BSD 4_4 release
[unix-history] / usr / src / sys / hp300 / dev / rd.c
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: rd.c 1.44 92/12/26$
*
* @(#)rd.c 8.1 (Berkeley) 6/10/93
*/
/*
* CS80/SS80 disk driver
*/
#include "rd.h"
#if NRD > 0
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/stat.h>
#include <sys/dkstat.h>
#include <sys/disklabel.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <hp/dev/device.h>
#include <hp300/dev/rdreg.h>
#include <hp300/dev/rdvar.h>
#ifdef USELEDS
#include <hp300/hp300/led.h>
#endif
#include <vm/vm_param.h>
#include <vm/lock.h>
#include <vm/vm_prot.h>
#include <vm/pmap.h>
int rdinit(), rdstart(), rdgo(), rdintr();
void rdstrategy();
struct driver rddriver = {
rdinit, "rd", rdstart, rdgo, rdintr,
};
struct rd_softc rd_softc[NRD];
struct buf rdtab[NRD];
int rderrthresh = RDRETRY-1; /* when to start reporting errors */
#ifdef DEBUG
/* error message tables */
char *err_reject[] = {
0, 0,
"channel parity error", /* 0x2000 */
0, 0,
"illegal opcode", /* 0x0400 */
"module addressing", /* 0x0200 */
"address bounds", /* 0x0100 */
"parameter bounds", /* 0x0080 */
"illegal parameter", /* 0x0040 */
"message sequence", /* 0x0020 */
0,
"message length", /* 0x0008 */
0, 0, 0
};
char *err_fault[] = {
0,
"cross unit", /* 0x4000 */
0,
"controller fault", /* 0x1000 */
0, 0,
"unit fault", /* 0x0200 */
0,
"diagnostic result", /* 0x0080 */
0,
"operator release request", /* 0x0020 */
"diagnostic release request", /* 0x0010 */
"internal maintenance release request", /* 0x0008 */
0,
"power fail", /* 0x0002 */
"retransmit" /* 0x0001 */
};
char *err_access[] = {
"illegal parallel operation", /* 0x8000 */
"uninitialized media", /* 0x4000 */
"no spares available", /* 0x2000 */
"not ready", /* 0x1000 */
"write protect", /* 0x0800 */
"no data found", /* 0x0400 */
0, 0,
"unrecoverable data overflow", /* 0x0080 */
"unrecoverable data", /* 0x0040 */
0,
"end of file", /* 0x0010 */
"end of volume", /* 0x0008 */
0, 0, 0
};
char *err_info[] = {
"operator release request", /* 0x8000 */
"diagnostic release request", /* 0x4000 */
"internal maintenance release request", /* 0x2000 */
"media wear", /* 0x1000 */
"latency induced", /* 0x0800 */
0, 0,
"auto sparing invoked", /* 0x0100 */
0,
"recoverable data overflow", /* 0x0040 */
"marginal data", /* 0x0020 */
"recoverable data", /* 0x0010 */
0,
"maintenance track overflow", /* 0x0004 */
0, 0
};
struct rdstats rdstats[NRD];
int rddebug = 0x80;
#define RDB_FOLLOW 0x01
#define RDB_STATUS 0x02
#define RDB_IDENT 0x04
#define RDB_IO 0x08
#define RDB_ASYNC 0x10
#define RDB_ERROR 0x80
#endif
/*
* Misc. HW description, indexed by sc_type.
* Nothing really critical here, could do without it.
