BSD 4_4 release
[unix-history] / usr / src / sys / tahoe / if / if_enp.c
/*
* Copyright (c) 1988 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Computer Consoles Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if_enp.c 7.8 (Berkeley) 12/16/90
*/
#include "enp.h"
#if NENP > 0
/*
* CMC ENP-20 Ethernet Controller.
*/
#include "sys/param.h"
#include "sys/systm.h"
#include "sys/mbuf.h"
#include "sys/buf.h"
#include "sys/protosw.h"
#include "sys/socket.h"
#include "sys/vmmac.h"
#include "sys/ioctl.h"
#include "sys/errno.h"
#include "sys/vmparam.h"
#include "sys/syslog.h"
#include "sys/uio.h"
#include "net/if.h"
#include "net/netisr.h"
#include "net/route.h"
#ifdef INET
#include "netinet/in.h"
#include "netinet/in_systm.h"
#include "netinet/in_var.h"
#include "netinet/ip.h"
#include "netinet/ip_var.h"
#include "netinet/if_ether.h"
#endif
#ifdef NS
#include "netns/ns.h"
#include "netns/ns_if.h"
#endif
#include "../include/cpu.h"
#include "../include/pte.h"
#include "../include/mtpr.h"
#include "../vba/vbavar.h"
#include "../if/if_enpreg.h"
#define ENPSTART 0xf02000 /* standard enp start addr */
#define ENPUNIT(dev) (minor(dev)) /* for enp ram devices */
/* macros for dealing with longs in i/o space */
#define ENPGETLONG(a) ((((u_short *)(a))[0] << 16)|(((u_short *)(a))[1]))
#define ENPSETLONG(a,v) \
{ register u_short *wp = (u_short *)(a); \
wp[0] = ((u_short *)&(v))[0]; wp[1] = ((u_short *)&(v))[1];}
int enpprobe(), enpattach(), enpintr();
long enpstd[] = { 0xfff41000, 0xfff61000, 0 };
struct vba_device *enpinfo[NENP];
struct vba_driver enpdriver =
{ enpprobe, 0, enpattach, 0, enpstd, "enp", enpinfo, "enp-20", 0 };
int enpinit(), enpioctl(), enpreset(), enpoutput(), enpstart();
struct mbuf *enpget();
/*
* Ethernet software status per interface.
*
* Each interface is referenced by a network interface structure,
* es_if, which the routing code uses to locate the interface.
* This structure contains the output queue for the interface, its address, ...
*/
struct enp_softc {
struct arpcom es_ac; /* common ethernet structures */
#define es_if es_ac.ac_if
#define es_addr es_ac.ac_enaddr
short es_ivec; /* interrupt vector */
} enp_softc[NENP];
extern struct ifnet loif;
enpprobe(reg, vi)
caddr_t reg;
struct vba_device *vi;
{
register br, cvec; /* must be r12, r11 */
register struct enpdevice *addr = (struct enpdevice *)reg;
struct enp_softc *es = &enp_softc[vi->ui_unit];
#ifdef lint
br = 0; cvec = br; br = cvec;
enpintr(0);
#endif
if (badaddr((caddr_t)addr, 2) || badaddr((caddr_t)&addr->enp_ram[0], 2))
return (0);
es->es_ivec = --vi->ui_hd->vh_lastiv;
addr->enp_state = S_ENPRESET; /* reset by VERSAbus reset */
br = 0x14, cvec = es->es_ivec; /* XXX */
return (sizeof (struct enpdevice));
}
/*
* Interface exists: make available by filling in network interface
* record. System will initialize the interface when it is ready
* to accept packets.
*/
enpattach(ui)
register struct vba_device *ui;
{
struct enp_softc *es = &enp_softc[ui->ui_unit];
register struct ifnet *ifp = &es->es_if;
ifp->if_unit = ui->ui_unit;
ifp->if_name = "enp";
ifp->if_mtu = ETHERMTU;
ifp->if_init = enpinit;
ifp->if_ioctl = enpioctl;
ifp->if_output = ether_output;
ifp->if_start = enpstart;
ifp->if_reset = enpreset;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX;
if_attach(ifp);
}
/*
* Reset of interface after "system" reset.
*/
enpreset(unit, vban)
int unit, vban;
{
register struct vba_device *ui;
if (unit >= NENP || (ui = enpinfo[unit]) == 0 || ui->ui_alive == 0 ||
ui->ui_vbanum != vban)
return;
printf(" enp%d", unit);
enpinit(unit);
}
/*
* Initialization of interface; clear recorded pending operations.
