bring manpage up to date
[unix-history] / usr / src / sys / netccitt / pk_subr.c
/*
* Copyright (c) University of British Columbia, 1984
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Laboratory for Computation Vision and the Computer Science Department
* of the University of British Columbia.
*
* %sccs.include.redist.c%
*
* @(#)pk_subr.c 7.6 (Berkeley) %G%
*/
#include "param.h"
#include "systm.h"
#include "mbuf.h"
#include "socket.h"
#include "protosw.h"
#include "socketvar.h"
#include "errno.h"
#include "time.h"
#include "kernel.h"
#include "../net/if.h"
#include "x25.h"
#include "pk.h"
#include "pk_var.h"
#include "x25err.h"
int pk_sendspace = 1024 * 2 + 8;
int pk_recvspace = 1024 * 2 + 8;
struct x25_packet *pk_template ();
/*
* Attach X.25 protocol to socket, allocate logical channel descripter
* and buffer space, and enter LISTEN state if we are to accept
* IN-COMMING CALL packets.
*
*/
struct pklcd *
pk_attach (so)
struct socket *so;
{
register struct pklcd *lcp;
register int error = ENOBUFS;
MALLOC(lcp, struct pklcd *, sizeof(*lcp), M_PCB, M_NOWAIT);
if (lcp) {
bzero((caddr_t)lcp, sizeof(*lcp));
if (so) {
error = soreserve (so, pk_sendspace, pk_recvspace);
lcp -> lcd_so = so;
if (so -> so_options & SO_ACCEPTCONN)
lcp -> lcd_state = LISTEN;
else
lcp -> lcd_state = READY;
} else
sbreserve (&lcp -> lcd_sb, pk_sendspace);
}
if (so) {
so -> so_pcb = (caddr_t) lcp;
so -> so_error = error;
}
return (lcp);
}
/*
* Disconnect X.25 protocol from socket.
*/
pk_disconnect (lcp)
register struct pklcd *lcp;
{
register struct socket *so = lcp -> lcd_so;
register struct pklcd *l, *p;
switch (lcp -> lcd_state) {
case LISTEN:
for (p = 0, l = pk_listenhead; l && l != lcp; p = l, l = l -> lcd_listen);
if (p == 0) {
if (l != 0)
pk_listenhead = l -> lcd_listen;
}
else
if (l != 0)
p -> lcd_listen = l -> lcd_listen;
pk_close (lcp);
break;
case READY:
pk_acct (lcp);
pk_close (lcp);
break;
case SENT_CLEAR:
case RECEIVED_CLEAR:
break;
default:
pk_acct (lcp);
if (so) {
soisdisconnecting (so);
sbflush (&so -> so_rcv);
}
pk_clear (lcp);
}
}
/*
* Close an X.25 Logical Channel. Discard all space held by the
* connection and internal descriptors. Wake up any sleepers.
*/
pk_close (lcp)
struct pklcd *lcp;
{
register struct socket *so = lcp -> lcd_so;
pk_freelcd (lcp);
if (so == NULL)
return;
so -> so_pcb = 0;
sbflush (&so -> so_snd);
sbflush (&so -> so_rcv);
soisdisconnected (so);
sofree (so); /* gak!!! you can't do that here */
}
/*
* Create a template to be used to send X.25 packets on a logical
* channel. It allocates an mbuf and fills in a skeletal packet
* depending on its type. This packet is passed to pk_output where
* the remainer of the packet is filled in.
*/
struct x25_packet *
pk_template (lcn, type)
int lcn, type;
{
register struct mbuf *m;
register struct x25_packet *xp;
MGET (m, M_DONTWAIT, MT_HEADER);
if (m == 0)
panic ("pk_template");
m -> m_act = 0;
/*
* Efficiency hack: leave a four byte gap at the beginning
* of the packet level header with the hope that this will
* be enough room for the link level to insert its header.
*/
m -> m_data += 4;
m -> m_len = PKHEADERLN;
xp = mtod (m, struct x25_packet *);
*(long *)xp = 0; /* ugly, but fast */
/* xp -> q_bit = 0;*/
xp -> fmt_identifier = 1;
/* xp -> lc_group_number = 0;*/
xp -> logical_channel_number = lcn;
xp -> packet_type = type;
return (xp);
}
/*
* This routine restarts all the virtual circuits. Actually,
* the virtual circuits are not "restarted" as such. Instead,
* any active switched circuit is simply returned to READY
* state.