*/
struct rdidentinfo rdidentinfo[] = {
{ RD7946AID, 0, "7945A", 108416 },
{ RD9134DID, 1, "9134D", 29088 },
{ RD9134LID, 1, "9122S", 1232 },
{ RD7912PID, 0, "7912P", 128128 },
{ RD7914PID, 0, "7914P", 258048 },
{ RD7958AID, 0, "7958A", 255276 },
{ RD7957AID, 0, "7957A", 159544 },
{ RD7933HID, 0, "7933H", 789958 },
{ RD9134LID, 1, "9134L", 77840 },
{ RD7936HID, 0, "7936H", 600978 },
{ RD7937HID, 0, "7937H", 1116102 },
{ RD7914CTID, 0, "7914CT", 258048 },
{ RD7946AID, 0, "7946A", 108416 },
{ RD9134LID, 1, "9122D", 1232 },
{ RD7957BID, 0, "7957B", 159894 },
{ RD7958BID, 0, "7958B", 297108 },
{ RD7959BID, 0, "7959B", 594216 },
{ RD2200AID, 0, "2200A", 654948 },
{ RD2203AID, 0, "2203A", 1309896 }
};
int numrdidentinfo = sizeof(rdidentinfo) / sizeof(rdidentinfo[0]);
rdinit(hd)
register struct hp_device *hd;
{
register struct rd_softc *rs = &rd_softc[hd->hp_unit];
rs->sc_hd = hd;
rs->sc_punit = rdpunit(hd->hp_flags);
rs->sc_type = rdident(rs, hd);
if (rs->sc_type < 0)
return(0);
rs->sc_dq.dq_ctlr = hd->hp_ctlr;
rs->sc_dq.dq_unit = hd->hp_unit;
rs->sc_dq.dq_slave = hd->hp_slave;
rs->sc_dq.dq_driver = &rddriver;
rs->sc_flags = RDF_ALIVE;
#ifdef DEBUG
/* always report errors */
if (rddebug & RDB_ERROR)
rderrthresh = 0;
#endif
return(1);
}
rdident(rs, hd)
struct rd_softc *rs;
struct hp_device *hd;
{
struct rd_describe desc;
u_char stat, cmd[3];
int unit, lunit;
char name[7];
register int ctlr, slave, id, i;
ctlr = hd->hp_ctlr;
slave = hd->hp_slave;
unit = rs->sc_punit;
lunit = hd->hp_unit;
/*
* Grab device id and make sure:
* 1. It is a CS80 device.
* 2. It is one of the types we support.
* 3. If it is a 7946, we are accessing the disk unit (0)
*/
id = hpibid(ctlr, slave);
#ifdef DEBUG
if (rddebug & RDB_IDENT)
printf("hpibid(%d, %d) -> %x\n", ctlr, slave, id);
#endif
if ((id & 0x200) == 0)
return(-1);
for (i = 0; i < numrdidentinfo; i++)
if (id == rdidentinfo[i].ri_hwid)
break;
if (i == numrdidentinfo || unit > rdidentinfo[i].ri_maxunum)
return(-1);
id = i;
/*
* Reset drive and collect device description.
* Don't really use the description info right now but
* might come in handy in the future (for disk labels).
*/
rdreset(rs, hd);
cmd[0] = C_SUNIT(unit);
cmd[1] = C_SVOL(0);
cmd[2] = C_DESC;
hpibsend(ctlr, slave, C_CMD, cmd, sizeof(cmd));
hpibrecv(ctlr, slave, C_EXEC, &desc, 37);
hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat));
bzero(name, sizeof(name));
if (!stat) {
register int n = desc.d_name;
for (i = 5; i >= 0; i--) {
name[i] = (n & 0xf) + '0';
n >>= 4;
}
/* use drive characteristics to calculate xfer rate */
rs->sc_wpms = 1000000 * (desc.d_sectsize/2) / desc.d_blocktime;
}
#ifdef DEBUG
if (rddebug & RDB_IDENT) {
printf("rd%d: name: %x ('%s')\n",
lunit, desc.d_name, name);
printf(" iuw %x, maxxfr %d, ctype %d\n",
desc.d_iuw, desc.d_cmaxxfr, desc.d_ctype);
printf(" utype %d, bps %d, blkbuf %d, burst %d, blktime %d\n",
desc.d_utype, desc.d_sectsize,
desc.d_blkbuf, desc.d_burstsize, desc.d_blocktime);
printf(" avxfr %d, ort %d, atp %d, maxint %d, fv %x, rv %x\n",
desc.d_uavexfr, desc.d_retry, desc.d_access,
desc.d_maxint, desc.d_fvbyte, desc.d_rvbyte);
printf(" maxcyl/head/sect %d/%d/%d, maxvsect %d, inter %d\n",
desc.d_maxcyl, desc.d_maxhead, desc.d_maxsect,
