fixes to interactions of new fs and buffer cache with partial blocks
[unix-history] / usr / src / sys / ufs / ffs / ffs_alloc.c
/* ffs_alloc.c 2.7 82/06/14 */
#include "../h/param.h"
#include "../h/systm.h"
#include "../h/mount.h"
#include "../h/fs.h"
#include "../h/conf.h"
#include "../h/buf.h"
#include "../h/inode.h"
#include "../h/dir.h"
#include "../h/user.h"
extern u_long hashalloc();
extern ino_t ialloccg();
extern daddr_t alloccg();
extern daddr_t alloccgblk();
extern daddr_t fragextend();
extern daddr_t blkpref();
extern daddr_t mapsearch();
extern int inside[], around[];
extern unsigned char *fragtbl[];
/*
* Allocate a block in the file system.
*
* The size of the requested block is given, which must be some
* multiple of fs_fsize and <= fs_bsize.
* A preference may be optionally specified. If a preference is given
* the following hierarchy is used to allocate a block:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate a block in the same cylinder group.
* 4) quadradically rehash into other cylinder groups, until an
* available block is located.
* If no block preference is given the following heirarchy is used
* to allocate a block:
* 1) allocate a block in the cylinder group that contains the
* inode for the file.
* 2) quadradically rehash into other cylinder groups, until an
* available block is located.
*/
struct buf *
alloc(ip, bpref, size)
register struct inode *ip;
daddr_t bpref;
int size;
{
daddr_t bno;
register struct fs *fs;
register struct buf *bp;
int cg;
fs = ip->i_fs;
if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
panic("alloc: bad size");
}
if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
goto nospace;
if (u.u_uid != 0 &&
fs->fs_cstotal.cs_nbfree * fs->fs_frag + fs->fs_cstotal.cs_nffree <
fs->fs_dsize * fs->fs_minfree / 100)
goto nospace;
if (bpref >= fs->fs_size)
bpref = 0;
if (bpref == 0)
cg = itog(fs, ip->i_number);
else
cg = dtog(fs, bpref);
bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, alloccg);
if (bno <= 0)
goto nospace;
bp = getblk(ip->i_dev, fsbtodb(fs, bno), size);
clrbuf(bp);
return (bp);
nospace:
fserr(fs, "file system full");
uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
u.u_error = ENOSPC;
return (NULL);
}
/*
* Reallocate a fragment to a bigger size
*
* The number and size of the old block is given, and a preference
* and new size is also specified. The allocator attempts to extend
* the original block. Failing that, the regular block allocator is
* invoked to get an appropriate block.
*/
struct buf *
realloccg(ip, bprev, bpref, osize, nsize)
register struct inode *ip;
daddr_t bprev, bpref;
int osize, nsize;
{
daddr_t bno;
register struct fs *fs;
register struct buf *bp, *obp;
int cg;
fs = ip->i_fs;
if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
(unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
panic("realloccg: bad size");
}
if (u.u_uid != 0 &&
fs->fs_cstotal.cs_nbfree * fs->fs_frag + fs->fs_cstotal.cs_nffree <
fs->fs_dsize * fs->fs_minfree / 100)
goto nospace;
if (bprev == 0) {
printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
panic("realloccg: bad bprev");
}
cg = dtog(fs, bprev);
bno = fragextend(ip, cg, (long)bprev, osize, nsize);
if (bno != 0) {
do {
bp = bread(ip->i_dev, fsbtodb(fs, bno), osize);
if (bp->b_flags & B_ERROR) {
brelse(bp);
return (NULL);
}
} while (brealloc(bp, nsize) == 0);
bp->b_flags |= B_DONE;
blkclr(bp->b_un.b_addr + osize, nsize - osize);
return (bp);
}
if (bpref >= fs->fs_size)
bpref = 0;
bno = (daddr_t)hashalloc(ip, cg, (long)bpref, nsize, alloccg);
if (bno > 0) {
obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize);
if (obp->b_flags & B_ERROR) {
brelse(obp);
return (NULL);
}
bp = getblk(ip->i_dev, fsbtodb(fs, bno), nsize);
bcopy(obp->b_un.b_addr, bp->b_un.b_addr, osize);
blkclr(bp->b_un.b_addr + osize, nsize - osize);
brelse(obp);
fre(ip, bprev, (off_t)osize);
return (bp);
}
nospace:
/*
* no space available
*/
fserr(fs, "file system full");
uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
u.u_error = ENOSPC;
return (NULL);
}
/*
* Allocate an inode in the file system.
