BY K.C. NG on 2/7/85, 3/7/85, 8/18/85.
*
* Required kernel function:
* log1p(x) ...return log(1+x)
*
* Method :
* Return
* 1 2x x
* atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
* 2 1 - x 1 - x
*
* Special cases:
* atanh(x) is NaN if |x| > 1 with signal;
* atanh(NaN) is that NaN with no signal;
* atanh(+-1) is +-INF with signal.
*
* Accuracy:
* atanh(x) returns the exact hyperbolic arc tangent of x nearly rounded.
* In a test run with 512,000 random arguments on a VAX, the maximum
* observed error was 1.87 ulps (units in the last place) at
* x= -3.8962076028810414000e-03.
*/
#if defined(vax)||defined(tahoe)
#include <errno.h>
#endif /* defined(vax)||defined(tahoe) */
double atanh(x)
double x;
{
double copysign(),log1p(),z;
z = copysign(0.5,x);
x = copysign(x,1.0);
#if defined(vax)||defined(tahoe)
if (x == 1.0) {
extern double infnan();
return(copysign(1.0,z)*infnan(ERANGE)); /* sign(x)*INF */
}
#endif /* defined(vax)||defined(tahoe) */
x = x/(1.0-x);
return( z*log1p(x+x) );
}