*/
enpinit(unit)
int unit;
{
struct enp_softc *es = &enp_softc[unit];
register struct vba_device *ui = enpinfo[unit];
struct enpdevice *addr;
register struct ifnet *ifp = &es->es_if;
int s;
if (ifp->if_addrlist == (struct ifaddr *)0)
return;
if ((ifp->if_flags & IFF_RUNNING) == 0) {
addr = (struct enpdevice *)ui->ui_addr;
s = splimp();
RESET_ENP(addr);
DELAY(200000);
es->es_if.if_flags |= IFF_RUNNING;
splx(s);
}
}
/*
* Ethernet interface interrupt.
*/
enpintr(unit)
int unit;
{
register struct enpdevice *addr;
register BCB *bcbp;
addr = (struct enpdevice *)enpinfo[unit]->ui_addr;
#if ENP == 30
if (!IS_ENP_INTR(addr))
return;
ACK_ENP_INTR(addr);
#endif
while ((bcbp = (BCB *)ringget((RING *)&addr->enp_tohost )) != 0) {
enpread(&enp_softc[unit], bcbp);
(void) ringput((RING *)&addr->enp_enpfree, bcbp);
}
}
/*
* Read input packet, examine its packet type, and enqueue it.
*/
enpread(es, bcbp)
struct enp_softc *es;
register BCB *bcbp;
{
register struct ether_header *enp;
struct mbuf *m;
int s, len, off, resid;
es->es_if.if_ipackets++;
/*
* Get input data length.
* Get pointer to ethernet header (in input buffer).
* Deal with trailer protocol: if type is PUP trailer
* get true type from first 16-bit word past data.
* Remember that type was trailer by setting off.
*/
len = bcbp->b_msglen - sizeof (struct ether_header);
enp = (struct ether_header *)ENPGETLONG(&bcbp->b_addr);
#define enpdataaddr(enp, off, type) \
((type)(((caddr_t)(((char *)enp)+sizeof (struct ether_header))+(off))))
enp->ether_type = ntohs((u_short)enp->ether_type);
if (enp->ether_type >= ETHERTYPE_TRAIL &&
enp->ether_type < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
off = (enp->ether_type - ETHERTYPE_TRAIL) * 512;
if (off >= ETHERMTU)
return;
enp->ether_type = ntohs(*enpdataaddr(enp, off, u_short *));
resid = ntohs(*(enpdataaddr(enp, off+2, u_short *)));
if (off + resid > len)
return;
len = off + resid;
} else
off = 0;
if (len == 0)
return;
/*
* Pull packet off interface. Off is nonzero if packet
* has trailing header; enpget will then force this header
* information to be at the front.
*/
m = enpget((u_char *)enp, len, off, &es->es_if);
if (m == 0)
return;
ether_input(&es->es_if, enp, m);
}
enpstart(ifp)
struct ifnet *ifp;
{
if (enpput(ifp))
return (ENOBUFS);
else
return (0);
}
/*
* Routine to copy from mbuf chain to transmitter buffer on the VERSAbus.
*/
enpput(ifp)
struct ifnet *ifp;
{
register BCB *bcbp;
register struct enpdevice *addr;
register struct mbuf *mp;
register u_char *bp;
register u_int len;
int unit = ifp->if_unit, ret = 1;
struct mbuf *m;
addr = (struct enpdevice *)enpinfo[unit]->ui_addr;
again:
if (ringempty((RING *)&addr->enp_hostfree)) {
/* ifp->if_flags |= IFF_OACTIVE; */
return (ret);
}
IF_DEQUEUE(&ifp->if_snd, m);
if (m == 0) {
ifp->if_flags &= ~IFF_OACTIVE;
return (0);
}
bcbp = (BCB *)ringget((RING *)&addr->enp_hostfree);
bcbp->b_len = 0;
bp = (u_char *)ENPGETLONG(&bcbp->b_addr);
for (mp = m; mp; mp = mp->m_next) {
len = mp->m_len;
if (len == 0)
continue;
enpcopy(mtod(mp, u_char *), bp, len);
bp += len;
bcbp->b_len += len;
}
bcbp->b_len = max(ETHERMIN+sizeof (struct ether_header), bcbp->b_len);
bcbp->b_reserved = 0;
if (ringput((RING *)&addr->enp_toenp, bcbp) == 1)
INTR_ENP(addr);
m_freem(m);
ret = 0;
goto again;
}
/*
* Routine to copy from VERSAbus memory into mbufs.