*
* A preference may be optionally specified. If a preference is given
* the following hierarchy is used to allocate an inode:
* 1) allocate the requested inode.
* 2) allocate an inode in the same cylinder group.
* 3) quadradically rehash into other cylinder groups, until an
* available inode is located.
* If no inode preference is given the following heirarchy is used
* to allocate an inode:
* 1) allocate an inode in cylinder group 0.
* 2) quadradically rehash into other cylinder groups, until an
* available inode is located.
*/
struct inode *
ialloc(pip, ipref, mode)
register struct inode *pip;
ino_t ipref;
int mode;
{
ino_t ino;
register struct fs *fs;
register struct inode *ip;
int cg;
fs = pip->i_fs;
if (fs->fs_cstotal.cs_nifree == 0)
goto noinodes;
if (ipref >= fs->fs_ncg * fs->fs_ipg)
ipref = 0;
cg = itog(fs, ipref);
ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg);
if (ino == 0)
goto noinodes;
ip = iget(pip->i_dev, pip->i_fs, ino);
if (ip == NULL) {
ifree(ip, ino, 0);
return (NULL);
}
if (ip->i_mode) {
printf("mode = 0%o, inum = %d, fs = %s\n",
ip->i_mode, ip->i_number, fs->fs_fsmnt);
panic("ialloc: dup alloc");
}
return (ip);
noinodes:
fserr(fs, "out of inodes");
uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
u.u_error = ENOSPC;
return (NULL);
}
/*
* Find a cylinder to place a directory.
*
* The policy implemented by this algorithm is to select from
* among those cylinder groups with above the average number of
* free inodes, the one with the smallest number of directories.
*/
dirpref(fs)
register struct fs *fs;
{
int cg, minndir, mincg, avgifree;
avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
minndir = fs->fs_ipg;
mincg = 0;
for (cg = 0; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
mincg = cg;
minndir = fs->fs_cs(fs, cg).cs_ndir;
}
return (fs->fs_ipg * mincg);
}
/*
* Select a cylinder to place a large block of data.
*
* The policy implemented by this algorithm is to maintain a
* rotor that sweeps the cylinder groups. When a block is
* needed, the rotor is advanced until a cylinder group with
* greater than the average number of free blocks is found.
*/
daddr_t
blkpref(fs)
register struct fs *fs;
{
int cg, avgbfree;
avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
for (cg = fs->fs_cgrotor + 1; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
fs->fs_cgrotor = cg;
return (fs->fs_fpg * cg + fs->fs_frag);
}
for (cg = 0; cg <= fs->fs_cgrotor; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
fs->fs_cgrotor = cg;
return (fs->fs_fpg * cg + fs->fs_frag);
}
return (NULL);
}
/*
* Implement the cylinder overflow algorithm.
*
* The policy implemented by this algorithm is:
* 1) allocate the block in its requested cylinder group.
* 2) quadradically rehash on the cylinder group number.
* 3) brute force search for a free block.
*/
/*VARARGS5*/
u_long
hashalloc(ip, cg, pref, size, allocator)
struct inode *ip;
int cg;
long pref;
int size; /* size for data blocks, mode for inodes */
u_long (*allocator)();
{
register struct fs *fs;
long result;
int i, icg = cg;
fs = ip->i_fs;
/*
* 1: preferred cylinder group
*/
result = (*allocator)(ip, cg, pref, size);
if (result)
return (result);
/*
* 2: quadratic rehash
*/
for (i = 1; i < fs->fs_ncg; i *= 2) {
cg += i;
if (cg >= fs->fs_ncg)
cg -= fs->fs_ncg;
result = (*allocator)(ip, cg, 0, size);
if (result)
return (result);
}
/*
* 3: brute force search
*/
cg = icg;
for (i = 0; i < fs->fs_ncg; i++) {
result = (*allocator)(ip, cg, 0, size);
if (result)
return (result);
cg++;
if (cg == fs->fs_ncg)
cg = 0;
}
return (NULL);
}
/*
* Determine whether a fragment can be extended.
