before carry to ARPAVAX
[unix-history] / usr / src / sys / netinet / ip_input.c
/* ip_input.c 1.19 81/11/26 */
#include "../h/param.h"
#include "../h/systm.h"
#include "../h/clock.h"
#include "../h/mbuf.h"
#include "../h/protosw.h"
#include "../h/socket.h"
#include "../net/in.h"
#include "../net/in_systm.h"
#include "../net/if.h"
#include "../net/ip.h" /* belongs before in.h */
#include "../net/ip_var.h"
#include "../net/ip_icmp.h"
#include "../net/tcp.h"
u_char ip_protox[IPPROTO_MAX];
/*
* Ip initialization.
*/
ip_init()
{
register struct protosw *pr;
register int i;
COUNT(IP_INIT);
pr = pffindproto(PF_INET, IPPROTO_RAW);
if (pr == 0)
panic("ip_init");
for (i = 0; i < IPPROTO_MAX; i++)
ip_protox[i] = pr - protosw;
for (pr = protosw; pr <= protoswLAST; pr++)
if (pr->pr_family == PF_INET &&
pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
ip_protox[pr->pr_protocol] = pr - protosw;
ipq.next = ipq.prev = &ipq;
ip_id = time & 0xffff;
}
u_char ipcksum = 1;
struct ip *ip_reass();
/*
* Ip input routines.
*/
/*
* Ip input routine. Checksum and byte swap header. If fragmented
* try to reassamble. If complete and fragment queue exists, discard.
* Process options. Pass to next level.
*/
ipintr()
{
register struct ip *ip;
register struct mbuf *m;
struct mbuf *m0;
register int i;
register struct ipq *fp;
int hlen, s;
COUNT(IPINTR);
next:
/*
* Get next datagram off input queue and get IP header
* in first mbuf.
*/
s = splimp();
IF_DEQUEUE(&ipintrq, m);
splx(s);
if (m == 0)
return;
if (m->m_len < sizeof (struct ip) &&
m_pullup(m, sizeof (struct ip)) == 0)
goto bad;
ip = mtod(m, struct ip *);
if ((hlen = ip->ip_hl << 2) > m->m_len &&
m_pullup(m, hlen) == 0)
goto bad;
if (ipcksum)
if ((ip->ip_sum = in_cksum(m, hlen)) != 0xffff) {
printf("ip_sum %x\n", ip->ip_sum);
ipstat.ips_badsum++;
goto bad;
}
/*
* Convert fields to host representation.
*/
ip->ip_len = ntohs((u_short)ip->ip_len);
ip->ip_id = ntohs(ip->ip_id);
ip->ip_off = ntohs((u_short)ip->ip_off);
/*
* Check that the amount of data in the buffers
* is as at least much as the IP header would have us expect.
* Trim mbufs if longer than we expect.
* Drop packet if shorter than we expect.
*/
i = 0;
for (m0 = m; m != NULL; m = m->m_next)
i += m->m_len;
m = m0;
if (i != ip->ip_len) {
if (i < ip->ip_len)
goto bad;
m_adj(m, ip->ip_len - i);
}
/*
* Process options and, if not destined for us,
* ship it on.
*/
if (hlen > sizeof (struct ip))
ip_dooptions(ip);
if (ifnet && ip->ip_dst.s_addr != ifnet->if_addr.s_addr &&
if_ifwithaddr(ip->ip_dst) == 0) {
if (--ip->ip_ttl == 0) {
icmp_error(ip, ICMP_TIMXCEED, 0);
goto next;
}
ip_output(dtom(ip), (struct mbuf *)0);
goto next;
}
/*
* Look for queue of fragments
* of this datagram.
*/
for (fp = ipq.next; fp != &ipq; fp = fp->next)
if (ip->ip_id == fp->ipq_id &&
ip->ip_src.s_addr == fp->ipq_src.s_addr &&
ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
ip->ip_p == fp->ipq_p)
goto found;
fp = 0;
found:
/*
* Adjust ip_len to not reflect header,
* set ip_mff if more fragments are expected,
* convert offset of this to bytes.
*/
ip->ip_len -= hlen;
((struct ipasfrag *)ip)->ipf_mff = 0;
if (ip->ip_off & IP_MF)
((struct ipasfrag *)ip)->ipf_mff = 1;
ip->ip_off <<= 3;
/*
* If datagram marked as having more fragments
* or if this is not the first fragment,
* attempt reassembly; if it succeeds, proceed.