*
* Warning: This makes the fairly safe assumption that
* mbufs have even lengths.
*/
struct mbuf *
enpget(rxbuf, totlen, off, ifp)
u_char *rxbuf;
int totlen, off;
struct ifnet *ifp;
{
register u_char *cp;
register struct mbuf *m;
struct mbuf *top = 0, **mp = &top;
int len;
u_char *packet_end;
rxbuf += sizeof (struct ether_header);
cp = rxbuf;
packet_end = cp + totlen;
if (off) {
off += 2 * sizeof(u_short);
totlen -= 2 *sizeof(u_short);
cp = rxbuf + off;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return (0);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = totlen;
m->m_len = MHLEN;
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
m_freem(top);
return (0);
}
m->m_len = MLEN;
}
len = min(totlen, (packet_end - cp));
if (len >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
m->m_len = len = min(len, MCLBYTES);
else
len = m->m_len;
} else {
/*
* Place initial small packet/header at end of mbuf.
*/
if (len < m->m_len) {
if (top == 0 && len + max_linkhdr <= m->m_len)
m->m_data += max_linkhdr;
m->m_len = len;
} else
len = m->m_len;
}
enpcopy(cp, mtod(m, u_char *), (u_int)len);
*mp = m;
mp = &m->m_next;
totlen -= len;
cp += len;
if (cp == packet_end)
cp = rxbuf;
}
return (top);
}
enpcopy(from, to, cnt)
register u_char *from, *to;
register u_int cnt;
{
register c;
register short *f, *t;
if (((int)from&01) && ((int)to&01)) {
/* source & dest at odd addresses */
*to++ = *from++;
--cnt;
}
if (cnt > 1 && (((int)to&01) == 0) && (((int)from&01) == 0)) {
t = (short *)to;
f = (short *)from;
for (c = cnt>>1; c; --c) /* even address copy */
*t++ = *f++;
cnt &= 1;
if (cnt) { /* odd len */
from = (u_char *)f;
to = (u_char *)t;
*to = *from;
}
}
while ((int)cnt-- > 0) /* one of the address(es) must be odd */
*to++ = *from++;
}
/*
* Process an ioctl request.
*/
enpioctl(ifp, cmd, data)
register struct ifnet *ifp;
int cmd;
caddr_t data;
{
register struct ifaddr *ifa = (struct ifaddr *)data;
struct enpdevice *addr;
int s = splimp(), error = 0;
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
enpinit(ifp->if_unit);
((struct arpcom *)ifp)->ac_ipaddr =
IA_SIN(ifa)->sin_addr;
arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
break;
#endif
#ifdef NS
case AF_NS: {
struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
struct enp_softc *es = &enp_softc[ifp->if_unit];
if (!ns_nullhost(*ina)) {
ifp->if_flags &= ~IFF_RUNNING;
addr = (struct enpdevice *)
enpinfo[ifp->if_unit]->ui_addr;
enpsetaddr(ifp->if_unit, addr,
ina->x_host.c_host);
} else
ina->x_host = *(union ns_host *)es->es_addr;
enpinit(ifp->if_unit);
break;
}
#endif
default:
enpinit(ifp->if_unit);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags&IFF_UP) == 0 && ifp->if_flags&IFF_RUNNING) {
enpinit(ifp->if_unit); /* reset board */
ifp->if_flags &= ~IFF_RUNNING;
} else if (ifp->if_flags&IFF_UP &&
(ifp->if_flags&IFF_RUNNING) == 0)
enpinit(ifp->if_unit);
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
enpsetaddr(unit, addr, enaddr)
int unit;
struct enpdevice *addr;
u_char *enaddr;
{
enpcopy(enaddr, addr->enp_addr.e_baseaddr.ea_addr,
sizeof (struct ether_addr));
enpinit(unit);
enpgetaddr(unit, addr);
}
enpgetaddr(unit, addr)
int unit;
struct enpdevice *addr;
{
struct enp_softc *es = &enp_softc[unit];
enpcopy(addr->enp_addr.e_baseaddr.ea_addr, es->es_addr,
sizeof (struct ether_addr));
printf("enp%d: hardware address %s\n",
unit, ether_sprintf(es->es_addr));
}
/*
* Routines to synchronize enp and host.
