TIOCGPGRP copies an int out of the kernel
[unix-history] / usr / src / lib / libc / stdlib / qsort.c
/*-
* Copyright (c) 1980, 1983, 1990 The Regents of the University of California.
* All rights reserved.
*
* %sccs.include.redist.c%
*/
#if defined(LIBC_SCCS) && !defined(lint)
static char sccsid[] = "@(#)qsort.c 5.9 (Berkeley) %G%";
#endif /* LIBC_SCCS and not lint */
#include <sys/types.h>
#include <stdlib.h>
/*
* MTHRESH is the smallest partition for which we compare for a median
* value instead of using the middle value.
*/
#define MTHRESH 6
/*
* THRESH is the minimum number of entries in a partition for continued
* partitioning.
*/
#define THRESH 4
void
qsort(bot, nmemb, size, compar)
void *bot;
size_t nmemb, size;
int (*compar) __P((const void *, const void *));
{
static void insertion_sort(), quick_sort();
if (nmemb <= 1)
return;
if (nmemb >= THRESH)
quick_sort(bot, nmemb, size, compar);
else
insertion_sort(bot, nmemb, size, compar);
}
/*
* Swap two areas of size number of bytes. Although qsort(3) permits random
* blocks of memory to be sorted, sorting pointers is almost certainly the
* common case (and, were it not, could easily be made so). Regardless, it
* isn't worth optimizing; the SWAP's get sped up by the cache, and pointer
* arithmetic gets lost in the time required for comparison function calls.
*/
#define SWAP(a, b) { \
cnt = size; \
do { \
ch = *a; \
*a++ = *b; \
*b++ = ch; \
} while (--cnt); \
}
/*
* Knuth, Vol. 3, page 116, Algorithm Q, step b, argues that a single pass
* of straight insertion sort after partitioning is complete is better than
* sorting each small partition as it is created. This isn't correct in this
* implementation because comparisons require at least one (and often two)
* function calls and are likely to be the dominating expense of the sort.
* Doing a final insertion sort does more comparisons than are necessary
* because it compares the "edges" and medians of the partitions which are
* known to be already sorted.
*
* This is also the reasoning behind selecting a small THRESH value (see
* Knuth, page 122, equation 26), since the quicksort algorithm does less
* comparisons than the insertion sort.
*/
#define SORT(bot, n) { \
if (n > 1) \
if (n == 2) { \
t1 = bot + size; \
if (compar(t1, bot) < 0) \
SWAP(t1, bot); \
} else \
insertion_sort(bot, n, size, compar); \
}
static void
quick_sort(bot, nmemb, size, compar)
register char *bot;
register int size;
int nmemb, (*compar)();
{
register int cnt;
register u_char ch;
register char *top, *mid, *t1, *t2;
register int n1, n2;
char *bsv;
static void insertion_sort();
/* bot and nmemb must already be set. */
partition:
/* find mid and top elements */
mid = bot + size * (nmemb >> 1);
top = bot + (nmemb - 1) * size;
/*
* Find the median of the first, last and middle element (see Knuth,
* Vol. 3, page 123, Eq. 28). This test order gets the equalities
* right.
*/
if (nmemb >= MTHRESH) {
n1 = compar(bot, mid);
n2 = compar(mid, top);
if (n1 < 0 && n2 > 0)
t1 = compar(bot, top) < 0 ? top : bot;
else if (n1 > 0 && n2 < 0)
t1 = compar(bot, top) > 0 ? top : bot;
else
t1 = mid;
/* if mid element not selected, swap selection there */
if (t1 != mid) {
SWAP(t1, mid);
mid -= size;
}
}
/* Standard quicksort, Knuth, Vol. 3, page 116, Algorithm Q. */
#define didswap n1
#define newbot t1
#define replace t2
didswap = 0;
for (bsv = bot;;) {
for (; bot < mid && compar(bot, mid) <= 0; bot += size);
while (top > mid) {
if (compar(mid, top) <= 0) {
top -= size;
continue;
}
newbot = bot + size; /* value of bot after swap */
if (bot == mid) /* top <-> mid, mid == top */
replace = mid = top;
else { /* bot <-> top */
replace = top;
top -= size;
}
goto swap;
}
if (bot == mid)
break;
/* bot <-> mid, mid == bot */
replace = mid;
newbot = mid = bot; /* value of bot after swap */
top -= size;
swap: SWAP(bot, replace);
bot = newbot;
didswap = 1;
}
/*
* Quicksort behaves badly in the presence of data which is already
* sorted (see Knuth, Vol. 3, page 119) going from O N lg N to O N^2.
* To avoid this worst case behavior, if a re-partitioning occurs
* without swapping any elements, it is not further partitioned and
* is insert sorted. This wins big with almost sorted data sets and
* only loses if the data set is very strangely partitioned. A fix
* for those data sets would be to return prematurely if the insertion
* sort routine is forced to make an excessive number of swaps, and
* continue the partitioning.
*/
if (!didswap) {
insertion_sort(bsv, nmemb, size, compar);
return;
}
/*
* Re-partition or sort as necessary. Note that the mid element
* itself is correctly positioned and can be ignored.
*/
#define nlower n1
#define nupper n2
bot = bsv;
nlower = (mid - bot) / size; /* size of lower partition */
mid += size;
nupper = nmemb - nlower - 1; /* size of upper partition */
/*
* If must call recursively, do it on the smaller partition; this
* bounds the stack to lg N entries.
*/
if (nlower > nupper) {
if (nupper >= THRESH)
quick_sort(mid, nupper, size, compar);
else {
SORT(mid, nupper);
if (nlower < THRESH) {
SORT(bot, nlower);
return;
}
}
nmemb = nlower;
} else {
if (nlower >= THRESH)
quick_sort(bot, nlower, size, compar);
else {
SORT(bot, nlower);
if (nupper < THRESH) {
SORT(mid, nupper);
return;
}
}
bot = mid;
nmemb = nupper;
}
goto partition;
/* NOTREACHED */
}
static void
insertion_sort(bot, nmemb, size, compar)
char *bot;
register int size;
int nmemb, (*compar)();
{
register int cnt;
register u_char ch;
register char *s1, *s2, *t1, *t2, *top;
/*
* A simple insertion sort (see Knuth, Vol. 3, page 81, Algorithm
* S). Insertion sort has the same worst case as most simple sorts
* (O N^2). It gets used here because it is (O N) in the case of
* sorted data.
*/
top = bot + nmemb * size;
for (t1 = bot + size; t1 < top;) {
for (t2 = t1; (t2 -= size) >= bot && compar(t1, t2) < 0;);
if (t1 != (t2 += size)) {
/* Bubble bytes up through each element. */
for (cnt = size; cnt--; ++t1) {
ch = *t1;
for (s1 = s2 = t1; (s2 -= size) >= t2; s1 = s2)
*s1 = *s2;
*s1 = ch;
}
} else
t1 += size;
}
}