desc.d_maxvsectl, desc.d_interleave);
}
#endif
/*
* Take care of a couple of anomolies:
* 1. 7945A and 7946A both return same HW id
* 2. 9122S and 9134D both return same HW id
* 3. 9122D and 9134L both return same HW id
*/
switch (rdidentinfo[id].ri_hwid) {
case RD7946AID:
if (bcmp(name, "079450", 6) == 0)
id = RD7945A;
else
id = RD7946A;
break;
case RD9134LID:
if (bcmp(name, "091340", 6) == 0)
id = RD9134L;
else
id = RD9122D;
break;
case RD9134DID:
if (bcmp(name, "091220", 6) == 0)
id = RD9122S;
else
id = RD9134D;
break;
}
printf("rd%d: %s\n", lunit, rdidentinfo[id].ri_desc);
return(id);
}
rdreset(rs, hd)
register struct rd_softc *rs;
register struct hp_device *hd;
{
u_char stat;
rs->sc_clear.c_unit = C_SUNIT(rs->sc_punit);
rs->sc_clear.c_cmd = C_CLEAR;
hpibsend(hd->hp_ctlr, hd->hp_slave, C_TCMD, &rs->sc_clear,
sizeof(rs->sc_clear));
hpibswait(hd->hp_ctlr, hd->hp_slave);
hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
rs->sc_src.c_unit = C_SUNIT(RDCTLR);
rs->sc_src.c_nop = C_NOP;
rs->sc_src.c_cmd = C_SREL;
rs->sc_src.c_param = C_REL;
hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_src,
sizeof(rs->sc_src));
hpibswait(hd->hp_ctlr, hd->hp_slave);
hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
rs->sc_ssmc.c_unit = C_SUNIT(rs->sc_punit);
rs->sc_ssmc.c_cmd = C_SSM;
rs->sc_ssmc.c_refm = REF_MASK;
rs->sc_ssmc.c_fefm = FEF_MASK;
rs->sc_ssmc.c_aefm = AEF_MASK;
rs->sc_ssmc.c_iefm = IEF_MASK;
hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_ssmc,
sizeof(rs->sc_ssmc));
hpibswait(hd->hp_ctlr, hd->hp_slave);
hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
#ifdef DEBUG
rdstats[hd->hp_unit].rdresets++;
#endif
}
/*
* Read or constuct a disklabel
*/
int
rdgetinfo(dev)
dev_t dev;
{
int unit = rdunit(dev);
register struct rd_softc *rs = &rd_softc[unit];
register struct disklabel *lp = &rs->sc_info.ri_label;
register struct partition *pi;
char *msg, *readdisklabel();
/*
* Set some default values to use while reading the label
* or to use if there isn't a label.
*/
bzero((caddr_t)lp, sizeof *lp);
lp->d_type = DTYPE_HPIB;
lp->d_secsize = DEV_BSIZE;
lp->d_nsectors = 32;
lp->d_ntracks = 20;
lp->d_ncylinders = 1;
lp->d_secpercyl = 32*20;
lp->d_npartitions = 3;
lp->d_partitions[2].p_offset = 0;
lp->d_partitions[2].p_size = LABELSECTOR+1;
/*
* Now try to read the disklabel
*/
msg = readdisklabel(rdlabdev(dev), rdstrategy, lp);
if (msg == NULL)
return(0);
pi = lp->d_partitions;
printf("rd%d: WARNING: %s, ", unit, msg);
#ifdef COMPAT_NOLABEL
printf("using old default partitioning\n");
rdmakedisklabel(unit, lp);
#else
printf("defining `c' partition as entire disk\n");
pi[2].p_size = rdidentinfo[rs->sc_type].ri_nblocks;
#endif
return(0);
}
int
rdopen(dev, flags, mode, p)
dev_t dev;
int flags, mode;
struct proc *p;
{
register int unit = rdunit(dev);
register struct rd_softc *rs = &rd_softc[unit];
int error, mask;
if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
return(ENXIO);
/*
* Wait for any pending opens/closes to complete
*/
while (rs->sc_flags & (RDF_OPENING|RDF_CLOSING))
sleep((caddr_t)rs, PRIBIO);
/*
* On first open, get label and partition info.
* We may block reading the label, so be careful
* to stop any other opens.
