BSD 4_3_Net_2 release
[unix-history] / usr / src / sys / hp300 / dev / rd.c
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: rd.c 1.38 90/10/12$
*
* @(#)rd.c 7.9 (Berkeley) 5/7/91
*/
/*
* CS80/SS80 disk driver
*/
#include "rd.h"
#if NRD > 0
#include "sys/param.h"
#include "sys/systm.h"
#include "sys/errno.h"
#include "sys/dkstat.h"
#include "sys/disklabel.h"
#include "sys/buf.h"
#include "sys/uio.h"
#include "device.h"
#include "rdreg.h"
#include "vm/vm_param.h"
#include "vm/lock.h"
#include "vm/vm_statistics.h"
#include "vm/pmap.h"
#include "vm/vm_prot.h"
int rdinit(), rdstart(), rdgo(), rdintr();
struct driver rddriver = {
rdinit, "rd", rdstart, rdgo, rdintr,
};
struct rd_softc {
struct hp_device *sc_hd;
int sc_flags;
short sc_type;
short sc_punit;
char *sc_addr;
int sc_resid;
u_int sc_wpms;
struct rdinfo *sc_info;
struct devqueue sc_dq;
struct rd_iocmd sc_ioc;
struct rd_rscmd sc_rsc;
struct rd_stat sc_stat;
struct rd_ssmcmd sc_ssmc;
struct rd_srcmd sc_src;
struct rd_clearcmd sc_clear;
} rd_softc[NRD];
/* sc_flags values */
#define RDF_ALIVE 0x1
#define RDF_SEEK 0x2
#define RDF_SWAIT 0x4
struct size {
daddr_t nblocks;
int cyloff;
};
#ifdef DEBUG
int rddebug = 0x80;
#define RDB_FOLLOW 0x01
#define RDB_STATUS 0x02
#define RDB_IDENT 0x04
#define RDB_IO 0x08
#define RDB_ASYNC 0x10
#define RDB_ERROR 0x80
#define RDB_DUMP 0x80000000
struct rdstats {
long rdretries;
long rdresets;
long rdtimeouts;
long rdpolltries;
long rdpollwaits;
} rdstats[NRD];
/* error message tables */
char *err_reject[] = {
0, 0,
"channel parity error", /* 0x2000 */
0, 0,
"illegal opcode", /* 0x0400 */
"module addressing", /* 0x0200 */
"address bounds", /* 0x0100 */
"parameter bounds", /* 0x0080 */
"illegal parameter", /* 0x0040 */
"message sequence", /* 0x0020 */
0,
"message length", /* 0x0008 */
0, 0, 0
};
char *err_fault[] = {
0,
"cross unit", /* 0x4000 */
0,
"controller fault", /* 0x1000 */
0, 0,
"unit fault", /* 0x0200 */
0,
"diagnostic result", /* 0x0080 */
0,
"operator release request", /* 0x0020 */
"diagnostic release request", /* 0x0010 */
"internal maintenance release request", /* 0x0008 */
0,
"power fail", /* 0x0002 */
"retransmit" /* 0x0001 */
};
char *err_access[] = {
"illegal parallel operation", /* 0x8000 */
"uninitialized media", /* 0x4000 */
"no spares available", /* 0x2000 */
"not ready", /* 0x1000 */
"write protect", /* 0x0800 */
"no data found", /* 0x0400 */
0, 0,
"unrecoverable data overflow", /* 0x0080 */
"unrecoverable data", /* 0x0040 */
0,
"end of file", /* 0x0010 */
"end of volume", /* 0x0008 */
0, 0, 0
};
char *err_info[] = {
"operator release request", /* 0x8000 */
"diagnostic release request", /* 0x4000 */
"internal maintenance release request", /* 0x2000 */
"media wear", /* 0x1000 */
"latency induced", /* 0x0800 */
0, 0,
"auto sparing invoked", /* 0x0100 */
0,
"recoverable data overflow", /* 0x0040 */
"marginal data", /* 0x0020 */
"recoverable data", /* 0x0010 */
0,
"maintenance track overflow", /* 0x0004 */
0, 0
};
#endif
/*
* CS/80 partitions. We reserve the first cylinder for a LIF
* style boot directory (the 8k allowed in the BSD filesystem
* is just way too small). This boot area is outside of all but
* the C partition. This implies that you cannot use the C
* partition on a bootable disk since the filesystem would overlay
* the boot area. You must use the A partition.
*
* These maps support four basic layouts:
*
* A/B/G: This is the "traditional" setup for a bootable disk.
* A is the root partition, B the swap, and G a user partition.
* A/D/H: This is a setup for bootable systems requiring more swap
* (e.g. those who use HPCL). It has A as the root, D as a
* larger swap, and H as a smaller user partition.
* A/D/E/F: Similar to A/D/H with E and F breaking H into two partitions.
* E could be used for /usr and F for users.
* C: This gives a single, non-bootable, large user filesystem.
* Good for second drives on a machine (e.g. /usr/src).