*
* Check to see if the necessary fragments are available, and
* if they are, allocate them.
*/
daddr_t
fragextend(ip, cg, bprev, osize, nsize)
struct inode *ip;
int cg;
long bprev;
int osize, nsize;
{
register struct fs *fs;
register struct buf *bp;
register struct cg *cgp;
long bno;
int frags, bbase;
int i;
fs = ip->i_fs;
if (fs->fs_cs(fs, cg).cs_nffree < nsize - osize)
return (NULL);
frags = numfrags(fs, nsize);
bbase = fragoff(fs, bprev);
if (bbase > (bprev + frags - 1) % fs->fs_frag) {
/* cannot extend across a block boundry */
return (NULL);
}
bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), fs->fs_bsize);
cgp = bp->b_un.b_cg;
if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
brelse(bp);
return (NULL);
}
cgp->cg_time = time;
bno = dtogd(fs, bprev);
for (i = numfrags(fs, osize); i < frags; i++)
if (isclr(cgp->cg_free, bno + i)) {
brelse(bp);
return (NULL);
}
/*
* the current fragment can be extended
* deduct the count on fragment being extended into
* increase the count on the remaining fragment (if any)
* allocate the extended piece
*/
for (i = frags; i < fs->fs_frag - bbase; i++)
if (isclr(cgp->cg_free, bno + i))
break;
cgp->cg_frsum[i - numfrags(fs, osize)]--;
if (i != frags)
cgp->cg_frsum[i - frags]++;
for (i = numfrags(fs, osize); i < frags; i++) {
clrbit(cgp->cg_free, bno + i);
cgp->cg_cs.cs_nffree--;
fs->fs_cstotal.cs_nffree--;
fs->fs_cs(fs, cg).cs_nffree--;
}
fs->fs_fmod++;
bdwrite(bp);
return (bprev);
}
/*
* Determine whether a block can be allocated.
*
* Check to see if a block of the apprpriate size is available,
* and if it is, allocate it.
*/
daddr_t
alloccg(ip, cg, bpref, size)
struct inode *ip;
int cg;
daddr_t bpref;
int size;
{
register struct fs *fs;
register struct buf *bp;
register struct cg *cgp;
int bno, frags;
int allocsiz;
register int i;
fs = ip->i_fs;
if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
return (NULL);
bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), fs->fs_bsize);
cgp = bp->b_un.b_cg;
if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
brelse(bp);
return (NULL);
}
cgp->cg_time = time;
if (size == fs->fs_bsize) {
bno = alloccgblk(fs, cgp, bpref);
bdwrite(bp);
return (bno);
}
/*
* check to see if any fragments are already available
* allocsiz is the size which will be allocated, hacking
* it down to a smaller size if necessary
*/
frags = numfrags(fs, size);
for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
if (cgp->cg_frsum[allocsiz] != 0)
break;
if (allocsiz == fs->fs_frag) {
/*
* no fragments were available, so a block will be
* allocated, and hacked up
*/
if (cgp->cg_cs.cs_nbfree == 0) {
brelse(bp);
return (NULL);
}
bno = alloccgblk(fs, cgp, bpref);
bpref = dtogd(fs, bno);
for (i = frags; i < fs->fs_frag; i++)
setbit(cgp->cg_free, bpref + i);
i = fs->fs_frag - frags;
cgp->cg_cs.cs_nffree += i;
fs->fs_cstotal.cs_nffree += i;
fs->fs_cs(fs, cg).cs_nffree += i;
cgp->cg_frsum[i]++;
bdwrite(bp);
return (bno);
}
bno = mapsearch(fs, cgp, bpref, allocsiz);
if (bno < 0)
return (NULL);
for (i = 0; i < frags; i++)
clrbit(cgp->cg_free, bno + i);
cgp->cg_cs.cs_nffree -= frags;
fs->fs_cstotal.cs_nffree -= frags;
fs->fs_cs(fs, cg).cs_nffree -= frags;
cgp->cg_frsum[allocsiz]--;
if (frags != allocsiz)
cgp->cg_frsum[allocsiz - frags]++;
bdwrite(bp);
return (cg * fs->fs_fpg + bno);
}
/*
* Allocate a block in a cylinder group.
*
* This algorithm implements the following policy:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate the next available block on the block rotor for the
* specified cylinder group.