*/
if (rs->sc_info.ri_open == 0) {
rs->sc_flags |= RDF_OPENING;
error = rdgetinfo(dev);
rs->sc_flags &= ~RDF_OPENING;
wakeup((caddr_t)rs);
if (error)
return(error);
}
if (rs->sc_hd->hp_dk >= 0) {
/* guess at xfer rate based on 3600 rpm (60 rps) */
if (rs->sc_wpms == 0)
rs->sc_wpms = 60 * rs->sc_info.ri_label.d_nsectors
* DEV_BSIZE / 2;
dk_wpms[rs->sc_hd->hp_dk] = rs->sc_wpms;
}
mask = 1 << rdpart(dev);
if (mode == S_IFCHR)
rs->sc_info.ri_copen |= mask;
else
rs->sc_info.ri_bopen |= mask;
rs->sc_info.ri_open |= mask;
return(0);
}
int
rdclose(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
int unit = rdunit(dev);
register struct rd_softc *rs = &rd_softc[unit];
register struct rdinfo *ri = &rs->sc_info;
int mask, s;
mask = 1 << rdpart(dev);
if (mode == S_IFCHR)
ri->ri_copen &= ~mask;
else
ri->ri_bopen &= ~mask;
ri->ri_open = ri->ri_bopen | ri->ri_copen;
/*
* On last close, we wait for all activity to cease since
* the label/parition info will become invalid. Since we
* might sleep, we must block any opens while we are here.
* Note we don't have to about other closes since we know
* we are the last one.
*/
if (ri->ri_open == 0) {
rs->sc_flags |= RDF_CLOSING;
s = splbio();
while (rdtab[unit].b_active) {
rs->sc_flags |= RDF_WANTED;
sleep((caddr_t)&rdtab[unit], PRIBIO);
}
splx(s);
rs->sc_flags &= ~(RDF_CLOSING|RDF_WLABEL);
wakeup((caddr_t)rs);
}
return(0);
}
void
rdstrategy(bp)
register struct buf *bp;
{
int unit = rdunit(bp->b_dev);
register struct rd_softc *rs = &rd_softc[unit];
register struct buf *dp = &rdtab[unit];
register struct partition *pinfo;
register daddr_t bn;
register int sz, s;
#ifdef DEBUG
if (rddebug & RDB_FOLLOW)
printf("rdstrategy(%x): dev %x, bn %x, bcount %x, %c\n",
bp, bp->b_dev, bp->b_blkno, bp->b_bcount,
(bp->b_flags & B_READ) ? 'R' : 'W');
#endif
bn = bp->b_blkno;
sz = howmany(bp->b_bcount, DEV_BSIZE);
pinfo = &rs->sc_info.ri_label.d_partitions[rdpart(bp->b_dev)];
if (bn < 0 || bn + sz > pinfo->p_size) {
sz = pinfo->p_size - bn;
if (sz == 0) {
bp->b_resid = bp->b_bcount;
goto done;
}
if (sz < 0) {
bp->b_error = EINVAL;
goto bad;
}
bp->b_bcount = dbtob(sz);
}
/*
* Check for write to write protected label
*/
if (bn + pinfo->p_offset <= LABELSECTOR &&
#if LABELSECTOR != 0
bn + pinfo->p_offset + sz > LABELSECTOR &&
#endif
!(bp->b_flags & B_READ) && !(rs->sc_flags & RDF_WLABEL)) {
bp->b_error = EROFS;
goto bad;
}
bp->b_cylin = bn + pinfo->p_offset;
s = splbio();
disksort(dp, bp);
if (dp->b_active == 0) {
dp->b_active = 1;
rdustart(unit);
}
splx(s);
return;
bad:
bp->b_flags |= B_ERROR;
done:
biodone(bp);
}
/*
* Called from timeout() when handling maintenance releases
*/
void
rdrestart(arg)
void *arg;
{
int s = splbio();
rdustart((int)arg);
splx(s);
}
rdustart(unit)
register int unit;
{
register struct buf *bp;
register struct rd_softc *rs = &rd_softc[unit];
bp = rdtab[unit].b_actf;
rs->sc_addr = bp->b_un.b_addr;
rs->sc_resid = bp->b_bcount;
if (hpibreq(&rs->sc_dq))
