use uio structure in nameidata rather than constructing a new one
[unix-history] / usr / src / sys / kern / init_main.c
/*
* Copyright (c) 1982, 1986, 1989 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
* duplicated in all such forms and that any documentation,
* advertising materials, and other materials related to such
* distribution and use acknowledge that the software was developed
* by the University of California, Berkeley. The name of the
* University may not be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* @(#)init_main.c 7.12 (Berkeley) %G%
*/
#include "param.h"
#include "systm.h"
#include "user.h"
#include "kernel.h"
#include "mount.h"
#include "map.h"
#include "proc.h"
#include "vnode.h"
#include "seg.h"
#include "conf.h"
#include "buf.h"
#include "vm.h"
#include "cmap.h"
#include "text.h"
#include "clist.h"
#include "malloc.h"
#include "protosw.h"
#include "reboot.h"
#include "machine/pte.h"
#include "machine/reg.h"
#include "machine/cpu.h"
int cmask = CMASK;
extern int (*mountroot)();
/*
* Initialization code.
* Called from cold start routine as
* soon as a stack and segmentation
* have been established.
* Functions:
* clear and free user core
* turn on clock
* hand craft 0th process
* call all initialization routines
* fork - process 0 to schedule
* - process 1 execute bootstrap
* - process 2 to page out
*/
main(firstaddr)
int firstaddr;
{
register int i;
register struct proc *p;
register struct pgrp *pg;
int s;
rqinit();
#include "loop.h"
startup(firstaddr);
/*
* set up system process 0 (swapper)
*/
p = &proc[0];
p->p_p0br = u.u_pcb.pcb_p0br;
p->p_szpt = 1;
p->p_addr = uaddr(p);
p->p_stat = SRUN;
p->p_flag |= SLOAD|SSYS;
p->p_nice = NZERO;
setredzone(p->p_addr, (caddr_t)&u);
u.u_procp = p;
MALLOC(pgrphash[0], struct pgrp *, sizeof (struct pgrp),
M_PGRP, M_NOWAIT);
if ((pg = pgrphash[0]) == NULL)
panic("no space to craft zero'th process group");
pg->pg_id = 0;
pg->pg_hforw = 0;
pg->pg_mem = p;
pg->pg_jobc = 0;
p->p_pgrp = pg;
p->p_pgrpnxt = 0;
MALLOC(pg->pg_session, struct session *, sizeof (struct session),
M_SESSION, M_NOWAIT);
if (pg->pg_session == NULL)
panic("no space to craft zero'th session");
pg->pg_session->s_count = 1;
pg->pg_session->s_leader = 0;
#ifdef KTRACE
p->p_tracep = NULL;
p->p_traceflag = 0;
#endif
/*
* These assume that the u. area is always mapped
* to the same virtual address. Otherwise must be
* handled when copying the u. area in newproc().
*/
u.u_nd.ni_iov = &u.u_nd.ni_nd.nd_iovec;
u.u_nd.ni_iovcnt = 1;
u.u_nd.ni_base = (caddr_t)&u.u_nd.ni_dent;
u.u_nd.ni_rw = UIO_WRITE;
u.u_nd.ni_segflg = UIO_SYSSPACE;
u.u_ap = u.u_arg;
u.u_cmask = cmask;
u.u_lastfile = -1;
for (i = 0; i < sizeof(u.u_rlimit)/sizeof(u.u_rlimit[0]); i++)
u.u_rlimit[i].rlim_cur = u.u_rlimit[i].rlim_max =
RLIM_INFINITY;
/*
* configure virtual memory system,
* set vm rlimits
*/
vminit();
/*
* Get vnodes for swapdev, argdev, and rootdev.
*/
ihinit();
nchinit();
if (bdevvp(swapdev, &swapdev_vp) ||
bdevvp(argdev, &argdev_vp) ||
bdevvp(rootdev, &rootvp))
panic("can't setup bdevvp's");
/*
* Setup credentials
*/
u.u_cred = crget();
u.u_ngroups = 1;
#if defined(QUOTA)
qtinit();
p->p_quota = u.u_quota = getquota(0, 0, Q_NDQ);
#endif
startrtclock();
#if defined(vax)
#include "kg.h"
#if NKG > 0
startkgclock();
#endif
#endif
/*
* Initialize tables, protocols, and set up well-known inodes.
*/
mbinit();
cinit();
#include "sl.h"
#if NSL > 0
slattach(); /* XXX */
#endif
#if NLOOP > 0
loattach(); /* XXX */
#endif
/*
* Block reception of incoming packets
* until protocols have been initialized.
*/
s = splimp();
ifinit();
domaininit();
splx(s);
pqinit();
xinit();
swapinit();
#ifdef GPROF
kmstartup();
#endif
#ifdef NFS
nfsinit();
#endif
/* kick off timeout driven events by calling first time */
roundrobin();
schedcpu();
schedpaging();
/* set up the root file system */
if ((*mountroot)())
panic("cannot mount root");
/*
* Get vnode for '/'.