*/
pk_restart (pkp, restart_cause)
register struct pkcb *pkp;
int restart_cause;
{
register struct x25_packet *xp;
register struct pklcd *lcp;
register int i;
/* Restart all logical channels. */
if (pkp->pk_chan == 0)
return;
for (i = 1; i <= pkp->pk_maxlcn; ++i)
if ((lcp = pkp->pk_chan[i]) != NULL) {
if (lcp -> lcd_so)
lcp->lcd_so -> so_error = ENETRESET;
pk_close (lcp);
}
if (restart_cause < 0)
return;
pkp->pk_state = DTE_SENT_RESTART;
lcp = pkp->pk_chan[0];
xp = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESTART);
(dtom (xp)) -> m_len++;
xp -> packet_data = 0; /* DTE only */
pk_output (lcp);
}
/*
* This procedure frees up the Logical Channel Descripter.
*/
pk_freelcd (lcp)
register struct pklcd *lcp;
{
if (lcp == NULL)
return;
if (lcp -> lcd_template)
m_freem (dtom (lcp -> lcd_template));
if (lcp -> lcd_lcn > 0)
lcp -> lcd_pkp -> pk_chan[lcp -> lcd_lcn] = NULL;
free((caddr_t)lcp, M_PCB);
}
/*
* Bind a address and protocol value to a socket. The important
* part is the protocol value - the first four characters of the
* Call User Data field.
*/
pk_bind (lcp, nam)
struct pklcd *lcp;
struct mbuf *nam;
{
register struct pkcb *pkp;
register struct mbuf *m;
register struct pklcd *pp;
register struct sockaddr_x25 *sa;
if (nam == NULL)
return (EADDRNOTAVAIL);
if (lcp -> lcd_ceaddr) /* XXX */
return (EADDRINUSE);
if (checksockaddr (nam))
return (EINVAL);
sa = mtod (nam, struct sockaddr_x25 *);
/*
* If the user wishes to accept calls only from a particular
* net (net != 0), make sure the net is known
*/
if (sa -> x25_net)
for (pkp = pkcbhead; ; pkp = pkp -> pk_next) {
if (pkp == 0)
return (ENETUNREACH);
if (pkp -> pk_xcp -> xc_addr.x25_net == sa -> x25_net)
break;
}
for (pp = pk_listenhead; pp; pp = pp -> lcd_listen)
if (bcmp (pp -> lcd_ceaddr -> x25_udata, sa -> x25_udata,
min (pp->lcd_ceaddr->x25_udlen, sa->x25_udlen)) == 0)
return (EADDRINUSE);
lcp -> lcd_laddr = *sa;
lcp -> lcd_ceaddr = &lcp -> lcd_laddr;
return (0);
}
/*
* Associate a logical channel descriptor with a network.
* Fill in the default network specific parameters and then
* set any parameters explicitly specified by the user or
* by the remote DTE.
*/
pk_assoc (pkp, lcp, sa)
register struct pkcb *pkp;
register struct pklcd *lcp;
register struct sockaddr_x25 *sa;
{
lcp -> lcd_pkp = pkp;
lcp -> lcd_packetsize = pkp -> pk_xcp -> xc_psize;
lcp -> lcd_windowsize = pkp -> pk_xcp -> xc_pwsize;
lcp -> lcd_rsn = MODULUS - 1;
pkp -> pk_chan[lcp -> lcd_lcn] = lcp;
if (sa -> x25_opts.op_psize)
lcp -> lcd_packetsize = sa -> x25_opts.op_psize;
else
sa -> x25_opts.op_psize = lcp -> lcd_packetsize;
if (sa -> x25_opts.op_wsize)
lcp -> lcd_windowsize = sa -> x25_opts.op_wsize;
else
sa -> x25_opts.op_wsize = lcp -> lcd_windowsize;
sa -> x25_net = pkp -> pk_xcp -> xc_addr.x25_net;
lcp -> lcd_flags = sa -> x25_opts.op_flags;
lcp -> lcd_stime = time.tv_sec;
}
pk_connect (lcp, nam, sa)
register struct pklcd *lcp;
register struct sockaddr_x25 *sa;
struct mbuf *nam;
{
register struct pkcb *pkp;
register struct mbuf *m;