* Note that this routine only allocates fs_bsize blocks; these
* blocks may be fragmented by the routine that allocates them.
*/
daddr_t
alloccgblk(fs, cgp, bpref)
register struct fs *fs;
register struct cg *cgp;
daddr_t bpref;
{
daddr_t bno;
int cylno, pos, delta;
short *cylbp;
register int i;
if (bpref == 0) {
bpref = cgp->cg_rotor;
goto norot;
}
bpref &= ~(fs->fs_frag - 1);
bpref = dtogd(fs, bpref);
/*
* if the requested block is available, use it
*/
/*
* disallow sequential layout.
*
if (isblock(fs, cgp->cg_free, bpref/fs->fs_frag)) {
bno = bpref;
goto gotit;
}
*/
/*
* check for a block available on the same cylinder
*/
cylno = cbtocylno(fs, bpref);
if (cgp->cg_btot[cylno] == 0)
goto norot;
if (fs->fs_cpc == 0) {
/*
* block layout info is not available, so just have
* to take any block in this cylinder.
*/
bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
goto norot;
}
/*
* find a block that is rotationally optimal
*/
cylbp = cgp->cg_b[cylno];
if (fs->fs_rotdelay == 0) {
pos = cbtorpos(fs, bpref);
} else {
/*
* here we convert ms of delay to frags as:
* (frags) = (ms) * (rev/sec) * (sect/rev) /
* ((sect/frag) * (ms/sec))
* then round up to the next rotational position
*/
bpref += fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
(NSPF(fs) * 1000);
pos = cbtorpos(fs, bpref);
pos = (pos + 1) % NRPOS;
}
/*
* check the summary information to see if a block is
* available in the requested cylinder starting at the
* optimal rotational position and proceeding around.
*/
for (i = pos; i < NRPOS; i++)
if (cylbp[i] > 0)
break;
if (i == NRPOS)
for (i = 0; i < pos; i++)
if (cylbp[i] > 0)
break;
if (cylbp[i] > 0) {
/*
* found a rotational position, now find the actual
* block. A panic if none is actually there.
*/
pos = cylno % fs->fs_cpc;
bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
if (fs->fs_postbl[pos][i] == -1) {
printf("pos = %d, i = %d, fs = %s\n",
pos, i, fs->fs_fsmnt);
panic("alloccgblk: cyl groups corrupted");
}
for (i = fs->fs_postbl[pos][i];; ) {
if (isblock(fs, cgp->cg_free, bno + i)) {
bno = (bno + i) * fs->fs_frag;
goto gotit;
}
delta = fs->fs_rotbl[i];
if (delta <= 0 || delta > MAXBPC - i)
break;
i += delta;
}
printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
panic("alloccgblk: can't find blk in cyl");
}
norot:
/*
* no blocks in the requested cylinder, so take next
* available one in this cylinder group.
*/
bno = mapsearch(fs, cgp, bpref, fs->fs_frag);
if (bno < 0)
return (NULL);
cgp->cg_rotor = bno;
gotit:
clrblock(fs, cgp->cg_free, bno/fs->fs_frag);
cgp->cg_cs.cs_nbfree--;
fs->fs_cstotal.cs_nbfree--;
fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
cylno = cbtocylno(fs, bno);
cgp->cg_b[cylno][cbtorpos(fs, bno)]--;
cgp->cg_btot[cylno]--;
fs->fs_fmod++;
return (cgp->cg_cgx * fs->fs_fpg + bno);
}
/*
* Determine whether an inode can be allocated.
*
* Check to see if an inode is available, and if it is,
* allocate it using the following policy:
* 1) allocate the requested inode.
* 2) allocate the next available inode after the requested
* inode in the specified cylinder group.