*/
struct size rd7945A_sizes[8] = {
RDSZ(15904), 1, /* A=cyl 1 thru 142 */
RDSZ(20160), 143, /* B=cyl 143 thru 322 */
RDSZ(108416), 0, /* C=cyl 0 thru 967 */
RDSZ(40320), 143, /* D=cyl 143 thru 502 */
RDSZ(0), 0, /* E=<undefined> */
RDSZ(0), 0, /* F=<undefined> */
RDSZ(72240), 323, /* G=cyl 323 thru 967 */
RDSZ(52080), 503, /* H=cyl 503 thru 967 */
}, rd9134D_sizes[8] = {
RDSZ(15936), 1, /* A=cyl 1 thru 166 */
RDSZ(13056), 167, /* B=cyl 167 thru 302 */
RDSZ(29088), 0, /* C=cyl 0 thru 302 */
RDSZ(0), 0, /* D=<undefined> */
RDSZ(0), 0, /* E=<undefined> */
RDSZ(0), 0, /* F=<undefined> */
RDSZ(0), 0, /* G=<undefined> */
RDSZ(0), 0, /* H=<undefined> */
}, rd9122S_sizes[8] = {
RDSZ(0), 0, /* A=<undefined> */
RDSZ(0), 0, /* B=<undefined> */
RDSZ(1232), 0, /* C=cyl 0 thru 76 */
RDSZ(0), 0, /* D=<undefined> */
RDSZ(0), 0, /* E=<undefined> */
RDSZ(0), 0, /* F=<undefined> */
RDSZ(0), 0, /* G=<undefined> */
RDSZ(0), 0, /* H=<undefined> */
}, rd7912P_sizes[8] = {
RDSZ(15904), 0, /* A=cyl 1 thru 71 */
RDSZ(22400), 72, /* B=cyl 72 thru 171 */
RDSZ(128128), 0, /* C=cyl 0 thru 571 */
RDSZ(42560), 72, /* D=cyl 72 thru 261 */
RDSZ(0), 292, /* E=<undefined> */
RDSZ(0), 542, /* F=<undefined> */
RDSZ(89600), 172, /* G=cyl 221 thru 571 */
RDSZ(69440), 262, /* H=cyl 262 thru 571 */
}, rd7914P_sizes[8] = {
RDSZ(15904), 1, /* A=cyl 1 thru 71 */
RDSZ(40320), 72, /* B=cyl 72 thru 251 */
RDSZ(258048), 0, /* C=cyl 0 thru 1151 */
RDSZ(64960), 72, /* D=cyl 72 thru 361 */
RDSZ(98560), 362, /* E=cyl 362 thru 801 */
RDSZ(78400), 802, /* F=cyl 802 thru 1151 */
RDSZ(201600), 252, /* G=cyl 221 thru 1151 */
RDSZ(176960), 362, /* H=cyl 362 thru 1151 */
}, rd7933H_sizes[8] = {
RDSZ(16146), 1, /* A=cyl 1 thru 27 */
RDSZ(66976), 28, /* B=cyl 28 thru 139 */
RDSZ(789958), 0, /* C=cyl 0 thru 1320 */
RDSZ(16146), 140, /* D=cyl 140 thru 166 */
RDSZ(165646), 167, /* E=cyl 167 thru 443 */
RDSZ(165646), 444, /* F=cyl 444 thru 720 */
RDSZ(706238), 140, /* G=cyl 140 thru 1320 */
RDSZ(358800), 721, /* H=cyl 721 thru 1320 */
}, rd9134L_sizes[8] = {
RDSZ(15920), 1, /* A=cyl 1 thru 199 */
RDSZ(20000), 200, /* B=cyl 200 thru 449 */
RDSZ(77840), 0, /* C=cyl 0 thru 972 */
RDSZ(32000), 200, /* D=cyl 200 thru 599 */
RDSZ(0), 0, /* E=<undefined> */
RDSZ(0), 0, /* F=<undefined> */
RDSZ(41840), 450, /* G=cyl 450 thru 972 */
RDSZ(29840), 600, /* H=cyl 600 thru 972 */
}, rd7957A_sizes[8] = {
RDSZ(16016), 1, /* A=cyl 1 thru 104 */
RDSZ(24640), 105, /* B=cyl 105 thru 264 */
RDSZ(159544), 0, /* C=cyl 0 thru 1035 */
RDSZ(42350), 105, /* D=cyl 105 thru 379 */
RDSZ(54824), 380, /* E=cyl 380 thru 735 */
RDSZ(46200), 736, /* F=cyl 736 thru 1035 */
RDSZ(118734), 265, /* G=cyl 265 thru 1035 */
RDSZ(101024), 380, /* H=cyl 380 thru 1035 */
}, rd7958A_sizes[8] = {
RDSZ(16128), 1, /* A=cyl 1 thru 64 */
RDSZ(32256), 65, /* B=cyl 65 thru 192 */
RDSZ(255276), 0, /* C=cyl 0 thru 1012 */
RDSZ(48384), 65, /* D=cyl 65 thru 256 */
RDSZ(100800), 257, /* E=cyl 257 thru 656 */
RDSZ(89712), 657, /* F=cyl 657 thru 1012 */
RDSZ(206640), 193, /* G=cyl 193 thru 1012 */
RDSZ(190512), 257, /* H=cyl 257 thru 1012 */
}, rd7957B_sizes[8] = {
RDSZ(16002), 1, /* A=cyl 1 thru 127 */
RDSZ(32760), 128, /* B=cyl 128 thru 387 */
RDSZ(159894), 0, /* C=cyl 0 thru 1268 */
RDSZ(49140), 128, /* D=cyl 128 thru 517 */
RDSZ(50400), 518, /* E=cyl 518 thru 917 */