register struct ifnet *ifp;
if (sa == 0) {
if (checksockaddr (nam))
return (EINVAL);
sa = mtod (nam, struct sockaddr_x25 *);
}
if (sa -> x25_addr[0] == '\0')
return (EDESTADDRREQ);
if (lcp->lcd_pkp == 0)
for (pkp = pkcbhead; ; pkp = pkp->pk_next) {
if (pkp == 0)
return (ENETUNREACH);
/*
* use first net configured (last in list
* headed by pkcbhead) if net is zero
*/
if (sa -> x25_net == 0 && pkp -> pk_next == 0)
break;
if (sa -> x25_net == pkp -> pk_xcp -> xc_addr.x25_net)
break;
}
if (pkp -> pk_state != DTE_READY)
return (ENETDOWN);
if ((lcp -> lcd_lcn = pk_getlcn (pkp)) == 0)
return (EMFILE);
lcp -> lcd_faddr = *sa;
lcp -> lcd_ceaddr = & lcp->lcd_faddr;
pk_assoc (pkp, lcp, lcp -> lcd_ceaddr);
if (lcp -> lcd_so)
soisconnecting (lcp -> lcd_so);
lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL);
pk_callrequest (lcp, lcp -> lcd_ceaddr, pkp -> pk_xcp);
return (*pkp -> pk_start)(lcp);
}
/*
* Build the rest of the CALL REQUEST packet. Fill in calling
* address, facilities fields and the user data field.
*/
pk_callrequest (lcp, sa, xcp)
struct pklcd *lcp;
register struct sockaddr_x25 *sa;
register struct x25config *xcp;
{
register struct x25_calladdr *a;
register struct mbuf *m = dtom (lcp -> lcd_template);
unsigned posn = 0;
octet *cp;
a = (struct x25_calladdr *) &lcp -> lcd_template -> packet_data;
a -> calling_addrlen = strlen (xcp -> xc_addr.x25_addr);
a -> called_addrlen = strlen (sa -> x25_addr);
cp = (octet *) a -> address_field;
to_bcd (&cp, (int)a -> called_addrlen, sa -> x25_addr, &posn);
to_bcd (&cp, (int)a -> calling_addrlen, xcp -> xc_addr.x25_addr, &posn);
if (posn & 0x01)
*cp++ &= 0xf0;
build_facilities (&cp, sa, (int)xcp -> xc_type);
bcopy (sa -> x25_udata, (caddr_t)cp, (unsigned)sa -> x25_udlen);
cp += sa -> x25_udlen;
m -> m_len += cp - (octet *) a;
#ifdef ANDREW
printf ("call: ");
for (cp = mtod (m, octet *), posn = 0; posn < m->m_len; ++posn)
printf ("%x ", *cp++);
printf ("\n");
#endif
}
build_facilities (cp, sa, type)
register octet **cp;
struct sockaddr_x25 *sa;
{
register octet *fcp;
register int revcharge;
fcp = *cp + 1;
revcharge = sa -> x25_opts.op_flags & X25_REVERSE_CHARGE ? 1 : 0;
/*
* This is specific to Datapac X.25(1976) DTEs. International
* calls must have the "hi priority" bit on.
*/
if (type == X25_1976 && sa -> x25_opts.op_psize == X25_PS128)
revcharge |= 02;
if (revcharge) {
*fcp++ = FACILITIES_REVERSE_CHARGE;
*fcp++ = revcharge;
}
switch (type) {
case X25_1980:
case X25_1984:
*fcp++ = FACILITIES_PACKETSIZE;
*fcp++ = sa -> x25_opts.op_psize;
*fcp++ = sa -> x25_opts.op_psize;
*fcp++ = FACILITIES_WINDOWSIZE;
*fcp++ = sa -> x25_opts.op_wsize;
*fcp++ = sa -> x25_opts.op_wsize;
}
**cp = fcp - *cp - 1;
*cp = fcp;
}
to_bcd (a, len, x, posn)
register octet **a;
register char *x;
register int len;
register unsigned *posn;
{
while (--len >= 0)
if ((*posn)++ & 0x01)
*(*a)++ |= *x++ & 0x0F;
else
**a = *x++ << 4;
}
/*
* This routine gets the first available logical channel number. The
* search is from the highest number to lowest number (DTE).