rdstart(unit);
}
struct buf *
rdfinish(unit, rs, bp)
int unit;
register struct rd_softc *rs;
register struct buf *bp;
{
register struct buf *dp = &rdtab[unit];
dp->b_errcnt = 0;
dp->b_actf = bp->b_actf;
bp->b_resid = 0;
biodone(bp);
hpibfree(&rs->sc_dq);
if (dp->b_actf)
return(dp->b_actf);
dp->b_active = 0;
if (rs->sc_flags & RDF_WANTED) {
rs->sc_flags &= ~RDF_WANTED;
wakeup((caddr_t)dp);
}
return(NULL);
}
rdstart(unit)
register int unit;
{
register struct rd_softc *rs = &rd_softc[unit];
register struct buf *bp = rdtab[unit].b_actf;
register struct hp_device *hp = rs->sc_hd;
register int part;
again:
#ifdef DEBUG
if (rddebug & RDB_FOLLOW)
printf("rdstart(%d): bp %x, %c\n", unit, bp,
(bp->b_flags & B_READ) ? 'R' : 'W');
#endif
part = rdpart(bp->b_dev);
rs->sc_flags |= RDF_SEEK;
rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
rs->sc_ioc.c_volume = C_SVOL(0);
rs->sc_ioc.c_saddr = C_SADDR;
rs->sc_ioc.c_hiaddr = 0;
rs->sc_ioc.c_addr = RDBTOS(bp->b_cylin);
rs->sc_ioc.c_nop2 = C_NOP;
rs->sc_ioc.c_slen = C_SLEN;
rs->sc_ioc.c_len = rs->sc_resid;
rs->sc_ioc.c_cmd = bp->b_flags & B_READ ? C_READ : C_WRITE;
#ifdef DEBUG
if (rddebug & RDB_IO)
printf("rdstart: hpibsend(%x, %x, %x, %x, %x)\n",
hp->hp_ctlr, hp->hp_slave, C_CMD,
&rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
#endif
if (hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, &rs->sc_ioc.c_unit,
sizeof(rs->sc_ioc)-2) == sizeof(rs->sc_ioc)-2) {
if (hp->hp_dk >= 0) {
dk_busy |= 1 << hp->hp_dk;
dk_seek[hp->hp_dk]++;
}
#ifdef DEBUG
if (rddebug & RDB_IO)
printf("rdstart: hpibawait(%x)\n", hp->hp_ctlr);
#endif
hpibawait(hp->hp_ctlr);
return;
}
/*
* Experience has shown that the hpibwait in this hpibsend will
* occasionally timeout. It appears to occur mostly on old 7914
* drives with full maintenance tracks. We should probably
* integrate this with the backoff code in rderror.
*/
#ifdef DEBUG
if (rddebug & RDB_ERROR)
printf("rd%d: rdstart: cmd %x adr %d blk %d len %d ecnt %d\n",
unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
bp->b_blkno, rs->sc_resid, rdtab[unit].b_errcnt);
rdstats[unit].rdretries++;
#endif
rs->sc_flags &= ~RDF_SEEK;
rdreset(rs, hp);
if (rdtab[unit].b_errcnt++ < RDRETRY)
goto again;
printf("rd%d: rdstart err: cmd 0x%x sect %d blk %d len %d\n",
unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
bp->b_blkno, rs->sc_resid);
bp->b_flags |= B_ERROR;
bp->b_error = EIO;
bp = rdfinish(unit, rs, bp);
if (bp) {
rs->sc_addr = bp->b_un.b_addr;
rs->sc_resid = bp->b_bcount;
if (hpibreq(&rs->sc_dq))
goto again;
}
}
rdgo(unit)
register int unit;
{
register struct rd_softc *rs = &rd_softc[unit];
register struct hp_device *hp = rs->sc_hd;
struct buf *bp = rdtab[unit].b_actf;
if (hp->hp_dk >= 0) {
dk_busy |= 1 << hp->hp_dk;
dk_xfer[hp->hp_dk]++;
dk_wds[hp->hp_dk] += rs->sc_resid >> 6;
}
#ifdef USELEDS
if (inledcontrol == 0)
ledcontrol(0, 0, LED_DISK);
#endif
hpibgo(hp->hp_ctlr, hp->hp_slave, C_EXEC,