RDSZ(44226), 918, /* F=cyl 918 thru 1268 */
RDSZ(111006), 388, /* G=cyl 388 thru 1268 */
RDSZ(94626), 518, /* H=cyl 518 thru 1268 */
}, rd7958B_sizes[8] = {
RDSZ(16254), 1, /* A=cyl 1 thru 43 */
RDSZ(32886), 44, /* B=cyl 44 thru 130 */
RDSZ(297108), 0, /* C=cyl 0 thru 785 */
RDSZ(49140), 44, /* D=cyl 44 thru 173 */
RDSZ(121716), 174, /* E=cyl 174 thru 495 */
RDSZ(109620), 496, /* F=cyl 496 thru 785 */
RDSZ(247590), 131, /* G=cyl 131 thru 785 */
RDSZ(231336), 174, /* H=cyl 174 thru 785 */
}, rd7959B_sizes[8] = {
RDSZ(16254), 1, /* A=cyl 1 thru 43 */
RDSZ(49140), 44, /* B=cyl 44 thru 173 */
RDSZ(594216), 0, /* C=cyl 0 thru 1571 */
RDSZ(65772), 44, /* D=cyl 44 thru 217 */
RDSZ(303912), 218, /* E=cyl 218 thru 1021 */
RDSZ(207900), 1022, /* F=cyl 1022 thru 1571 */
RDSZ(528444), 174, /* G=cyl 174 thru 1571 */
RDSZ(511812), 218, /* H=cyl 218 thru 1571 */
}, rd2200A_sizes[8] = {
RDSZ(16272), 1, /* A=cyl 1 thru 36 */
RDSZ(49720), 37, /* B=cyl 37 thru 146 */
RDSZ(654948), 0, /* C=cyl 0 thru 1448 */
RDSZ(65992), 37, /* D=cyl 37 thru 182 */
RDSZ(304648), 183, /* E=cyl 183 thru 856 */
RDSZ(267584), 857, /* F=cyl 857 thru 1448 */
RDSZ(588504), 147, /* G=cyl 147 thru 1448 */
RDSZ(572232), 183, /* H=cyl 183 thru 1448 */
}, rd2203A_sizes[8] = {
/* modelled after the 7937; i.e. bogus */
RDSZ(16272), 1, /* A=cyl 1 thru 18 */
RDSZ(67800), 19, /* B=cyl 19 thru 93 */
RDSZ(1309896), 0, /* C=cyl 0 thru 1448 */
RDSZ(16272), 94, /* D=cyl 19 thru 111 */
RDSZ(305552), 112, /* E=cyl 112 thru 449 */
RDSZ(305552), 450, /* F=cyl 450 thru 787 */
RDSZ(1224920), 94, /* G=cyl 94 thru 1448 */
RDSZ(597544), 788, /* H=cyl 788 thru 1448 */
#if DEV_BSIZE == 512
/*
* These values would not work for 1k,
* since the number of cylinders would be different.
*/
}, rd7936H_sizes[8] = {
RDSZ(16359), 1, /* A=cyl 1 thru 19 */
RDSZ(67158), 20, /* B=cyl 20 thru 97 */
RDSZ(600978), 0, /* C=cyl 0 thru 697 */
RDSZ(16359), 98, /* D=cyl 98 thru 116 */
RDSZ(120540), 117, /* E=cyl 117 thru 256 */
RDSZ(120540), 256, /* F=cyl 256 thru 396 */
RDSZ(516600), 98, /* G=cyl 98 thru 697 */
RDSZ(259161), 397, /* H=cyl 397 thru 697 */
}, rd7937H_sizes[8] = {
#ifdef UTAH
RDSZ(15990), 1, /* A=cyl 1 thru 10 */
RDSZ(67158), 11, /* B=cyl 11 thru 52 */
RDSZ(1116102), 0, /* C=cyl 0 thru 697 */
RDSZ(124722), 53, /* D=cyl 53 thru 130 */
RDSZ(163098), 131, /* E=cyl 131 thru 232 */
RDSZ(287820), 233, /* F=cyl 233 thru 412 */
RDSZ(1031355), 53, /* G=cyl 53 thru 697 */
RDSZ(455715), 413, /* H=cyl 413 thru 697 */
#else
RDSZ(15990), 1, /* A=cyl 1 thru 10 */
RDSZ(67158), 11, /* B=cyl 11 thru 52 */
RDSZ(1116102), 0, /* C=cyl 0 thru 697 */
RDSZ(15990), 53, /* D=cyl 53 thru 62 */
RDSZ(246246), 63, /* E=cyl 63 thru 216 */
RDSZ(246246), 217, /* F=cyl 217 thru 370 */
RDSZ(1031355), 53, /* G=cyl 53 thru 697 */
RDSZ(522873), 371, /* H=cyl 371 thru 697 */
#endif
#endif
};
struct rdinfo {
int nbpt; /* DEV_BSIZE blocks per track */
int ntpc; /* tracks per cylinder */
int nbpc; /* blocks per cylinder */
struct size *sizes; /* default partition info (if no disklabel) */
short hwid; /* 2 byte HW id */
short maxunum; /* maximum allowed unit number */
char *desc; /* drive type description */
};
struct rdinfo rdinfo[] = {
NRD7945ABPT, NRD7945ATRK, NRD7945ABPT * NRD7945ATRK,
rd7945A_sizes, RD7946AID, 0, "7945A",
NRD9134DBPT, NRD9134DTRK, NRD9134DBPT * NRD9134DTRK,
