BSD 4_3_Net_1 release
[unix-history] / sys / vaxif / if_qe.c
/*
* Copyright (c) 1988 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Digital Equipment Corp.
*
* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
* duplicated in all such forms and that any documentation,
* advertising materials, and other materials related to such
* distribution and use acknowledge that the software was developed
* by the University of California, Berkeley. The name of the
* University may not be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* @(#)if_qe.c 7.10 (Berkeley) 10/22/88
*/
/* from @(#)if_qe.c 1.15 (ULTRIX) 4/16/86 */
/****************************************************************
* *
* Licensed from Digital Equipment Corporation *
* Copyright (c) *
* Digital Equipment Corporation *
* Maynard, Massachusetts *
* 1985, 1986 *
* All rights reserved. *
* *
* The Information in this software is subject to change *
* without notice and should not be construed as a commitment *
* by Digital Equipment Corporation. Digital makes no *
* representations about the suitability of this software for *
* any purpose. It is supplied "As Is" without expressed or *
* implied warranty. *
* *
* If the Regents of the University of California or its *
* licensees modify the software in a manner creating *
* derivative copyright rights, appropriate copyright *
* legends may be placed on the derivative work in addition *
* to that set forth above. *
* *
****************************************************************/
/* ---------------------------------------------------------------------
* Modification History
*
* 15-Apr-86 -- afd
* Rename "unused_multi" to "qunused_multi" for extending Generic
* kernel to MicroVAXen.
*
* 18-mar-86 -- jaw br/cvec changed to NOT use registers.
*
* 12 March 86 -- Jeff Chase
* Modified to handle the new MCLGET macro
* Changed if_qe_data.c to use more receive buffers
* Added a flag to poke with adb to log qe_restarts on console
*
* 19 Oct 85 -- rjl
* Changed the watch dog timer from 30 seconds to 3. VMS is using
* less than 1 second in their's. Also turned the printf into an
* mprintf.
*
* 09/16/85 -- Larry Cohen
* Add 43bsd alpha tape changes for subnet routing
*
* 1 Aug 85 -- rjl
* Panic on a non-existent memory interrupt and the case where a packet
* was chained. The first should never happen because non-existant
* memory interrupts cause a bus reset. The second should never happen
* because we hang 2k input buffers on the device.
*
* 1 Aug 85 -- rich
* Fixed the broadcast loopback code to handle Clusters without
* wedging the system.
*
* 27 Feb. 85 -- ejf
* Return default hardware address on ioctl request.
*
* 12 Feb. 85 -- ejf
* Added internal extended loopback capability.
*
* 27 Dec. 84 -- rjl
* Fixed bug that caused every other transmit descriptor to be used
* instead of every descriptor.
*
* 21 Dec. 84 -- rjl
* Added watchdog timer to mask hardware bug that causes device lockup.
*
* 18 Dec. 84 -- rjl
* Reworked driver to use q-bus mapping routines. MicroVAX-I now does
* copying instead of m-buf shuffleing.
* A number of deficencies in the hardware/firmware were compensated
* for. See comments in qestart and qerint.
*
* 14 Nov. 84 -- jf
* Added usage counts for multicast addresses.
* Updated general protocol support to allow access to the Ethernet
* header.
*
* 04 Oct. 84 -- jf
* Added support for new ioctls to add and delete multicast addresses
* and set the physical address.
* Add support for general protocols.
*
* 14 Aug. 84 -- rjl
* Integrated Shannon changes. (allow arp above 1024 and ? )
*
* 13 Feb. 84 -- rjl
*
* Initial version of driver. derived from IL driver.
*
* ---------------------------------------------------------------------
*/
#include "qe.h"
#if NQE > 0
/*
* Digital Q-BUS to NI Adapter
*/
#include "param.h"
#include "systm.h"
#include "mbuf.h"
#include "buf.h"
#include "protosw.h"
#include "socket.h"
#include "vmmac.h"
#include "ioctl.h"
#include "errno.h"
#include "syslog.h"
#include "time.h"
#include "kernel.h"
#include "../net/if.h"
#include "../net/netisr.h"
#include "../net/route.h"
#ifdef INET
#include "../netinet/in.h"
#include "../netinet/in_systm.h"
#include "../netinet/in_var.h"
#include "../netinet/ip.h"
#include "../netinet/if_ether.h"
#endif
#ifdef NS
#include "../netns/ns.h"
#include "../netns/ns_if.h"
#endif
#include "../vax/pte.h"
#include "../vax/cpu.h"
#include "../vax/mtpr.h"
#include "if_qereg.h"
#include "if_uba.h"
#include "../vaxuba/ubareg.h"
#include "../vaxuba/ubavar.h"
#if NQE > 1
#define NRCV 15 /* Receive descriptors */
#else
#define NRCV 20 /* Receive descriptors */
#endif
#define NXMT 5 /* Transmit descriptors */
#define NTOT (NXMT + NRCV)
#define QETIMEOUT 2 /* transmit timeout, must be > 1 */
/*
* This constant should really be 60 because the qna adds 4 bytes of crc.