*/
if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
ip = ip_reass((struct ipasfrag *)ip, fp);
if (ip == 0)
goto next;
hlen = ip->ip_hl << 2;
m = dtom(ip);
} else
if (fp)
(void) ip_freef(fp);
/*
* Switch out to protocol's input routine.
*/
(*protosw[ip_protox[ip->ip_p]].pr_input)(m);
goto next;
bad:
m_freem(m);
goto next;
}
/*
* Take incoming datagram fragment and try to
* reassemble it into whole datagram. If a chain for
* reassembly of this datagram already exists, then it
* is given as fp; otherwise have to make a chain.
*/
struct ip *
ip_reass(ip, fp)
register struct ipasfrag *ip;
register struct ipq *fp;
{
register struct mbuf *m = dtom(ip);
register struct ipasfrag *q;
struct mbuf *t;
int hlen = ip->ip_hl << 2;
int i, next;
COUNT(IP_REASS);
/*
* Presence of header sizes in mbufs
* would confuse code below.
*/
m->m_off += hlen;
m->m_len -= hlen;
/*
* If first fragment to arrive, create a reassembly queue.
*/
if (fp == 0) {
if ((t = m_get(1)) == NULL)
goto dropfrag;
t->m_off = MMINOFF;
fp = mtod(t, struct ipq *);
insque(fp, &ipq);
fp->ipq_ttl = IPFRAGTTL;
fp->ipq_p = ip->ip_p;
fp->ipq_id = ip->ip_id;
fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
fp->ipq_src = ((struct ip *)ip)->ip_src;
fp->ipq_dst = ((struct ip *)ip)->ip_dst;
}
/*
* Find a segment which begins after this one does.
*/
for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
if (q->ip_off > ip->ip_off)
break;
/*
* If there is a preceding segment, it may provide some of
* our data already. If so, drop the data from the incoming
* segment. If it provides all of our data, drop us.
*/
if (q->ipf_prev != (struct ipasfrag *)fp) {
i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
if (i > 0) {
if (i >= ip->ip_len)
goto dropfrag;
m_adj(dtom(ip), i);
ip->ip_off += i;
ip->ip_len -= i;
}
}
/*
* While we overlap succeeding segments trim them or,
* if they are completely covered, dequeue them.
*/
while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
i = (ip->ip_off + ip->ip_len) - q->ip_off;
if (i < q->ip_len) {
q->ip_len -= i;
m_adj(dtom(q), i);
break;
}
q = q->ipf_next;
m_freem(dtom(q->ipf_prev));
ip_deq(q->ipf_prev);
}
/*
* Stick new segment in its place;
* check for complete reassembly.
*/
ip_enq(ip, q->ipf_prev);
next = 0;
for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
if (q->ip_off != next)
return (0);
next += q->ip_len;
}
if (q->ipf_prev->ipf_mff)
return (0);
/*
* Reassembly is complete; concatenate fragments.
*/
q = fp->ipq_next;
m = dtom(q);
t = m->m_next;
m->m_next = 0;
m_cat(m, t);
while ((q = q->ipf_next) != (struct ipasfrag *)fp)
m_cat(m, dtom(q));
/*
* Create header for new ip packet by
* modifying header of first packet;
* dequeue and discard fragment reassembly header.
* Make header visible.
*/
ip = fp->ipq_next;
ip->ip_len = next;
((struct ip *)ip)->ip_src = fp->ipq_src;
((struct ip *)ip)->ip_dst = fp->ipq_dst;
remque(fp);
(void) m_free(dtom(fp));
m = dtom(ip);
m->m_len += sizeof (struct ipasfrag);
m->m_off -= sizeof (struct ipasfrag);
return ((struct ip *)ip);
dropfrag:
m_freem(m);
return (0);
}
/*
* Free a fragment reassembly header and all
* associated datagrams.
*/
struct ipq *
ip_freef(fp)
struct ipq *fp;
{
register struct ipasfrag *q;
struct mbuf *m;
COUNT(IP_FREEF);
for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
m_freem(dtom(q));
m = dtom(fp);
fp = fp->next;
remque(fp->prev);
(void) m_free(m);
return (fp);
}
/*
* Put an ip fragment on a reassembly chain.
* Like insque, but pointers in middle of structure.
