BSD 4_3 release
[unix-history] / usr / src / usr.lib / libm / VAX / atan2.s
#
# Copyright (c) 1985 Regents of the University of California.
#
# Use and reproduction of this software are granted in accordance with
# the terms and conditions specified in the Berkeley Software License
# Agreement (in particular, this entails acknowledgement of the programs'
# source, and inclusion of this notice) with the additional understanding
# that all recipients should regard themselves as participants in an
# ongoing research project and hence should feel obligated to report
# their experiences (good or bad) with these elementary function codes,
# using "sendbug 4bsd-bugs@BERKELEY", to the authors.
#
# @(#)atan2.s 1.2 (Berkeley) 8/21/85
# ATAN2(Y,X)
# RETURN ARG (X+iY)
# VAX D FORMAT (56 BITS PRECISION)
# CODED IN VAX ASSEMBLY LANGUAGE BY K.C. NG, 4/16/85;
#
#
# Method :
# 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
# 2. Reduce x to positive by (if x and y are unexceptional):
# ARG (x+iy) = arctan(y/x) ... if x > 0,
# ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
# 3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
# is further reduced to one of the following intervals and the
# arctangent of y/x is evaluated by the corresponding formula:
#
# [0,7/16] atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
# [7/16,11/16] atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
# [11/16.19/16] atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
# [19/16,39/16] atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
# [39/16,INF] atan(y/x) = atan(INF) + atan( -x/y )
#
# Special cases:
# Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
#
# ARG( NAN , (anything) ) is NaN;
# ARG( (anything), NaN ) is NaN;
# ARG(+(anything but NaN), +-0) is +-0 ;
# ARG(-(anything but NaN), +-0) is +-PI ;
# ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
# ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
# ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
# ARG( +INF,+-INF ) is +-PI/4 ;
# ARG( -INF,+-INF ) is +-3PI/4;
# ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
#
# Accuracy:
# atan2(y,x) returns the exact ARG(x+iy) nearly rounded.
#
.text
.align 1
.globl _atan2
_atan2 :
.word 0x0ff4
movq 4(ap),r2 # r2 = y
movq 12(ap),r4 # r4 = x
bicw3 $0x7f,r2,r0
bicw3 $0x7f,r4,r1
cmpw r0,$0x8000 # y is the reserved operand
jeql resop
cmpw r1,$0x8000 # x is the reserved operand
jeql resop
subl2 $8,sp
bicw3 $0x7fff,r2,-4(fp) # copy y sign bit to -4(fp)
bicw3 $0x7fff,r4,-8(fp) # copy x sign bit to -8(fp)
cmpd r4,$0x4080 # x = 1.0 ?
bneq xnot1
movq r2,r0
bicw2 $0x8000,r0 # t = |y|
movq r0,r2 # y = |y|
brb begin
xnot1:
bicw3 $0x807f,r2,r11 # yexp
jeql yeq0 # if y=0 goto yeq0
bicw3 $0x807f,r4,r10 # xexp
jeql pio2 # if x=0 goto pio2
subw2 r10,r11 # k = yexp - xexp
cmpw r11,$0x2000 # k >= 64 (exp) ?
jgeq pio2 # atan2 = +-pi/2
divd3 r4,r2,r0 # t = y/x never overflow
bicw2 $0x8000,r0 # t > 0
bicw2 $0xff80,r2 # clear the exponent of y
bicw2 $0xff80,r4 # clear the exponent of x
bisw2 $0x4080,r2 # normalize y to [1,2)
bisw2 $0x4080,r4 # normalize x to [1,2)
subw2 r11,r4 # scale x so that yexp-xexp=k
begin:
cmpw r0,$0x411c # t : 39/16
jgeq L50
addl3 $0x180,r0,r10 # 8*t
cvtrfl r10,r10 # [8*t] rounded to int
ashl $-1,r10,r10 # [8*t]/2
casel r10,$0,$4
L1:
.word L20-L1
.word L20-L1
.word L30-L1
.word L40-L1
.word L40-L1
L10:
movq $0xb4d9940f985e407b,r6 # Hi=.98279372324732906796d0
movq $0x21b1879a3bc2a2fc,r8 # Lo=-.17092002525602665777d-17
subd3 r4,r2,r0 # y-x
addw2 $0x80,r0 # 2(y-x)
subd2 r4,r0 # 2(y-x)-x
addw2 $0x80,r4 # 2x
movq r2,r10
addw2 $0x80,r10 # 2y
addd2 r10,r2 # 3y
addd2 r4,r2 # 3y+2x
divd2 r2,r0 # (2y-3x)/(2x+3y)
brw L60
L20:
cmpw r0,$0x3280 # t : 2**(-28)
jlss L80
clrq r6 # Hi=r6=0, Lo=r8=0
clrq r8
brw L60
L30:
movq $0xda7b2b0d63383fed,r6 # Hi=.46364760900080611433d0
movq $0xf0ea17b2bf912295,r8 # Lo=.10147340032515978826d-17
movq r2,r0
addw2 $0x80,r0 # 2y
subd2 r4,r0 # 2y-x
addw2 $0x80,r4 # 2x
addd2 r2,r4 # 2x+y
divd2 r4,r0 # (2y-x)/(2x+y)
brb L60
L50:
movq $0x68c2a2210fda40c9,r6 # Hi=1.5707963267948966135d1
movq $0x06e0145c26332326,r8 # Lo=.22517417741562176079d-17
cmpw r0,$0x5100 # y : 2**57
bgeq L90
divd3 r2,r4,r0
bisw2 $0x8000,r0 # -x/y
brb L60
L40:
movq $0x68c2a2210fda4049,r6 # Hi=.78539816339744830676d0
movq $0x06e0145c263322a6,r8 # Lo=.11258708870781088040d-17
subd3 r4,r2,r0 # y-x
addd2 r4,r2 # y+x
divd2 r2,r0 # (y-x)/(y+x)
L60:
movq r0,r10
muld2 r0,r0
polyd r0,$12,ptable
muld2 r10,r0
subd2 r0,r8
addd3 r8,r10,r0
addd2 r6,r0
L80:
movw -8(fp),r2
bneq pim
bisw2 -4(fp),r0 # return sign(y)*r0
ret
L90: # x >= 2**25
movq r6,r0
brb L80
pim:
subd3 r0,$0x68c2a2210fda4149,r0 # pi-t
bisw2 -4(fp),r0
ret
yeq0:
movw -8(fp),r2
beql zero # if sign(x)=1 return pi
movq $0x68c2a2210fda4149,r0 # pi=3.1415926535897932270d1
ret
zero:
clrq r0 # return 0
ret
pio2:
movq $0x68c2a2210fda40c9,r0 # pi/2=1.5707963267948966135d1
bisw2 -4(fp),r0 # return sign(y)*pi/2
ret
resop:
movq $0x8000,r0 # propagate the reserved operand
ret
.align 2
ptable:
.quad 0xb50f5ce96e7abd60
.quad 0x51e44a42c1073e02
.quad 0x3487e3289643be35
.quad 0xdb62066dffba3e54
.quad 0xcf8e2d5199abbe70
.quad 0x26f39cb884883e88
.quad 0x135117d18998be9d
.quad 0x602ce9742e883eba
.quad 0xa35ad0be8e38bee3
.quad 0xffac922249243f12
.quad 0x7f14ccccccccbf4c
.quad 0xaa8faaaaaaaa3faa
.quad 0x0000000000000000