* However when set to 60 our packets are ignored by deuna's , 3coms are
* okay ??????????????????????????????????????????
*/
#define MINDATA 64
/*
* Ethernet software status per interface.
*
* Each interface is referenced by a network interface structure,
* qe_if, which the routing code uses to locate the interface.
* This structure contains the output queue for the interface, its address, ...
*/
struct qe_softc {
struct arpcom qe_ac; /* Ethernet common part */
#define qe_if qe_ac.ac_if /* network-visible interface */
#define qe_addr qe_ac.ac_enaddr /* hardware Ethernet address */
struct ifubinfo qe_uba; /* Q-bus resources */
struct ifrw qe_ifr[NRCV]; /* for receive buffers; */
struct ifxmt qe_ifw[NXMT]; /* for xmit buffers; */
int qe_flags; /* software state */
#define QEF_RUNNING 0x01
#define QEF_SETADDR 0x02
int setupaddr; /* mapping info for setup pkts */
int ipl; /* interrupt priority */
struct qe_ring *rringaddr; /* mapping info for rings */
struct qe_ring *tringaddr; /* "" */
struct qe_ring rring[NRCV+1]; /* Receive ring descriptors */
struct qe_ring tring[NXMT+1]; /* Transmit ring descriptors */
u_char setup_pkt[16][8]; /* Setup packet */
int rindex; /* Receive index */
int tindex; /* Transmit index */
int otindex; /* Old transmit index */
int qe_intvec; /* Interrupt vector */
struct qedevice *addr; /* device addr */
int setupqueued; /* setup packet queued */
int nxmit; /* Transmits in progress */
int qe_restarts; /* timeouts */
} qe_softc[NQE];
struct uba_device *qeinfo[NQE];
extern struct timeval time;
int qeprobe(), qeattach(), qeintr(), qetimeout();
int qeinit(), qeoutput(), qeioctl(), qereset();
u_short qestd[] = { 0 };
struct uba_driver qedriver =
{ qeprobe, 0, qeattach, 0, qestd, "qe", qeinfo };
#define QE_TIMEO (15)
#define QEUNIT(x) minor(x)
/*
* The deqna shouldn't receive more than ETHERMTU + sizeof(struct ether_header)
* but will actually take in up to 2048 bytes. To guard against the receiver
* chaining buffers (which we aren't prepared to handle) we allocate 2kb
* size buffers.
*/
#define MAXPACKETSIZE 2048 /* Should really be ETHERMTU */
/*
* Probe the QNA to see if it's there
*/
qeprobe(reg, ui)
caddr_t reg;
struct uba_device *ui;
{
register int br, cvec; /* r11, r10 value-result */
register struct qedevice *addr = (struct qedevice *)reg;
register struct qe_ring *rp;
register struct qe_ring *prp; /* physical rp */
register int i;
register struct qe_softc *sc = &qe_softc[ui->ui_unit];
#ifdef lint
br = 0; cvec = br; br = cvec;
qeintr(0);
#endif
/*
* The QNA interrupts on i/o operations. To do an I/O operation
* we have to setup the interface by transmitting a setup packet.
*/
addr->qe_csr = QE_RESET;
addr->qe_csr &= ~QE_RESET;
addr->qe_vector = (uba_hd[numuba].uh_lastiv -= 4);
/*
* Map the communications area and the setup packet.
*/
sc->setupaddr =
uballoc(0, (caddr_t)sc->setup_pkt, sizeof(sc->setup_pkt), 0);
sc->rringaddr = (struct qe_ring *) uballoc(0, (caddr_t)sc->rring,
sizeof(struct qe_ring) * (NTOT+2), 0);
prp = (struct qe_ring *)UBAI_ADDR((int)sc->rringaddr);
/*
* The QNA will loop the setup packet back to the receive ring
* for verification, therefore we initialize the first
* receive & transmit ring descriptors and link the setup packet
* to them.
