Make the ring buffer a two-state buffer (supplier and consumer)
[unix-history] / usr / src / usr.bin / telnet / ring.c
/*
* This defines a structure for a ring buffer.
*
* The circular buffer has two parts:
*(((
* full: [consume, supply)
* empty: [supply, consume)
*]]]
*
*/
#include <stdio.h>
#include <errno.h>
#ifdef size_t
#undef size_t
#endif
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include "ring.h"
#include "general.h"
/* Internal macros */
#if !defined(MIN)
#define MIN(a,b) (((a)<(b))? (a):(b))
#endif /* !defined(MIN) */
#define ring_subtract(d,a,b) ((((int)(a))-((int)(b)) >= 0)? \
(a)-(b): (((a)-(b))+(d)->size))
#define ring_increment(d,a,c) (((a)+(c) < (d)->top)? \
(a)+(c) : (((a)+(c))-(d)->size))
/*
* The following is a clock, used to determine full, empty, etc.
*
* There is some trickiness here. Since the ring buffers are initialized
* to ZERO on allocation, we need to make sure, when interpreting the
* clock, that when the times are EQUAL, then the buffer is FULL.
*/
static u_long ring_clock = 0;
#define ring_empty(d) (((d)->consume == (d)->supply) && \
((d)->consumetime >= (d)->supplytime))
#define ring_full(d) (((d)->supply == (d)->consume) && \
((d)->supplytime > (d)->consumetime))
/* Buffer state transition routines */
ring_init(ring, buffer, count)
Ring *ring;
char *buffer;
int count;
{
memset((char *)ring, 0, sizeof *ring);
ring->size = count;
ring->supply = ring->consume = ring->bottom = buffer;
ring->top = ring->bottom+ring->size;
return 1;
}
/*
* Add characters from current segment to ring buffer.
*/
void
ring_supplied(ring, count)
Ring *ring;
int count;
{
ring->supply = ring_increment(ring, ring->supply, count);
ring->supplytime = ++ring_clock;
}
/*
* We have just consumed "c" bytes.
*/
void
ring_consumed(ring, count)
Ring *ring;
int count;
{
ring->consume = ring_increment(ring, ring->consume, count);
ring->consumetime = ++ring_clock;
}
/* Buffer state query routines */
/* Number of bytes that may be supplied */
int
ring_empty_count(ring)
Ring *ring;
{
if (ring_empty(ring)) { /* if empty */
return ring->size;
} else {
return ring_subtract(ring, ring->consume, ring->supply);
}
}
/* number of CONSECUTIVE bytes that may be supplied */
int
ring_empty_consecutive(ring)
Ring *ring;
{
if ((ring->consume < ring->supply) || ring_empty(ring)) {
/*
* if consume is "below" supply, or empty, then
* return distance to the top
*/
return ring_subtract(ring, ring->top, ring->supply);
} else {
/*
* else, return what we may.
*/
return ring_subtract(ring, ring->consume, ring->supply);
}
}
/* number of bytes that are available for consuming */
int
ring_full_count(ring)
Ring *ring;
{
if (ring_full(ring)) {
return ring->size; /* nothing consumed, but full */
} else {
return ring_subtract(ring, ring->supply, ring->consume);
}
}
/* number of CONSECUTIVE bytes available for consuming */
int
ring_full_consecutive(ring)
Ring *ring;
{
if ((ring->supply < ring->consume) || ring_full(ring)) {
return ring_subtract(ring, ring->top, ring->consume);
} else {
return ring_subtract(ring, ring->supply, ring->consume);
}
}
/*
* Move data into the "supply" portion of of the ring buffer.
*/
void
ring_supply_data(ring, buffer, count)
Ring *ring;
char *buffer;
int count;
{
int i;
while (count) {
i = MIN(count, ring_empty_consecutive(ring));
memcpy(ring->supply, buffer, i);
ring_supplied(ring, i);
count -= i;
buffer += i;
}
}
/*
* Move data from the "consume" portion of the ring buffer
*/
void
ring_consume_data(ring, buffer, count)
Ring *ring;
char *buffer;
int count;
{
int i;
while (count) {
i = MIN(count, ring_full_consecutive(ring));
memcpy(buffer, ring->consume, i);
ring_consumed(ring, i);
count -= i;
buffer += i;
}
}
/* Mark routines */
/* XXX do something here */
void
ring_mark(ring)
Ring *ring;
{
}
int
ring_at_mark(ring)
Ring *ring;
{
return 0;
}
void
ring_clear_mark(ring)
Ring *ring;
{
}