*/
ino_t
ialloccg(ip, cg, ipref, mode)
struct inode *ip;
int cg;
daddr_t ipref;
int mode;
{
register struct fs *fs;
register struct buf *bp;
register struct cg *cgp;
int i;
fs = ip->i_fs;
if (fs->fs_cs(fs, cg).cs_nifree == 0)
return (NULL);
bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), fs->fs_bsize);
cgp = bp->b_un.b_cg;
if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
brelse(bp);
return (NULL);
}
cgp->cg_time = time;
if (ipref) {
ipref %= fs->fs_ipg;
if (isclr(cgp->cg_iused, ipref))
goto gotit;
} else
ipref = cgp->cg_irotor;
for (i = 0; i < fs->fs_ipg; i++) {
ipref++;
if (ipref >= fs->fs_ipg)
ipref = 0;
if (isclr(cgp->cg_iused, ipref)) {
cgp->cg_irotor = ipref;
goto gotit;
}
}
brelse(bp);
return (NULL);
gotit:
setbit(cgp->cg_iused, ipref);
cgp->cg_cs.cs_nifree--;
fs->fs_cstotal.cs_nifree--;
fs->fs_cs(fs, cg).cs_nifree--;
fs->fs_fmod++;
if ((mode & IFMT) == IFDIR) {
cgp->cg_cs.cs_ndir++;
fs->fs_cstotal.cs_ndir++;
fs->fs_cs(fs, cg).cs_ndir++;
}
bdwrite(bp);
return (cg * fs->fs_ipg + ipref);
}
/*
* Free a block or fragment.
*
* The specified block or fragment is placed back in the
* free map. If a fragment is deallocated, a possible
* block reassembly is checked.
*/
fre(ip, bno, size)
register struct inode *ip;
daddr_t bno;
off_t size;
{
register struct fs *fs;
register struct cg *cgp;
register struct buf *bp;
int cg, blk, frags, bbase;
register int i;
fs = ip->i_fs;
if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
panic("free: bad size");
}
cg = dtog(fs, bno);
if (badblock(fs, bno)) {
printf("bad block %d, ino %d\n", bno, ip->i_number);
return;
}
bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), fs->fs_bsize);
cgp = bp->b_un.b_cg;
if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
brelse(bp);
return;
}
cgp->cg_time = time;
bno = dtogd(fs, bno);
if (size == fs->fs_bsize) {
if (isblock(fs, cgp->cg_free, bno/fs->fs_frag)) {
printf("dev = 0x%x, block = %d, fs = %s\n",
ip->i_dev, bno, fs->fs_fsmnt);
panic("free: freeing free block");
}
setblock(fs, cgp->cg_free, bno/fs->fs_frag);
cgp->cg_cs.cs_nbfree++;
fs->fs_cstotal.cs_nbfree++;
fs->fs_cs(fs, cg).cs_nbfree++;
i = cbtocylno(fs, bno);
cgp->cg_b[i][cbtorpos(fs, bno)]++;
cgp->cg_btot[i]++;
} else {
bbase = bno - (bno % fs->fs_frag);
/*
* decrement the counts associated with the old frags
*/
blk = blkmap(fs, cgp->cg_free, bbase);
fragacct(fs, blk, cgp->cg_frsum, -1);
/*
* deallocate the fragment
*/
frags = numfrags(fs, size);
for (i = 0; i < frags; i++) {
if (isset(cgp->cg_free, bno + i)) {
printf("dev = 0x%x, block = %d, fs = %s\n",
ip->i_dev, bno + i, fs->fs_fsmnt);
panic("free: freeing free frag");
}
setbit(cgp->cg_free, bno + i);
}
cgp->cg_cs.cs_nffree += i;
fs->fs_cstotal.cs_nffree += i;
fs->fs_cs(fs, cg).cs_nffree += i;
/*
* add back in counts associated with the new frags
*/
blk = blkmap(fs, cgp->cg_free, bbase);
fragacct(fs, blk, cgp->cg_frsum, 1);
/*
* if a complete block has been reassembled, account for it
*/
if (isblock(fs, cgp->cg_free, bbase / fs->fs_frag)) {
cgp->cg_cs.cs_nffree -= fs->fs_frag;
fs->fs_cstotal.cs_nffree -= fs->fs_frag;
fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
cgp->cg_cs.cs_nbfree++;
fs->fs_cstotal.cs_nbfree++;
fs->fs_cs(fs, cg).cs_nbfree++;
i = cbtocylno(fs, bbase);
cgp->cg_b[i][cbtorpos(fs, bbase)]++;
cgp->cg_btot[i]++;
}
}
fs->fs_fmod++;
bdwrite(bp);
}
/*
* Free an inode.
*
* The specified inode is placed back in the free map.