rs->sc_addr, rs->sc_resid, bp->b_flags & B_READ);
}
rdintr(unit)
register int unit;
{
register struct rd_softc *rs = &rd_softc[unit];
register struct buf *bp = rdtab[unit].b_actf;
register struct hp_device *hp = rs->sc_hd;
u_char stat = 13; /* in case hpibrecv fails */
int rv, restart;
#ifdef DEBUG
if (rddebug & RDB_FOLLOW)
printf("rdintr(%d): bp %x, %c, flags %x\n", unit, bp,
(bp->b_flags & B_READ) ? 'R' : 'W', rs->sc_flags);
if (bp == NULL) {
printf("rd%d: bp == NULL\n", unit);
return;
}
#endif
if (hp->hp_dk >= 0)
dk_busy &= ~(1 << hp->hp_dk);
if (rs->sc_flags & RDF_SEEK) {
rs->sc_flags &= ~RDF_SEEK;
if (hpibustart(hp->hp_ctlr))
rdgo(unit);
return;
}
if ((rs->sc_flags & RDF_SWAIT) == 0) {
#ifdef DEBUG
rdstats[unit].rdpolltries++;
#endif
if (hpibpptest(hp->hp_ctlr, hp->hp_slave) == 0) {
#ifdef DEBUG
rdstats[unit].rdpollwaits++;
#endif
if (hp->hp_dk >= 0)
dk_busy |= 1 << hp->hp_dk;
rs->sc_flags |= RDF_SWAIT;
hpibawait(hp->hp_ctlr);
return;
}
} else
rs->sc_flags &= ~RDF_SWAIT;
rv = hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
if (rv != 1 || stat) {
#ifdef DEBUG
if (rddebug & RDB_ERROR)
printf("rdintr: recv failed or bad stat %d\n", stat);
#endif
restart = rderror(unit);
#ifdef DEBUG
rdstats[unit].rdretries++;
#endif
if (rdtab[unit].b_errcnt++ < RDRETRY) {
if (restart)
rdstart(unit);
return;
}
bp->b_flags |= B_ERROR;
bp->b_error = EIO;
}
if (rdfinish(unit, rs, bp))
rdustart(unit);
}
rdstatus(rs)
register struct rd_softc *rs;
{
register int c, s;
u_char stat;
int rv;
c = rs->sc_hd->hp_ctlr;
s = rs->sc_hd->hp_slave;
rs->sc_rsc.c_unit = C_SUNIT(rs->sc_punit);
rs->sc_rsc.c_sram = C_SRAM;
rs->sc_rsc.c_ram = C_RAM;
rs->sc_rsc.c_cmd = C_STATUS;
bzero((caddr_t)&rs->sc_stat, sizeof(rs->sc_stat));
rv = hpibsend(c, s, C_CMD, &rs->sc_rsc, sizeof(rs->sc_rsc));
if (rv != sizeof(rs->sc_rsc)) {
#ifdef DEBUG
if (rddebug & RDB_STATUS)
printf("rdstatus: send C_CMD failed %d != %d\n",
rv, sizeof(rs->sc_rsc));
#endif
return(1);
}
rv = hpibrecv(c, s, C_EXEC, &rs->sc_stat, sizeof(rs->sc_stat));
if (rv != sizeof(rs->sc_stat)) {
#ifdef DEBUG
if (rddebug & RDB_STATUS)
printf("rdstatus: send C_EXEC failed %d != %d\n",
rv, sizeof(rs->sc_stat));
#endif
return(1);
}
rv = hpibrecv(c, s, C_QSTAT, &stat, 1);
if (rv != 1 || stat) {
#ifdef DEBUG
if (rddebug & RDB_STATUS)
printf("rdstatus: recv failed %d or bad stat %d\n",
rv, stat);
#endif
return(1);
}
return(0);
}
/*
* Deal with errors.
* Returns 1 if request should be restarted,
* 0 if we should just quietly give up.
*/
rderror(unit)
int unit;
{
struct rd_softc *rs = &rd_softc[unit];
register struct rd_stat *sp;
struct buf *bp;
daddr_t hwbn, pbn;
if (rdstatus(rs)) {
#ifdef DEBUG
printf("rd%d: couldn't get status\n", unit);
#endif
rdreset(rs, rs->sc_hd);
return(1);
}
sp = &rs->sc_stat;
if (sp->c_fef & FEF_REXMT)
return(1);
if (sp->c_fef & FEF_PF) {
rdreset(rs, rs->sc_hd);
return(1);
}
/*
* Unit requests release for internal maintenance.