*/
pk_getlcn (pkp)
register struct pkcb *pkp;
{
register int i;
if (pkp->pk_chan == 0)
return (0);
for (i = pkp -> pk_maxlcn; i > 0; --i)
if (pkp -> pk_chan[i] == NULL)
break;
return (i);
}
static
checksockaddr (m)
struct mbuf *m;
{
register struct sockaddr_x25 *sa = mtod (m, struct sockaddr_x25 *);
register char *cp;
if (m -> m_len != sizeof (struct sockaddr_x25))
return (1);
if (sa -> x25_family != AF_CCITT || sa -> x25_udlen == 0 ||
sa -> x25_udlen > sizeof (sa -> x25_udata))
return (1);
for (cp = sa -> x25_addr; *cp; cp++) {
if (*cp < '0' || *cp > '9' ||
cp >= &sa -> x25_addr[sizeof (sa -> x25_addr) - 1])
return (1);
}
return (0);
}
/*
* This procedure sends a CLEAR request packet. The lc state is
* set to "SENT_CLEAR".
*/
pk_clear (lcp)
struct pklcd *lcp;
{
register struct x25_packet *xp;
xp = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CLEAR);
(dtom (xp)) -> m_len++;
xp -> packet_data = 0;
pk_output (lcp);
}
/*
* This procedure sends a RESET request packet. It re-intializes
* virtual circuit.
*/
static
pk_reset (lcp)
register struct pklcd *lcp;
{
register struct x25_packet *xp;
register struct socket *so;
if (lcp -> lcd_state != DATA_TRANSFER)
return;
lcp -> lcd_reset_condition = TRUE;
/* Reset all the control variables for the channel. */
lcp -> lcd_window_condition = lcp -> lcd_rnr_condition =
lcp -> lcd_intrconf_pending = FALSE;
lcp -> lcd_rsn = MODULUS - 1;
lcp -> lcd_ssn = 0;
lcp -> lcd_output_window = lcp -> lcd_input_window =
lcp -> lcd_last_transmitted_pr = 0;
if (so = lcp -> lcd_so) {
so -> so_error = ECONNRESET;
sbflush (&so -> so_rcv);
sbflush (&so -> so_snd);
}
xp = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESET);
(dtom (xp)) -> m_len += 2;
xp -> packet_data = 0;
pk_output (lcp);
}
/*
* This procedure handles all local protocol procedure errors.
*/
pk_procerror (error, lcp, errstr)
register struct pklcd *lcp;
char *errstr;
{
pk_message (lcp -> lcd_lcn, lcp -> lcd_pkp -> pk_xcp, errstr);
switch (error) {
case CLEAR:
if (lcp->lcd_so) {
lcp->lcd_so -> so_error = ECONNABORTED;
soisdisconnecting (lcp->lcd_so);
}
pk_clear (lcp);
break;
case RESET:
pk_reset (lcp);
}
}
/*
* This procedure is called during the DATA TRANSFER state to check
* and process the P(R) values received in the DATA, RR OR RNR
* packets.
*/
pk_ack (lcp, pr)
struct pklcd *lcp;
unsigned pr;
{
register struct socket *so = lcp -> lcd_so;
if (lcp -> lcd_output_window == pr)
return (PACKET_OK);
if (lcp -> lcd_output_window < lcp -> lcd_ssn) {
if (pr < lcp -> lcd_output_window || pr > lcp -> lcd_ssn) {
pk_procerror (RESET, lcp, "p(r) flow control error");
return (ERROR_PACKET);
}
}
else {
if (pr < lcp -> lcd_output_window && pr > lcp -> lcd_ssn) {
pk_procerror (RESET, lcp, "p(r) flow control error");
return (ERROR_PACKET);
}
}
lcp -> lcd_output_window = pr; /* Rotate window. */
if (lcp -> lcd_window_condition == TRUE)
lcp -> lcd_window_condition = FALSE;
if (so && ((so -> so_snd.sb_flags & SB_WAIT) || so -> so_snd.sb_sel))
sowwakeup (so);
if (lcp -> lcd_upper)
(*lcp -> lcd_upper)(lcp, 0);
return (PACKET_OK);
}
/*
* This procedure decodes the X.25 level 3 packet returning a
* code to be used in switchs or arrays.
*/
pk_decode (xp)
register struct x25_packet *xp;
{
register int type;
if (xp -> fmt_identifier != 1)
return (INVALID_PACKET);
/*
* Make sure that the logical channel group number is 0.
