new improved pmap changes
[unix-history] / usr / src / sys / pmax / pmax / vm_machdep.c
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1992 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and Ralph Campbell.
*
* %sccs.include.redist.c%
*
* from: Utah $Hdr: vm_machdep.c 1.21 91/04/06$
*
* @(#)vm_machdep.c 7.7 (Berkeley) %G%
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/user.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <machine/pte.h>
/*
* Finish a fork operation, with process p2 nearly set up.
* Copy and update the kernel stack and pcb, making the child
* ready to run, and marking it so that it can return differently
* than the parent. Returns 1 in the child process, 0 in the parent.
* We currently double-map the user area so that the stack is at the same
* address in each process; in the future we will probably relocate
* the frame pointers on the stack after copying.
*/
cpu_fork(p1, p2)
register struct proc *p1, *p2;
{
register struct user *up = p2->p_addr;
register pt_entry_t *pte;
register int i;
extern struct proc *machFPCurProcPtr;
p2->p_md.md_regs = up->u_pcb.pcb_regs;
p2->p_md.md_flags = p1->p_md.md_flags & (MDP_FPUSED | MDP_ULTRIX);
/*
* Convert the user struct virtual address to a physical one
* and cache it in the proc struct. Note: if the phyical address
* can change (due to memory compaction in kmem_alloc?),
* we will have to update things.
*/
pte = kvtopte(up);
for (i = 0; i < UPAGES; i++) {
p2->p_md.md_upte[i] = pte->pt_entry & ~PG_G;
pte++;
}
/*
* Copy floating point state from the FP chip if this process
* has state stored there.
*/
if (p1 == machFPCurProcPtr)
MachSaveCurFPState(p1);
/*
* Copy pcb and stack from proc p1 to p2.
* We do this as cheaply as possible, copying only the active
* part of the stack. The stack and pcb need to agree;
*/
p2->p_addr->u_pcb = p1->p_addr->u_pcb;
/* cache segtab for ULTBMiss() */
p2->p_addr->u_pcb.pcb_segtab = (void *)p2->p_vmspace->vm_pmap.pm_segtab;
/*
* Arrange for a non-local goto when the new process
* is started, to resume here, returning nonzero from setjmp.
*/
#ifdef DIAGNOSTIC
if (p1 != curproc)
panic("cpu_fork: curproc");
#endif
if (copykstack(up)) {
/*
* Return 1 in child.
*/
return (1);
}
return (0);
}
/*
* cpu_exit is called as the last action during exit.
* We release the address space and machine-dependent resources,
* including the memory for the user structure and kernel stack.
* Once finished, we call swtch_exit, which switches to a temporary
* pcb and stack and never returns. We block memory allocation
* until swtch_exit has made things safe again.
*/
cpu_exit(p)
struct proc *p;
{
extern struct proc *machFPCurProcPtr;
if (machFPCurProcPtr == p)
machFPCurProcPtr = (struct proc *)0;
vmspace_free(p->p_vmspace);
(void) splhigh();
kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
swtch_exit();
/* NOTREACHED */
}
/*
* Dump the machine specific header information at the start of a core dump.
*/
cpu_coredump(p, vp, cred)
struct proc *p;
struct vnode *vp;
struct ucred *cred;
{
extern struct proc *machFPCurProcPtr;
/*
* Copy floating point state from the FP chip if this process
* has state stored there.
*/
if (p == machFPCurProcPtr)
MachSaveCurFPState(p);
return (vn_rdwr(UIO_WRITE, vp, (caddr_t)p->p_addr, ctob(UPAGES),
(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL,
p));
}
/*
* Move pages from one kernel virtual address to another.
* Both addresses are assumed to reside in the Sysmap,
* and size must be a multiple of CLSIZE.
*/
pagemove(from, to, size)
register caddr_t from, to;
int size;
{
register pt_entry_t *fpte, *tpte;
if (size % CLBYTES)
panic("pagemove");
fpte = kvtopte(from);
tpte = kvtopte(to);
while (size > 0) {
MachTLBFlushAddr(from);
MachTLBUpdate(to, *fpte);
*tpte++ = *fpte;
fpte->pt_entry = 0;
fpte++;
size -= NBPG;
from += NBPG;
to += NBPG;
}
}
extern vm_map_t phys_map;
/*
* Map an IO request into kernel virtual address space. Requests fall into
* one of five catagories:
*
* B_PHYS|B_UAREA: User u-area swap.
* Address is relative to start of u-area (p_addr).
* B_PHYS|B_PAGET: User page table swap.
* Address is a kernel VA in usrpt (Usrptmap).
* B_PHYS|B_DIRTY: Dirty page push.
* Address is a VA in proc2's address space.
* B_PHYS|B_PGIN: Kernel pagein of user pages.
* Address is VA in user's address space.
* B_PHYS: User "raw" IO request.
* Address is VA in user's address space.
*
* All requests are (re)mapped into kernel VA space via the phys_map
*/
vmapbuf(bp)
register struct buf *bp;
{
register caddr_t addr;
register vm_size_t sz;
struct proc *p;
int off;
vm_offset_t kva;
register vm_offset_t pa;
if ((bp->b_flags & B_PHYS) == 0)
panic("vmapbuf");
addr = bp->b_saveaddr = bp->b_un.b_addr;
off = (int)addr & PGOFSET;
p = bp->b_proc;
sz = round_page(bp->b_bcount + off);
kva = kmem_alloc_wait(phys_map, sz);
bp->b_un.b_addr = (caddr_t) (kva + off);
sz = atop(sz);
while (sz--) {
pa = pmap_extract(vm_map_pmap(&p->p_vmspace->vm_map),
(vm_offset_t)addr);
if (pa == 0)
panic("vmapbuf: null page frame");
pmap_enter(vm_map_pmap(phys_map), kva, trunc_page(pa),
VM_PROT_READ|VM_PROT_WRITE, TRUE);
addr += PAGE_SIZE;
kva += PAGE_SIZE;
}
}
/*
* Free the io map PTEs associated with this IO operation.
* We also invalidate the TLB entries and restore the original b_addr.
*/
vunmapbuf(bp)
register struct buf *bp;
{
register caddr_t addr = bp->b_un.b_addr;
register vm_size_t sz;
vm_offset_t kva;
if ((bp->b_flags & B_PHYS) == 0)
panic("vunmapbuf");
sz = round_page(bp->b_bcount + ((int)addr & PGOFSET));
kva = (vm_offset_t)((int)addr & ~PGOFSET);
kmem_free_wakeup(phys_map, kva, sz);
bp->b_un.b_addr = bp->b_saveaddr;
bp->b_saveaddr = NULL;
}