rd9134D_sizes, RD9134DID, 1, "9134D",
NRD9122SBPT, NRD9122STRK, NRD9122SBPT * NRD9122STRK,
rd9122S_sizes, RD9134LID, 1, "9122S",
NRD7912PBPT, NRD7912PTRK, NRD7912PBPT * NRD7912PTRK,
rd7912P_sizes, RD7912PID, 0, "7912P",
NRD7914PBPT, NRD7914PTRK, NRD7914PBPT * NRD7914PTRK,
rd7914P_sizes, RD7914PID, 0, "7914P",
NRD7958ABPT, NRD7958ATRK, NRD7958ABPT * NRD7958ATRK,
rd7958A_sizes, RD7958AID, 0, "7958A",
NRD7957ABPT, NRD7957ATRK, NRD7957ABPT * NRD7957ATRK,
rd7957A_sizes, RD7957AID, 0, "7957A",
NRD7933HBPT, NRD7933HTRK, NRD7933HBPT * NRD7933HTRK,
rd7933H_sizes, RD7933HID, 0, "7933H",
NRD9134LBPT, NRD9134LTRK, NRD9134LBPT * NRD9134LTRK,
rd9134L_sizes, RD9134LID, 1, "9134L",
NRD7936HBPT, NRD7936HTRK, NRD7936HBPT * NRD7936HTRK,
rd7936H_sizes, RD7936HID, 0, "7936H",
NRD7937HBPT, NRD7937HTRK, NRD7937HBPT * NRD7937HTRK,
rd7937H_sizes, RD7937HID, 0, "7937H",
NRD7914PBPT, NRD7914PTRK, NRD7914PBPT * NRD7914PTRK,
rd7914P_sizes, RD7914CTID, 0, "7914CT",
NRD7945ABPT, NRD7945ATRK, NRD7945ABPT * NRD7945ATRK,
rd7945A_sizes, RD7946AID, 0, "7946A",
NRD9122SBPT, NRD9122STRK, NRD9122SBPT * NRD9122STRK,
rd9122S_sizes, RD9134LID, 1, "9122D",
NRD7957BBPT, NRD7957BTRK, NRD7957BBPT * NRD7957BTRK,
rd7957B_sizes, RD7957BID, 0, "7957B",
NRD7958BBPT, NRD7958BTRK, NRD7958BBPT * NRD7958BTRK,
rd7958B_sizes, RD7958BID, 0, "7958B",
NRD7959BBPT, NRD7959BTRK, NRD7959BBPT * NRD7959BTRK,
rd7959B_sizes, RD7959BID, 0, "7959B",
NRD2200ABPT, NRD2200ATRK, NRD2200ABPT * NRD2200ATRK,
rd2200A_sizes, RD2200AID, 0, "2200A",
NRD2203ABPT, NRD2203ATRK, NRD2203ABPT * NRD2203ATRK,
rd2203A_sizes, RD2203AID, 0, "2203A",
};
int nrdinfo = sizeof(rdinfo) / sizeof(rdinfo[0]);
struct buf rdtab[NRD];
#define rdunit(x) (minor(x) >> 3)
#define rdpart(x) (minor(x) & 0x7)
#define rdpunit(x) ((x) & 7)
#define b_cylin b_resid
#define RDRETRY 5
#define RDWAITC 1 /* min time for timeout in seconds */
int rderrthresh = RDRETRY-1; /* when to start reporting errors */
rdinit(hd)
register struct hp_device *hd;
{
register struct rd_softc *rs = &rd_softc[hd->hp_unit];
rs->sc_hd = hd;
rs->sc_punit = rdpunit(hd->hp_flags);
rs->sc_type = rdident(rs, hd);
if (rs->sc_type < 0)
return(0);
rs->sc_dq.dq_ctlr = hd->hp_ctlr;
rs->sc_dq.dq_unit = hd->hp_unit;
rs->sc_dq.dq_slave = hd->hp_slave;
rs->sc_dq.dq_driver = &rddriver;
rs->sc_info = &rdinfo[rs->sc_type];
rs->sc_flags = RDF_ALIVE;
#ifdef DEBUG
/* always report errors */
if (rddebug & RDB_ERROR)
rderrthresh = 0;
#endif
return(1);
}
rdident(rs, hd)
struct rd_softc *rs;
struct hp_device *hd;
{
struct rd_describe desc;
u_char stat, cmd[3];
int unit, lunit;
char name[7];
register int ctlr, slave, id, i;
ctlr = hd->hp_ctlr;
slave = hd->hp_slave;
unit = rs->sc_punit;
lunit = hd->hp_unit;
/*
* Grab device id and make sure:
* 1. It is a CS80 device.
* 2. It is one of the types we support.
* 3. If it is a 7946, we are accessing the disk unit (0)
*/
id = hpibid(ctlr, slave);
#ifdef DEBUG
if (rddebug & RDB_IDENT)
printf("hpibid(%d, %d) -> %x\n", ctlr, slave, id);
#endif
if ((id & 0x200) == 0)
return(-1);
for (i = 0; i < nrdinfo; i++)
if (id == rdinfo[i].hwid)
break;
if (i == nrdinfo || unit > rdinfo[i].maxunum)
return(-1);
id = i;
/*
* Reset drive and collect device description.
* Don't really use the description info right now but
* might come in handy in the future (for disk labels).