*/
ip_enq(p, prev)
register struct ipasfrag *p, *prev;
{
COUNT(IP_ENQ);
p->ipf_prev = prev;
p->ipf_next = prev->ipf_next;
prev->ipf_next->ipf_prev = p;
prev->ipf_next = p;
}
/*
* To ip_enq as remque is to insque.
*/
ip_deq(p)
register struct ipasfrag *p;
{
COUNT(IP_DEQ);
p->ipf_prev->ipf_next = p->ipf_next;
p->ipf_next->ipf_prev = p->ipf_prev;
}
/*
* IP timer processing;
* if a timer expires on a reassembly
* queue, discard it.
*/
ip_slowtimo()
{
register struct ipq *fp;
int s = splnet();
COUNT(IP_SLOWTIMO);
for (fp = ipq.next; fp != &ipq; )
if (--fp->ipq_ttl == 0)
fp = ip_freef(fp);
else
fp = fp->next;
splx(s);
}
/*
* Drain off all datagram fragments.
*/
ip_drain()
{
COUNT(IP_DRAIN);
while (ipq.next != &ipq)
(void) ip_freef(ipq.next);
}
/*
* Do option processing on a datagram,
* possibly discarding it if bad options
* are encountered.
*/
ip_dooptions(ip)
struct ip *ip;
{
register u_char *cp;
int opt, optlen, cnt;
struct in_addr *sin;
register struct ip_timestamp *ipt;
register struct ifnet *ifp;
struct in_addr t;
COUNT(IP_DOOPTIONS);
cp = (u_char *)(ip + 1);
cnt = (ip->ip_hl << 2) - sizeof (struct ip);
for (; cnt > 0; cnt -= optlen, cp += optlen) {
opt = cp[0];
if (opt == IPOPT_EOL)
break;
if (opt == IPOPT_NOP)
optlen = 1;
else
optlen = cp[1];
switch (opt) {
default:
break;
/*
* Source routing with record.
* Find interface with current destination address.
* If none on this machine then drop if strictly routed,
* or do nothing if loosely routed.
* Record interface address and bring up next address
* component. If strictly routed make sure next
* address on directly accessible net.
*/
case IPOPT_LSRR:
if (cp[2] < 4 || cp[2] > optlen - (sizeof (long) - 1))
break;
sin = (struct in_addr *)(cp + cp[2]);
ifp = if_ifwithaddr(*sin);
if (ifp == 0) {
if (opt == IPOPT_SSRR)
goto bad;
break;
}
t = ip->ip_dst; ip->ip_dst = *sin; *sin = t;
cp[2] += 4;
if (cp[2] > optlen - (sizeof (long) - 1))
break;
ip->ip_dst = sin[1];
if (opt == IPOPT_SSRR && if_ifonnetof(ip->ip_dst)==0)
goto bad;
break;
case IPOPT_TS:
ipt = (struct ip_timestamp *)cp;
if (ipt->ipt_len < 5)
goto bad;
if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
if (++ipt->ipt_oflw == 0)
goto bad;
break;
}
sin = (struct in_addr *)(cp+cp[2]);
switch (ipt->ipt_flg) {
case IPOPT_TS_TSONLY:
break;
case IPOPT_TS_TSANDADDR:
if (ipt->ipt_ptr + 8 > ipt->ipt_len)
goto bad;
/* stamp with ``first'' interface address */
*sin++ = ifnet->if_addr;
break;
case IPOPT_TS_PRESPEC:
if (if_ifwithaddr(*sin) == 0)
continue;
if (ipt->ipt_ptr + 8 > ipt->ipt_len)
goto bad;
ipt->ipt_ptr += 4;
break;
default:
goto bad;
}
*(n_time *)sin = iptime();
ipt->ipt_ptr += 4;
}
}
return;
bad:
/* SHOULD FORCE ICMP MESSAGE */
return;
}
/*
* Strip out IP options, at higher
* level protocol in the kernel.
* Second argument is buffer to which options
* will be moved, and return value is their length.
*/
ip_stripoptions(ip, cp)
struct ip *ip;
char *cp;
{
register int i;
register struct mbuf *m;
int olen;
COUNT(IP_STRIPOPTIONS);
olen = (ip->ip_hl<<2) - sizeof (struct ip);
m = dtom(ip);
ip++;
if (cp)
bcopy((caddr_t)ip, cp, (unsigned)olen);
i = m->m_len - (sizeof (struct ip) + olen);
bcopy((caddr_t)ip+olen, (caddr_t)ip, (unsigned)i);
m->m_len -= i;
}