* We just delay awhile and try again later. Use expontially
* increasing backoff ala ethernet drivers since we don't really
* know how long the maintenance will take. With RDWAITC and
* RDRETRY as defined, the range is 1 to 32 seconds.
*/
if (sp->c_fef & FEF_IMR) {
extern int hz;
int rdtimo = RDWAITC << rdtab[unit].b_errcnt;
#ifdef DEBUG
printf("rd%d: internal maintenance, %d second timeout\n",
unit, rdtimo);
rdstats[unit].rdtimeouts++;
#endif
hpibfree(&rs->sc_dq);
timeout(rdrestart, (void *)unit, rdtimo * hz);
return(0);
}
/*
* Only report error if we have reached the error reporting
* threshhold. By default, this will only report after the
* retry limit has been exceeded.
*/
if (rdtab[unit].b_errcnt < rderrthresh)
return(1);
/*
* First conjure up the block number at which the error occured.
* Note that not all errors report a block number, in that case
* we just use b_blkno.
*/
bp = rdtab[unit].b_actf;
pbn = rs->sc_info.ri_label.d_partitions[rdpart(bp->b_dev)].p_offset;
if ((sp->c_fef & FEF_CU) || (sp->c_fef & FEF_DR) ||
(sp->c_ief & IEF_RRMASK)) {
hwbn = RDBTOS(pbn + bp->b_blkno);
pbn = bp->b_blkno;
} else {
hwbn = sp->c_blk;
pbn = RDSTOB(hwbn) - pbn;
}
/*
* Now output a generic message suitable for badsect.
* Note that we don't use harderr cuz it just prints
* out b_blkno which is just the beginning block number
* of the transfer, not necessary where the error occured.
*/
printf("rd%d%c: hard error sn%d\n",
rdunit(bp->b_dev), 'a'+rdpart(bp->b_dev), pbn);
/*
* Now report the status as returned by the hardware with
* attempt at interpretation (unless debugging).
*/
printf("rd%d %s error:",
unit, (bp->b_flags & B_READ) ? "read" : "write");
#ifdef DEBUG
if (rddebug & RDB_ERROR) {
/* status info */
printf("\n volume: %d, unit: %d\n",
(sp->c_vu>>4)&0xF, sp->c_vu&0xF);
rdprinterr("reject", sp->c_ref, err_reject);
rdprinterr("fault", sp->c_fef, err_fault);
rdprinterr("access", sp->c_aef, err_access);
rdprinterr("info", sp->c_ief, err_info);
printf(" block: %d, P1-P10: ", hwbn);
printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
/* command */
printf(" ioc: ");
printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_pad, 8));
printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_hiaddr, 4));
printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_addr, 8));
printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_nop2, 4));
printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_len, 8));
printf("%s\n", hexstr(*(u_short *)&rs->sc_ioc.c_cmd, 4));
return(1);
}
#endif
printf(" v%d u%d, R0x%x F0x%x A0x%x I0x%x\n",
(sp->c_vu>>4)&0xF, sp->c_vu&0xF,
sp->c_ref, sp->c_fef, sp->c_aef, sp->c_ief);
printf("P1-P10: ");
printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
return(1);
}
int
rdread(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
return (physio(rdstrategy, NULL, dev, B_READ, minphys, uio));
}
int
rdwrite(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
return (physio(rdstrategy, NULL, dev, B_WRITE, minphys, uio));
}
int
rdioctl(dev, cmd, data, flag, p)
dev_t dev;
int cmd;
caddr_t data;
int flag;
struct proc *p;
{
int unit = rdunit(dev);
register struct rd_softc *sc = &rd_softc[unit];
register struct disklabel *lp = &sc->sc_info.ri_label;
int error, flags;
switch (cmd) {
case DIOCGDINFO:
*(struct disklabel *)data = *lp;
return (0);
case DIOCGPART:
((struct partinfo *)data)->disklab = lp;
((struct partinfo *)data)->part =
&lp->d_partitions[rdpart(dev)];
return (0);
case DIOCWLABEL:
if ((flag & FWRITE) == 0)
return (EBADF);
if (*(int *)data)
sc->sc_flags |= RDF_WLABEL;
else
sc->sc_flags &= ~RDF_WLABEL;
return (0);
case DIOCSDINFO:
if ((flag & FWRITE) == 0)
return (EBADF);
return (setdisklabel(lp, (struct disklabel *)data,
(sc->sc_flags & RDF_WLABEL) ? 0
: sc->sc_info.ri_open));
case DIOCWDINFO:
if ((flag & FWRITE) == 0)
return (EBADF);
error = setdisklabel(lp, (struct disklabel *)data,
(sc->sc_flags & RDF_WLABEL) ? 0
: sc->sc_info.ri_open);
if (error)
return (error);
flags = sc->sc_flags;
sc->sc_flags = RDF_ALIVE | RDF_WLABEL;
error = writedisklabel(rdlabdev(dev), rdstrategy, lp);
sc->sc_flags = flags;
return (error);
}
return(EINVAL);
}
int
rdsize(dev)
dev_t dev;
{
register int unit = rdunit(dev);
register struct rd_softc *rs = &rd_softc[unit];
int psize, didopen = 0;
if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
return(-1);
/*
* We get called very early on (via swapconf)
* without the device being open so we may need
* to handle it here.