*/
rdreset(rs, hd);
cmd[0] = C_SUNIT(unit);
cmd[1] = C_SVOL(0);
cmd[2] = C_DESC;
hpibsend(ctlr, slave, C_CMD, cmd, sizeof(cmd));
hpibrecv(ctlr, slave, C_EXEC, &desc, 37);
hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat));
bzero(name, sizeof(name));
if (!stat) {
register int n = desc.d_name;
for (i = 5; i >= 0; i--) {
name[i] = (n & 0xf) + '0';
n >>= 4;
}
/* use drive characteristics to calculate xfer rate */
rs->sc_wpms = 1000000 * (desc.d_sectsize/2) / desc.d_blocktime;
}
#ifdef DEBUG
if (rddebug & RDB_IDENT) {
printf("rd%d: name: %x ('%s')\n",
lunit, desc.d_name, name);
printf(" iuw %x, maxxfr %d, ctype %d\n",
desc.d_iuw, desc.d_cmaxxfr, desc.d_ctype);
printf(" utype %d, bps %d, blkbuf %d, burst %d, blktime %d\n",
desc.d_utype, desc.d_sectsize,
desc.d_blkbuf, desc.d_burstsize, desc.d_blocktime);
printf(" avxfr %d, ort %d, atp %d, maxint %d, fv %x, rv %x\n",
desc.d_uavexfr, desc.d_retry, desc.d_access,
desc.d_maxint, desc.d_fvbyte, desc.d_rvbyte);
printf(" maxcyl/head/sect %d/%d/%d, maxvsect %d, inter %d\n",
desc.d_maxcyl, desc.d_maxhead, desc.d_maxsect,
desc.d_maxvsectl, desc.d_interleave);
}
#endif
/*
* Take care of a couple of anomolies:
* 1. 7945A and 7946A both return same HW id
* 2. 9122S and 9134D both return same HW id
* 3. 9122D and 9134L both return same HW id
*/
switch (rdinfo[id].hwid) {
case RD7946AID:
if (bcmp(name, "079450", 6) == 0)
id = RD7945A;
else
id = RD7946A;
break;
case RD9134LID:
if (bcmp(name, "091340", 6) == 0)
id = RD9134L;
else
id = RD9122D;
break;
case RD9134DID:
if (bcmp(name, "091220", 6) == 0)
id = RD9122S;
else
id = RD9134D;
break;
}
printf("rd%d: %s\n", lunit, rdinfo[id].desc);
return(id);
}
rdreset(rs, hd)
register struct rd_softc *rs;
register struct hp_device *hd;
{
u_char stat;
rs->sc_clear.c_unit = C_SUNIT(rs->sc_punit);
rs->sc_clear.c_cmd = C_CLEAR;
hpibsend(hd->hp_ctlr, hd->hp_slave, C_TCMD, &rs->sc_clear,
sizeof(rs->sc_clear));
hpibswait(hd->hp_ctlr, hd->hp_slave);
hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
rs->sc_src.c_unit = C_SUNIT(RDCTLR);
rs->sc_src.c_nop = C_NOP;
rs->sc_src.c_cmd = C_SREL;
rs->sc_src.c_param = C_REL;
hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_src,
sizeof(rs->sc_src));
hpibswait(hd->hp_ctlr, hd->hp_slave);
hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
rs->sc_ssmc.c_unit = C_SUNIT(rs->sc_punit);
rs->sc_ssmc.c_cmd = C_SSM;
rs->sc_ssmc.c_refm = REF_MASK;
rs->sc_ssmc.c_fefm = FEF_MASK;
rs->sc_ssmc.c_aefm = AEF_MASK;
rs->sc_ssmc.c_iefm = IEF_MASK;
hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_ssmc,
sizeof(rs->sc_ssmc));
hpibswait(hd->hp_ctlr, hd->hp_slave);
hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
#ifdef DEBUG
rdstats[hd->hp_unit].rdresets++;
#endif
}
int
rdopen(dev, flags, mode, p)
dev_t dev;
int flags, mode;
struct proc *p;
{
register int unit = rdunit(dev);
register struct rd_softc *rs = &rd_softc[unit];
if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
return(ENXIO);
if (rs->sc_hd->hp_dk >= 0) {
/* guess at xfer rate based on 3600 rpm (60 rps) */
if (rs->sc_wpms == 0)
rs->sc_wpms = 60 * rs->sc_info->nbpt * DEV_BSIZE / 2;
dk_wpms[rs->sc_hd->hp_dk] = rs->sc_wpms;
}
return(0);
}
rdstrategy(bp)
register struct buf *bp;
{
register int unit = rdunit(bp->b_dev);
register struct rd_softc *rs = &rd_softc[unit];
register struct size *pinfo = &rs->sc_info->sizes[rdpart(bp->b_dev)];
register struct buf *dp = &rdtab[unit];
register daddr_t bn;
register int sz, s;
#ifdef DEBUG
if (rddebug & RDB_FOLLOW)
printf("rdstrategy(%x): dev %x, bn %x, bcount %x, %c\n",
bp, bp->b_dev, bp->b_blkno, bp->b_bcount,
(bp->b_flags & B_READ) ? 'R' : 'W');
#endif
bn = bp->b_blkno;
sz = howmany(bp->b_bcount, DEV_BSIZE);
if (bn < 0 || bn + sz > pinfo->nblocks) {
sz = pinfo->nblocks - bn;
if (sz == 0) {
bp->b_resid = bp->b_bcount;
goto done;
}
if (sz < 0) {
bp->b_error = EINVAL;
bp->b_flags |= B_ERROR;
goto done;
}
bp->b_bcount = dbtob(sz);
}