*/
ifree(ip, ino, mode)
struct inode *ip;
ino_t ino;
int mode;
{
register struct fs *fs;
register struct cg *cgp;
register struct buf *bp;
int cg;
fs = ip->i_fs;
if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) {
printf("dev = 0x%x, ino = %d, fs = %s\n",
ip->i_dev, ino, fs->fs_fsmnt);
panic("ifree: range");
}
cg = itog(fs, ino);
bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), fs->fs_bsize);
cgp = bp->b_un.b_cg;
if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
brelse(bp);
return;
}
cgp->cg_time = time;
ino %= fs->fs_ipg;
if (isclr(cgp->cg_iused, ino)) {
printf("dev = 0x%x, ino = %d, fs = %s\n",
ip->i_dev, ino, fs->fs_fsmnt);
panic("ifree: freeing free inode");
}
clrbit(cgp->cg_iused, ino);
cgp->cg_cs.cs_nifree++;
fs->fs_cstotal.cs_nifree++;
fs->fs_cs(fs, cg).cs_nifree++;
if ((mode & IFMT) == IFDIR) {
cgp->cg_cs.cs_ndir--;
fs->fs_cstotal.cs_ndir--;
fs->fs_cs(fs, cg).cs_ndir--;
}
fs->fs_fmod++;
bdwrite(bp);
}
/*
* Find a block of the specified size in the specified cylinder group.
*
* It is a panic if a request is made to find a block if none are
* available.
*/
daddr_t
mapsearch(fs, cgp, bpref, allocsiz)
register struct fs *fs;
register struct cg *cgp;
daddr_t bpref;
int allocsiz;
{
daddr_t bno;
int start, len, loc, i;
int blk, field, subfield, pos;
/*
* find the fragment by searching through the free block
* map for an appropriate bit pattern
*/
if (bpref)
start = dtogd(fs, bpref) / NBBY;
else
start = cgp->cg_frotor / NBBY;
len = howmany(fs->fs_fpg, NBBY) - start;
loc = scanc(len, &cgp->cg_free[start], fragtbl[fs->fs_frag],
1 << (allocsiz - 1 + (fs->fs_frag % NBBY)));
if (loc == 0) {
len = start + 1;
start = 0;
loc = scanc(len, &cgp->cg_free[start], fragtbl[fs->fs_frag],
1 << (allocsiz - 1 + (fs->fs_frag % NBBY)));
if (loc == 0) {
printf("start = %d, len = %d, fs = %s\n",
start, len, fs->fs_fsmnt);
panic("alloccg: map corrupted");
return (-1);
}
}
bno = (start + len - loc) * NBBY;
cgp->cg_frotor = bno;
/*
* found the byte in the map
* sift through the bits to find the selected frag
*/
for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
blk = blkmap(fs, cgp->cg_free, bno);
blk <<= 1;
field = around[allocsiz];
subfield = inside[allocsiz];
for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
if ((blk & field) == subfield)
return (bno + pos);
field <<= 1;
subfield <<= 1;
}
}
printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
panic("alloccg: block not in map");
return (-1);
}
/*
* Update the frsum fields to reflect addition or deletion
* of some frags.
*/
fragacct(fs, fragmap, fraglist, cnt)
struct fs *fs;
int fragmap;
long fraglist[];
int cnt;
{
int inblk;
register int field, subfield;
register int siz, pos;
inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1;
fragmap <<= 1;
for (siz = 1; siz < fs->fs_frag; siz++) {
if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0)
continue;
field = around[siz];
subfield = inside[siz];
for (pos = siz; pos <= fs->fs_frag; pos++) {
if ((fragmap & field) == subfield) {
fraglist[siz] += cnt;
pos += siz;
field <<= siz;
subfield <<= siz;
}
field <<= 1;
subfield <<= 1;
}
}
}
/*
* Check that a specified block number is in range.
*/
badblock(fs, bn)
register struct fs *fs;
daddr_t bn;
{
if ((unsigned)bn >= fs->fs_size) {
printf("bad block %d, ", bn);
fserr(fs, "bad block");
return (1);
}
return (0);
}
/*
* Getfs maps a device number into a pointer to the incore super block.
*
* The algorithm is a linear search through the mount table. A
* consistency check of the super block magic number is performed.
*
* panic: no fs -- the device is not mounted.