*/
#ifdef notdef
static
ringinit(rp, size)
register RING *rp;
{
rp->r_rdidx = rp->r_wrtidx = 0;
rp->r_size = size;
}
static
ringfull(rp)
register RING *rp;
{
register short idx;
idx = (rp->r_wrtidx + 1) & (rp->r_size-1);
return (idx == rp->r_rdidx);
}
static
fir(rp)
register RING *rp;
{
return (rp->r_rdidx != rp->r_wrtidx ? rp->r_slot[rp->r_rdidx] : 0);
}
#endif
static
ringempty(rp)
register RING *rp;
{
return (rp->r_rdidx == rp->r_wrtidx);
}
static
ringput(rp, v)
register RING *rp;
BCB *v;
{
register int idx;
idx = (rp->r_wrtidx + 1) & (rp->r_size-1);
if (idx != rp->r_rdidx) {
ENPSETLONG(&rp->r_slot[rp->r_wrtidx], v);
rp->r_wrtidx = idx;
if ((idx -= rp->r_rdidx) < 0)
idx += rp->r_size;
return (idx); /* num ring entries */
}
return (0);
}
static
ringget(rp)
register RING *rp;
{
register int i = 0;
if (rp->r_rdidx != rp->r_wrtidx) {
i = ENPGETLONG(&rp->r_slot[rp->r_rdidx]);
rp->r_rdidx = (++rp->r_rdidx) & (rp->r_size-1);
}
return (i);
}
/*
* ENP Ram device.
*/
enpr_open(dev)
dev_t dev;
{
register int unit = ENPUNIT(dev);
struct vba_device *ui;
struct enpdevice *addr;
if (unit >= NENP || (ui = enpinfo[unit]) == 0 || ui->ui_alive == 0 ||
(addr = (struct enpdevice *)ui->ui_addr) == 0)
return (ENODEV);
if (addr->enp_state != S_ENPRESET)
return (EACCES); /* enp is not in reset state, don't open */
return (0);
}
/*ARGSUSED*/
enpr_close(dev)
dev_t dev;
{
return (0);
}
enpr_read(dev, uio)
dev_t dev;
register struct uio *uio;
{
register struct iovec *iov;
struct enpdevice *addr;
if (uio->uio_offset > RAM_SIZE)
return (ENODEV);
iov = uio->uio_iov;
if (uio->uio_offset + iov->iov_len > RAM_SIZE)
iov->iov_len = RAM_SIZE - uio->uio_offset;
addr = (struct enpdevice *)enpinfo[ENPUNIT(dev)]->ui_addr;
if (useracc(iov->iov_base, (unsigned)iov->iov_len, 0) == 0)
return (EFAULT);
enpcopy((u_char *)&addr->enp_ram[uio->uio_offset],
(u_char *)iov->iov_base, (u_int)iov->iov_len);
uio->uio_resid -= iov->iov_len;
iov->iov_len = 0;
return (0);
}
enpr_write(dev, uio)
dev_t dev;
register struct uio *uio;
{
register struct enpdevice *addr;
register struct iovec *iov;
addr = (struct enpdevice *)enpinfo[ENPUNIT(dev)]->ui_addr;
iov = uio->uio_iov;
if (uio->uio_offset > RAM_SIZE)
return (ENODEV);
if (uio->uio_offset + iov->iov_len > RAM_SIZE)
iov->iov_len = RAM_SIZE - uio->uio_offset;
if (useracc(iov->iov_base, (unsigned)iov->iov_len, 1) == 0)
return (EFAULT);
enpcopy((u_char *)iov->iov_base,
(u_char *)&addr->enp_ram[uio->uio_offset], (u_int)iov->iov_len);
uio->uio_resid -= iov->iov_len;
uio->uio_offset += iov->iov_len;
iov->iov_len = 0;
return (0);
}
/*ARGSUSED*/
enpr_ioctl(dev, cmd, data)
dev_t dev;
caddr_t data;
{
register unit = ENPUNIT(dev);
struct enpdevice *addr;
addr = (struct enpdevice *)enpinfo[unit]->ui_addr;
switch(cmd) {
case ENPIOGO:
ENPSETLONG(&addr->enp_base, addr);
addr->enp_intrvec = enp_softc[unit].es_ivec;
ENP_GO(addr, ENPSTART);
DELAY(200000);
enpinit(unit);
/*
* Fetch Ethernet address after link level
* is booted (firmware copies manufacturer's
* address from on-board ROM).
*/
enpgetaddr(unit, addr);
addr->enp_state = S_ENPRUN;
break;
case ENPIORESET:
RESET_ENP(addr);
addr->enp_state = S_ENPRESET;
DELAY(100000);
break;
default:
return (EINVAL);
}
return (0);
}
#endif