* This restriction may be removed at some later date.
*/
if (xp -> lc_group_number != 0)
return (INVALID_PACKET);
/*
* Test for data packet first.
*/
if (!(xp -> packet_type & DATA_PACKET_DESIGNATOR))
return (DATA);
/*
* Test if flow control packet (RR or RNR).
*/
if (!(xp -> packet_type & RR_OR_RNR_PACKET_DESIGNATOR))
if (!(xp -> packet_type & RR_PACKET_DESIGNATOR))
return (RR);
else
return (RNR);
/*
* Determine the rest of the packet types.
*/
switch (xp -> packet_type) {
case X25_CALL:
type = CALL;
break;
case X25_CALL_ACCEPTED:
type = CALL_ACCEPTED;
break;
case X25_CLEAR:
type = CLEAR;
break;
case X25_CLEAR_CONFIRM:
type = CLEAR_CONF;
break;
case X25_INTERRUPT:
type = INTERRUPT;
break;
case X25_INTERRUPT_CONFIRM:
type = INTERRUPT_CONF;
break;
case X25_RESET:
type = RESET;
break;
case X25_RESET_CONFIRM:
type = RESET_CONF;
break;
case X25_RESTART:
type = RESTART;
break;
case X25_RESTART_CONFIRM:
type = RESTART_CONF;
break;
default:
type = INVALID_PACKET;
}
return (type);
}
/*
* A restart packet has been received. Print out the reason
* for the restart.
*/
pk_restartcause (pkp, xp)
struct pkcb *pkp;
register struct x25_packet *xp;
{
register struct x25config *xcp = pkp -> pk_xcp;
register int lcn = xp -> logical_channel_number;
switch (xp -> packet_data) {
case X25_RESTART_LOCAL_PROCEDURE_ERROR:
pk_message (lcn, xcp, "restart: local procedure error");
break;
case X25_RESTART_NETWORK_CONGESTION:
pk_message (lcn, xcp, "restart: network congestion");
break;
case X25_RESTART_NETWORK_OPERATIONAL:
pk_message (lcn, xcp, "restart: network operational");
break;
default:
pk_message (lcn, xcp, "restart: unknown cause");
}
}
#define MAXRESETCAUSE 7
int Reset_cause[] = {
EXRESET, EXROUT, 0, EXRRPE, 0, EXRLPE, 0, EXRNCG
};
/*
* A reset packet has arrived. Return the cause to the user.
*/
pk_resetcause (pkp, xp)
struct pkcb *pkp;
register struct x25_packet *xp;
{
register struct pklcd *lcp = pkp->pk_chan[xp -> logical_channel_number];
register int code = xp -> packet_data;
if (code > MAXRESETCAUSE)
code = 7; /* EXRNCG */
lcp->lcd_so -> so_error = Reset_cause[code];
}
#define MAXCLEARCAUSE 25
int Clear_cause[] = {
EXCLEAR, EXCBUSY, 0, EXCINV, 0, EXCNCG, 0,
0, 0, EXCOUT, 0, EXCAB, 0, EXCNOB, 0, 0, 0, EXCRPE,
0, EXCLPE, 0, 0, 0, 0, 0, EXCRRC
};
/*
* A clear packet has arrived. Return the cause to the user.
*/
pk_clearcause (pkp, xp)
struct pkcb *pkp;
register struct x25_packet *xp;
{
register struct pklcd *lcp = pkp->pk_chan[xp -> logical_channel_number];
register int code = xp -> packet_data;
if (code > MAXCLEARCAUSE)
code = 5; /* EXRNCG */
lcp->lcd_so -> so_error = Clear_cause[code];
}
char *
format_ntn (xcp)
register struct x25config *xcp;
{
return (xcp -> xc_addr.x25_addr);
}
/* VARARGS1 */
pk_message (lcn, xcp, fmt, a1, a2, a3, a4, a5, a6)
struct x25config *xcp;
char *fmt;
{
if (lcn)
if (pkcbhead -> pk_next)
printf ("X.25(%s): lcn %d: ", format_ntn (xcp), lcn);
else
printf ("X.25: lcn %d: ", lcn);
else
if (pkcbhead -> pk_next)
printf ("X.25(%s): ", format_ntn (xcp));
else
printf ("X.25: ");
printf (fmt, a1, a2, a3, a4, a5, a6);
printf ("\n");
}