bp->b_cylin = bn / rs->sc_info->nbpc + pinfo->cyloff;
s = splbio();
disksort(dp, bp);
if (dp->b_active == 0) {
dp->b_active = 1;
rdustart(unit);
}
splx(s);
return;
done:
biodone(bp);
}
/*
* Called from timeout() when handling maintenance releases
*/
rdrestart(unit)
int unit;
{
int s = splbio();
rdustart(unit);
splx(s);
}
rdustart(unit)
register int unit;
{
register struct buf *bp;
register struct rd_softc *rs = &rd_softc[unit];
bp = rdtab[unit].b_actf;
rs->sc_addr = bp->b_un.b_addr;
rs->sc_resid = bp->b_bcount;
if (hpibreq(&rs->sc_dq))
rdstart(unit);
}
rdstart(unit)
register int unit;
{
register struct rd_softc *rs = &rd_softc[unit];
register struct buf *bp = rdtab[unit].b_actf;
register struct hp_device *hp = rs->sc_hd;
register int part;
again:
#ifdef DEBUG
if (rddebug & RDB_FOLLOW)
printf("rdstart(%d): bp %x, %c\n", unit, bp,
(bp->b_flags & B_READ) ? 'R' : 'W');
#endif
part = rdpart(bp->b_dev);
rs->sc_flags |= RDF_SEEK;
rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
rs->sc_ioc.c_volume = C_SVOL(0);
rs->sc_ioc.c_saddr = C_SADDR;
rs->sc_ioc.c_hiaddr = 0;
rs->sc_ioc.c_addr = RDBTOS(bp->b_blkno + rs->sc_info->nbpc *
rs->sc_info->sizes[part].cyloff);
rs->sc_ioc.c_nop2 = C_NOP;
rs->sc_ioc.c_slen = C_SLEN;
rs->sc_ioc.c_len = rs->sc_resid;
rs->sc_ioc.c_cmd = bp->b_flags & B_READ ? C_READ : C_WRITE;
#ifdef DEBUG
if (rddebug & RDB_IO)
printf("rdstart: hpibsend(%x, %x, %x, %x, %x)\n",
hp->hp_ctlr, hp->hp_slave, C_CMD,
&rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
#endif
if (hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, &rs->sc_ioc.c_unit,
sizeof(rs->sc_ioc)-2) == sizeof(rs->sc_ioc)-2) {
if (hp->hp_dk >= 0) {
dk_busy |= 1 << hp->hp_dk;
dk_seek[hp->hp_dk]++;
}
#ifdef DEBUG
if (rddebug & RDB_IO)
printf("rdstart: hpibawait(%x)\n", hp->hp_ctlr);
#endif
hpibawait(hp->hp_ctlr);
return;
}
/*
* Experience has shown that the hpibwait in this hpibsend will
* occasionally timeout. It appears to occur mostly on old 7914
* drives with full maintenance tracks. We should probably
* integrate this with the backoff code in rderror.
*/
#ifdef DEBUG
if (rddebug & RDB_ERROR)
printf("rd%d: rdstart: cmd %x adr %d blk %d len %d ecnt %d\n",
unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
bp->b_blkno, rs->sc_resid, rdtab[unit].b_errcnt);
rdstats[unit].rdretries++;
#endif
rs->sc_flags &= ~RDF_SEEK;
rdreset(rs, hp);
if (rdtab[unit].b_errcnt++ < RDRETRY)
goto again;
printf("rd%d: rdstart err: cmd 0x%x sect %d blk %d len %d\n",
unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
bp->b_blkno, rs->sc_resid);
rdtab[unit].b_errcnt = 0;
rdtab[unit].b_actf = bp->b_actf;
bp->b_flags |= B_ERROR;
bp->b_error = EIO;
bp->b_resid = 0;
biodone(bp);
hpibfree(&rs->sc_dq);
bp = rdtab[unit].b_actf;
if (bp == NULL) {
rdtab[unit].b_active = 0;
return;
}
rs->sc_addr = bp->b_un.b_addr;
rs->sc_resid = bp->b_bcount;
if (hpibreq(&rs->sc_dq))
goto again;
}
rdgo(unit)
register int unit;
{
register struct rd_softc *rs = &rd_softc[unit];
register struct hp_device *hp = rs->sc_hd;
struct buf *bp = rdtab[unit].b_actf;
if (hp->hp_dk >= 0) {
dk_busy |= 1 << hp->hp_dk;
dk_xfer[hp->hp_dk]++;
dk_wds[hp->hp_dk] += rs->sc_resid >> 6;
}
hpibgo(hp->hp_ctlr, hp->hp_slave, C_EXEC,
rs->sc_addr, rs->sc_resid, bp->b_flags & B_READ);
}
rdintr(unit)
register int unit;
{
register struct rd_softc *rs = &rd_softc[unit];
register struct buf *bp = rdtab[unit].b_actf;
register struct hp_device *hp = rs->sc_hd;
u_char stat = 13; /* in case hpibrecv fails */
int rv, restart;
#ifdef DEBUG
if (rddebug & RDB_FOLLOW)
printf("rdintr(%d): bp %x, %c, flags %x\n", unit, bp,
(bp->b_flags & B_READ) ? 'R' : 'W', rs->sc_flags);
if (bp == NULL) {
printf("rd%d: bp == NULL\n", unit);
return;
}
#endif
if (hp->hp_dk >= 0)
dk_busy &= ~(1 << hp->hp_dk);
if (rs->sc_flags & RDF_SEEK) {
rs->sc_flags &= ~RDF_SEEK;
if (hpibustart(hp->hp_ctlr))
rdgo(unit);
return;
}
if ((rs->sc_flags & RDF_SWAIT) == 0) {
#ifdef DEBUG