* Setup rootdir and u.u_cdir to point to it.
*/
if (VFS_ROOT(rootfs, &rootdir))
panic("cannot find root vnode");
u.u_cdir = rootdir;
u.u_cdir->v_count++;
VOP_UNLOCK(rootdir);
u.u_rdir = NULL;
boottime = time;
u.u_dmap = zdmap;
u.u_smap = zdmap;
enablertclock(); /* enable realtime clock interrupts */
/*
* make init process
*/
proc[0].p_szpt = CLSIZE;
if (newproc(0)) {
expand(clrnd((int)btoc(szicode)), 0);
(void) swpexpand(u.u_dsize, (size_t)0, &u.u_dmap, &u.u_smap);
(void) copyout((caddr_t)icode, (caddr_t)0, (unsigned)szicode);
/*
* Return goes to loc. 0 of user init
* code just copied out.
*/
return;
}
/*
* make page-out daemon (process 2)
* the daemon has ctopt(nswbuf*CLSIZE*KLMAX) pages of page
* table so that it can map dirty pages into
* its address space during asychronous pushes.
*/
proc[0].p_szpt = clrnd(ctopt(nswbuf*CLSIZE*KLMAX + UPAGES));
if (newproc(0)) {
proc[2].p_flag |= SLOAD|SSYS;
proc[2].p_dsize = u.u_dsize = nswbuf*CLSIZE*KLMAX;
pageout();
/*NOTREACHED*/
}
/*
* enter scheduling loop
*/
proc[0].p_szpt = 1;
sched();
}
/*
* Initialize hash links for buffers.
*/
bhinit()
{
register int i;
register struct bufhd *bp;
for (bp = bufhash, i = 0; i < BUFHSZ; i++, bp++)
bp->b_forw = bp->b_back = (struct buf *)bp;
}
/*
* Initialize the buffer I/O system by freeing
* all buffers and setting all device buffer lists to empty.
*/
binit()
{
register struct buf *bp, *dp;
register int i;
int base, residual;
for (dp = bfreelist; dp < &bfreelist[BQUEUES]; dp++) {
dp->b_forw = dp->b_back = dp->av_forw = dp->av_back = dp;
dp->b_flags = B_HEAD;
}
base = bufpages / nbuf;
residual = bufpages % nbuf;
for (i = 0; i < nbuf; i++) {
bp = &buf[i];
bp->b_dev = NODEV;
bp->b_bcount = 0;
bp->b_un.b_addr = buffers + i * MAXBSIZE;
if (i < residual)
bp->b_bufsize = (base + 1) * CLBYTES;
else
bp->b_bufsize = base * CLBYTES;
binshash(bp, &bfreelist[BQ_AGE]);
bp->b_flags = B_BUSY|B_INVAL;
brelse(bp);
}
}
/*
* Set up swap devices.
* Initialize linked list of free swap
* headers. These do not actually point
* to buffers, but rather to pages that
* are being swapped in and out.
*/
swapinit()
{
register int i;
register struct buf *sp = swbuf;
struct swdevt *swp;
int error;
/*
* Count swap devices, and adjust total swap space available.
* Some of this space will not be available until a swapon()
* system is issued, usually when the system goes multi-user.
*/
nswdev = 0;
nswap = 0;
for (swp = swdevt; swp->sw_dev; swp++) {
nswdev++;
if (swp->sw_nblks > nswap)
nswap = swp->sw_nblks;
}
if (nswdev == 0)
panic("swapinit");
if (nswdev > 1)
nswap = ((nswap + dmmax - 1) / dmmax) * dmmax;
nswap *= nswdev;
/*
* If there are multiple swap areas,
* allow more paging operations per second.
*/
if (nswdev > 1)
maxpgio = (maxpgio * (2 * nswdev - 1)) / 2;
if (bdevvp(swdevt[0].sw_dev, &swdevt[0].sw_vp))
panic("swapvp");
if (error = swfree(0)) {
printf("swfree errno %d\n", error); /* XXX */
panic("swapinit swfree 0");
}
/*
* Now set up swap buffer headers.
*/
bswlist.av_forw = sp;
for (i=0; i<nswbuf-1; i++, sp++)
sp->av_forw = sp+1;
sp->av_forw = NULL;
}
/*
* Initialize clist by freeing all character blocks, then count
* number of character devices. (Once-only routine)
*/
cinit()
{
register int ccp;
register struct cblock *cp;
ccp = (int)cfree;
ccp = (ccp+CROUND) & ~CROUND;
for(cp=(struct cblock *)ccp; cp < &cfree[nclist-1]; cp++) {
cp->c_next = cfreelist;
cfreelist = cp;
cfreecount += CBSIZE;
}
}