* this "cannot happen"
*/
struct fs *
getfs(dev)
dev_t dev;
{
register struct mount *mp;
register struct fs *fs;
for (mp = &mount[0]; mp < &mount[NMOUNT]; mp++) {
if (mp->m_bufp == NULL || mp->m_dev != dev)
continue;
fs = mp->m_bufp->b_un.b_fs;
if (fs->fs_magic != FS_MAGIC) {
printf("dev = 0x%x, fs = %s\n", dev, fs->fs_fsmnt);
panic("getfs: bad magic");
}
return (fs);
}
printf("dev = 0x%x\n", dev);
panic("getfs: no fs");
return (NULL);
}
/*
* Fserr prints the name of a file system with an error diagnostic.
*
* The form of the error message is:
* fs: error message
*/
fserr(fs, cp)
struct fs *fs;
char *cp;
{
printf("%s: %s\n", fs->fs_fsmnt, cp);
}
/*
* Getfsx returns the index in the file system
* table of the specified device. The swap device
* is also assigned a pseudo-index. The index may
* be used as a compressed indication of the location
* of a block, recording
* <getfsx(dev),blkno>
* rather than
* <dev, blkno>
* provided the information need remain valid only
* as long as the file system is mounted.
*/
getfsx(dev)
dev_t dev;
{
register struct mount *mp;
if (dev == swapdev)
return (MSWAPX);
for(mp = &mount[0]; mp < &mount[NMOUNT]; mp++)
if (mp->m_dev == dev)
return (mp - &mount[0]);
return (-1);
}
/*
* Update is the internal name of 'sync'. It goes through the disk
* queues to initiate sandbagged IO; goes through the inodes to write
* modified nodes; and it goes through the mount table to initiate
* the writing of the modified super blocks.
*/
update(flag)
int flag;
{
register struct inode *ip;
register struct mount *mp;
register struct buf *bp;
struct fs *fs;
int i, blks;
if (updlock)
return;
updlock++;
/*
* Write back modified superblocks.
* Consistency check that the superblock
* of each file system is still in the buffer cache.
*/
for (mp = &mount[0]; mp < &mount[NMOUNT]; mp++) {
if (mp->m_bufp == NULL)
continue;
fs = mp->m_bufp->b_un.b_fs;
if (fs->fs_fmod == 0)
continue;
if (fs->fs_ronly != 0) { /* ### */
printf("fs = %s\n", fs->fs_fsmnt);
panic("update: rofs mod");
}
fs->fs_fmod = 0;
fs->fs_time = time;
sbupdate(mp);
}
/*
* Write back each (modified) inode.
*/
for (ip = inode; ip < inodeNINODE; ip++) {
if ((ip->i_flag & ILOCK) != 0 || ip->i_count == 0)
continue;
ip->i_flag |= ILOCK;
ip->i_count++;
iupdat(ip, &time, &time, 0);
iput(ip);
}
updlock = 0;
/*
* Force stale buffer cache information to be flushed,
* for all devices.
*/
bflush(NODEV);
}
/*
* block operations
*
* check if a block is available
*/
isblock(fs, cp, h)
struct fs *fs;
unsigned char *cp;
int h;
{
unsigned char mask;
switch (fs->fs_frag) {
case 8:
return (cp[h] == 0xff);
case 4:
mask = 0x0f << ((h & 0x1) << 2);
return ((cp[h >> 1] & mask) == mask);
case 2:
mask = 0x03 << ((h & 0x3) << 1);
return ((cp[h >> 2] & mask) == mask);
case 1:
mask = 0x01 << (h & 0x7);
return ((cp[h >> 3] & mask) == mask);
default:
panic("isblock");
return (NULL);
}
}
/*
* take a block out of the map
*/
clrblock(fs, cp, h)
struct fs *fs;
unsigned char *cp;
int h;
{
switch ((fs)->fs_frag) {
case 8:
cp[h] = 0;
return;
case 4:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
return;
default:
panic("clrblock");
return;
}
}
/*
* put a block into the map
*/
setblock(fs, cp, h)
struct fs *fs;
unsigned char *cp;
int h;
{
switch (fs->fs_frag) {
case 8:
cp[h] = 0xff;
return;
case 4:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] |= (0x01 << (h & 0x7));
return;
default:
panic("setblock");
return;
}
}