rdstats[unit].rdpolltries++;
#endif
if (hpibpptest(hp->hp_ctlr, hp->hp_slave) == 0) {
#ifdef DEBUG
rdstats[unit].rdpollwaits++;
#endif
if (hp->hp_dk >= 0)
dk_busy |= 1 << hp->hp_dk;
rs->sc_flags |= RDF_SWAIT;
hpibawait(hp->hp_ctlr);
return;
}
} else
rs->sc_flags &= ~RDF_SWAIT;
rv = hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
if (rv != 1 || stat) {
#ifdef DEBUG
if (rddebug & RDB_ERROR)
printf("rdintr: recv failed or bad stat %d\n", stat);
#endif
restart = rderror(unit);
#ifdef DEBUG
rdstats[unit].rdretries++;
#endif
if (rdtab[unit].b_errcnt++ < RDRETRY) {
if (restart)
rdstart(unit);
return;
}
bp->b_flags |= B_ERROR;
bp->b_error = EIO;
}
rdtab[unit].b_errcnt = 0;
rdtab[unit].b_actf = bp->b_actf;
bp->b_resid = 0;
biodone(bp);
hpibfree(&rs->sc_dq);
if (rdtab[unit].b_actf)
rdustart(unit);
else
rdtab[unit].b_active = 0;
}
rdstatus(rs)
register struct rd_softc *rs;
{
register int c, s;
u_char stat;
int rv;
c = rs->sc_hd->hp_ctlr;
s = rs->sc_hd->hp_slave;
rs->sc_rsc.c_unit = C_SUNIT(rs->sc_punit);
rs->sc_rsc.c_sram = C_SRAM;
rs->sc_rsc.c_ram = C_RAM;
rs->sc_rsc.c_cmd = C_STATUS;
bzero((caddr_t)&rs->sc_stat, sizeof(rs->sc_stat));
rv = hpibsend(c, s, C_CMD, &rs->sc_rsc, sizeof(rs->sc_rsc));
if (rv != sizeof(rs->sc_rsc)) {
#ifdef DEBUG
if (rddebug & RDB_STATUS)
printf("rdstatus: send C_CMD failed %d != %d\n",
rv, sizeof(rs->sc_rsc));
#endif
return(1);
}
rv = hpibrecv(c, s, C_EXEC, &rs->sc_stat, sizeof(rs->sc_stat));
if (rv != sizeof(rs->sc_stat)) {
#ifdef DEBUG
if (rddebug & RDB_STATUS)
printf("rdstatus: send C_EXEC failed %d != %d\n",
rv, sizeof(rs->sc_stat));
#endif
return(1);
}
rv = hpibrecv(c, s, C_QSTAT, &stat, 1);
if (rv != 1 || stat) {
#ifdef DEBUG
if (rddebug & RDB_STATUS)
printf("rdstatus: recv failed %d or bad stat %d\n",
rv, stat);
#endif
return(1);
}
return(0);
}
/*
* Deal with errors.
* Returns 1 if request should be restarted,
* 0 if we should just quietly give up.
*/
rderror(unit)
int unit;
{
struct rd_softc *rs = &rd_softc[unit];
register struct rd_stat *sp;
struct buf *bp;
daddr_t hwbn, pbn;
if (rdstatus(rs)) {
#ifdef DEBUG
printf("rd%d: couldn't get status\n", unit);
#endif
rdreset(rs, rs->sc_hd);
return(1);
}
sp = &rs->sc_stat;
if (sp->c_fef & FEF_REXMT)
return(1);
if (sp->c_fef & FEF_PF) {
rdreset(rs, rs->sc_hd);
return(1);
}
/*
* Unit requests release for internal maintenance.
* We just delay awhile and try again later. Use expontially
* increasing backoff ala ethernet drivers since we don't really
* know how long the maintenance will take. With RDWAITC and
* RDRETRY as defined, the range is 1 to 32 seconds.
*/
if (sp->c_fef & FEF_IMR) {
extern int hz;
int rdtimo = RDWAITC << rdtab[unit].b_errcnt;
#ifdef DEBUG
printf("rd%d: internal maintenance, %d second timeout\n",
unit, rdtimo);
rdstats[unit].rdtimeouts++;
#endif
hpibfree(&rs->sc_dq);
timeout(rdrestart, unit, rdtimo*hz);
return(0);
}
/*
* Only report error if we have reached the error reporting
* threshhold. By default, this will only report after the
* retry limit has been exceeded.
*/
if (rdtab[unit].b_errcnt < rderrthresh)
return(1);
/*
* First conjure up the block number at which the error occured.
* Note that not all errors report a block number, in that case
* we just use b_blkno.
*/
bp = rdtab[unit].b_actf;
pbn = rs->sc_info->nbpc *
rs->sc_info->sizes[rdpart(bp->b_dev)].cyloff;
if ((sp->c_fef & FEF_CU) || (sp->c_fef & FEF_DR) ||
(sp->c_ief & IEF_RRMASK)) {
hwbn = RDBTOS(pbn + bp->b_blkno);
pbn = bp->b_blkno;
} else {
hwbn = sp->c_blk;
pbn = RDSTOB(hwbn) - pbn;
}
/*
* Now output a generic message suitable for badsect.
* Note that we don't use harderr cuz it just prints
* out b_blkno which is just the beginning block number
* of the transfer, not necessary where the error occured.
*/
printf("rd%d%c: hard error sn%d\n",
rdunit(bp->b_dev), 'a'+rdpart(bp->b_dev), pbn);
/*
* Now report the status as returned by the hardware with
* attempt at interpretation (unless debugging).