*/
if (rs->sc_info.ri_open == 0) {
if (rdopen(dev, FREAD|FWRITE, S_IFBLK, NULL))
return(-1);
didopen = 1;
}
psize = rs->sc_info.ri_label.d_partitions[rdpart(dev)].p_size;
if (didopen)
(void) rdclose(dev, FREAD|FWRITE, S_IFBLK, NULL);
return (psize);
}
#ifdef DEBUG
rdprinterr(str, err, tab)
char *str;
short err;
char *tab[];
{
register int i;
int printed;
if (err == 0)
return;
printf(" %s error field:", str, err);
printed = 0;
for (i = 0; i < 16; i++)
if (err & (0x8000 >> i))
printf("%s%s", printed++ ? " + " : " ", tab[i]);
printf("\n");
}
#endif
/*
* Non-interrupt driven, non-dma dump routine.
*/
int
rddump(dev)
dev_t dev;
{
int part = rdpart(dev);
int unit = rdunit(dev);
register struct rd_softc *rs = &rd_softc[unit];
register struct hp_device *hp = rs->sc_hd;
register struct partition *pinfo;
register daddr_t baddr;
register int maddr, pages, i;
char stat;
extern int lowram, dumpsize;
#ifdef DEBUG
extern int pmapdebug;
pmapdebug = 0;
#endif
/* is drive ok? */
if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
return (ENXIO);
pinfo = &rs->sc_info.ri_label.d_partitions[part];
/* dump parameters in range? */
if (dumplo < 0 || dumplo >= pinfo->p_size ||
pinfo->p_fstype != FS_SWAP)
return (EINVAL);
pages = dumpsize;
if (dumplo + ctod(pages) > pinfo->p_size)
pages = dtoc(pinfo->p_size - dumplo);
maddr = lowram;
baddr = dumplo + pinfo->p_offset;
/* HPIB idle? */
if (!hpibreq(&rs->sc_dq)) {
hpibreset(hp->hp_ctlr);
rdreset(rs, rs->sc_hd);
printf("[ drive %d reset ] ", unit);
}
for (i = 0; i < pages; i++) {
#define NPGMB (1024*1024/NBPG)
/* print out how many Mbs we have dumped */
if (i && (i % NPGMB) == 0)
printf("%d ", i / NPGMB);
#undef NPBMG
rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
rs->sc_ioc.c_volume = C_SVOL(0);
rs->sc_ioc.c_saddr = C_SADDR;
rs->sc_ioc.c_hiaddr = 0;
rs->sc_ioc.c_addr = RDBTOS(baddr);
rs->sc_ioc.c_nop2 = C_NOP;
rs->sc_ioc.c_slen = C_SLEN;
rs->sc_ioc.c_len = NBPG;
rs->sc_ioc.c_cmd = C_WRITE;
hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD,
&rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
if (hpibswait(hp->hp_ctlr, hp->hp_slave))
return (EIO);
pmap_enter(kernel_pmap, (vm_offset_t)vmmap, maddr,
VM_PROT_READ, TRUE);
hpibsend(hp->hp_ctlr, hp->hp_slave, C_EXEC, vmmap, NBPG);
(void) hpibswait(hp->hp_ctlr, hp->hp_slave);
hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
if (stat)
return (EIO);
maddr += NBPG;
baddr += ctod(1);
}
return (0);
}
#endif