*/
printf("rd%d %s error:",
unit, (bp->b_flags & B_READ) ? "read" : "write");
#ifdef DEBUG
if (rddebug & RDB_ERROR) {
/* status info */
printf("\n volume: %d, unit: %d\n",
(sp->c_vu>>4)&0xF, sp->c_vu&0xF);
rdprinterr("reject", sp->c_ref, err_reject);
rdprinterr("fault", sp->c_fef, err_fault);
rdprinterr("access", sp->c_aef, err_access);
rdprinterr("info", sp->c_ief, err_info);
printf(" block: %d, P1-P10: ", hwbn);
printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
/* command */
printf(" ioc: ");
printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_pad, 8));
printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_hiaddr, 4));
printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_addr, 8));
printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_nop2, 4));
printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_len, 8));
printf("%s\n", hexstr(*(u_short *)&rs->sc_ioc.c_cmd, 4));
return(1);
}
#endif
printf(" v%d u%d, R0x%x F0x%x A0x%x I0x%x\n",
(sp->c_vu>>4)&0xF, sp->c_vu&0xF,
sp->c_ref, sp->c_fef, sp->c_aef, sp->c_ief);
printf("P1-P10: ");
printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
return(1);
}
int
rdread(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
register int unit = rdunit(dev);
return (physio(rdstrategy, NULL, dev, B_READ, minphys, uio));
}
int
rdwrite(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
register int unit = rdunit(dev);
return (physio(rdstrategy, NULL, dev, B_WRITE, minphys, uio));
}
int
rdioctl(dev, cmd, data, flag, p)
dev_t dev;
int cmd;
caddr_t data;
int flag;
struct proc *p;
{
return(EINVAL);
}
int
rdsize(dev)
dev_t dev;
{
register int unit = rdunit(dev);
register struct rd_softc *rs = &rd_softc[unit];
if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
return(-1);
return(rs->sc_info->sizes[rdpart(dev)].nblocks);
}
#ifdef DEBUG
rdprinterr(str, err, tab)
char *str;
short err;
char *tab[];
{
register int i;
int printed;
if (err == 0)
return;
printf(" %s error field:", str, err);
printed = 0;
for (i = 0; i < 16; i++)
if (err & (0x8000 >> i))
printf("%s%s", printed++ ? " + " : " ", tab[i]);
printf("\n");
}
#endif
/*
* Non-interrupt driven, non-dma dump routine.
*/
int
rddump(dev)
dev_t dev;
{
int part = rdpart(dev);
int unit = rdunit(dev);
register struct rd_softc *rs = &rd_softc[unit];
register struct hp_device *hp = rs->sc_hd;
register daddr_t baddr;
register int maddr, pages, i;
char stat;
extern int lowram, dumpsize;
#ifdef DEBUG
extern int pmapdebug;
pmapdebug = 0;
#endif
pages = dumpsize;
#ifdef DEBUG
if (rddebug & RDB_DUMP)
printf("rddump(%x): u %d p %d dumplo %d ram %x pmem %d\n",
dev, unit, part, dumplo, lowram, ctod(pages));
#endif
/* is drive ok? */
if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
return (ENXIO);
/* HPIB idle? */
if (!hpibreq(&rs->sc_dq)) {
#ifdef DEBUG
/* is this a safe thing to do?? */
hpibreset(hp->hp_ctlr);
rdreset(rs, rs->sc_hd);
printf("[ drive %d reset ] ", unit);
#else
return (EFAULT);
#endif
}
/* dump parameters in range? */
if (dumplo < 0 || dumplo >= rs->sc_info->sizes[part].nblocks)
return (EINVAL);
if (dumplo + ctod(pages) > rs->sc_info->sizes[part].nblocks)
pages = dtoc(rs->sc_info->sizes[part].nblocks - dumplo);
maddr = lowram;
baddr = dumplo + rs->sc_info->nbpc * rs->sc_info->sizes[part].cyloff;
#ifdef DEBUG
if (rddebug & RDB_DUMP)
printf("rddump: dumping %d pages from %x to disk block %d\n",
pages, maddr, baddr);
#endif
for (i = 0; i < pages; i++) {
#ifdef DEBUG
#define NPGMB (1024*1024/NBPG)
/* print out how many Mbs we have dumped */
if (i && (i % NPGMB) == 0)
printf("%d ", i / NPGMB);
#undef NPBMG
#endif
rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
rs->sc_ioc.c_volume = C_SVOL(0);
rs->sc_ioc.c_saddr = C_SADDR;
rs->sc_ioc.c_hiaddr = 0;
rs->sc_ioc.c_addr = RDBTOS(baddr);
rs->sc_ioc.c_nop2 = C_NOP;
rs->sc_ioc.c_slen = C_SLEN;
rs->sc_ioc.c_len = NBPG;
rs->sc_ioc.c_cmd = C_WRITE;
hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD,
&rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
if (hpibswait(hp->hp_ctlr, hp->hp_slave)) {
#ifdef DEBUG
if (rddebug & RDB_DUMP)
printf("rddump: IOC wait timeout\n");
#endif
return (EIO);
}
pmap_enter(pmap_kernel(), vmmap, maddr, VM_PROT_READ, TRUE);
hpibsend(hp->hp_ctlr, hp->hp_slave, C_EXEC, vmmap, NBPG);
if (hpibswait(hp->hp_ctlr, hp->hp_slave)) {
#ifdef DEBUG
if (rddebug & RDB_DUMP)
printf("rddump: write wait timeout\n");
#endif
}
hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
if (stat) {
#ifdef DEBUG
if (rddebug & RDB_DUMP)
printf("rddump: write failed, status %x\n",
stat);
#endif
return (EIO);
}
maddr += NBPG;
baddr += ctod(1);
}
return (0);
}
#endif