*/
qeinitdesc(sc->tring, (caddr_t)UBAI_ADDR(sc->setupaddr),
sizeof(sc->setup_pkt));
qeinitdesc(sc->rring, (caddr_t)UBAI_ADDR(sc->setupaddr),
sizeof(sc->setup_pkt));
rp = (struct qe_ring *)sc->tring;
rp->qe_setup = 1;
rp->qe_eomsg = 1;
rp->qe_flag = rp->qe_status1 = QE_NOTYET;
rp->qe_valid = 1;
rp = (struct qe_ring *)sc->rring;
rp->qe_flag = rp->qe_status1 = QE_NOTYET;
rp->qe_valid = 1;
/*
* Get the addr off of the interface and place it into the setup
* packet. This code looks strange due to the fact that the address
* is placed in the setup packet in col. major order.
*/
for( i = 0 ; i < 6 ; i++ )
sc->setup_pkt[i][1] = addr->qe_sta_addr[i];
qesetup( sc );
/*
* Start the interface and wait for the packet.
*/
(void) spl6();
addr->qe_csr = QE_INT_ENABLE | QE_XMIT_INT | QE_RCV_INT;
addr->qe_rcvlist_lo = (short)prp;
addr->qe_rcvlist_hi = (short)((int)prp >> 16);
prp += NRCV+1;
addr->qe_xmtlist_lo = (short)prp;
addr->qe_xmtlist_hi = (short)((int)prp >> 16);
DELAY(10000);
/*
* All done with the bus resources.
*/
ubarelse(0, &sc->setupaddr);
ubarelse(0, (int *)&sc->rringaddr);
sc->ipl = br = qbgetpri();
return( sizeof(struct qedevice) );
}
/*
* Interface exists: make available by filling in network interface
* record. System will initialize the interface when it is ready
* to accept packets.
*/
qeattach(ui)
struct uba_device *ui;
{
register struct qe_softc *sc = &qe_softc[ui->ui_unit];
register struct ifnet *ifp = &sc->qe_if;
register struct qedevice *addr = (struct qedevice *)ui->ui_addr;
register int i;
ifp->if_unit = ui->ui_unit;
ifp->if_name = "qe";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST;
/*
* Read the address from the prom and save it.
*/
for( i=0 ; i<6 ; i++ )
sc->setup_pkt[i][1] = sc->qe_addr[i] = addr->qe_sta_addr[i] & 0xff;
addr->qe_vector |= 1;
printf("qe%d: %s, hardware address %s\n", ui->ui_unit,
addr->qe_vector&01 ? "delqa":"deqna",
ether_sprintf(sc->qe_addr));
addr->qe_vector &= ~1;
/*
* Save the vector for initialization at reset time.
*/
sc->qe_intvec = addr->qe_vector;
ifp->if_init = qeinit;
ifp->if_output = qeoutput;
ifp->if_ioctl = qeioctl;
ifp->if_reset = qereset;
ifp->if_watchdog = qetimeout;
sc->qe_uba.iff_flags = UBA_CANTWAIT;
if_attach(ifp);
}
/*
* Reset of interface after UNIBUS reset.
* If interface is on specified uba, reset its state.
*/
qereset(unit, uban)
int unit, uban;
{
register struct uba_device *ui;
if (unit >= NQE || (ui = qeinfo[unit]) == 0 || ui->ui_alive == 0 ||
ui->ui_ubanum != uban)
return;
printf(" qe%d", unit);
qe_softc[unit].qe_if.if_flags &= ~IFF_RUNNING;
qeinit(unit);
}
/*
* Initialization of interface.
*/
qeinit(unit)
int unit;
{
register struct qe_softc *sc = &qe_softc[unit];
register struct uba_device *ui = qeinfo[unit];
register struct qedevice *addr = (struct qedevice *)ui->ui_addr;
register struct ifnet *ifp = &sc->qe_if;
register i;
int s;
/* address not known */
if (ifp->if_addrlist == (struct ifaddr *)0)
return;
if (sc->qe_flags & QEF_RUNNING)
return;
if ((ifp->if_flags & IFF_RUNNING) == 0) {
/*
* map the communications area onto the device
*/
i = uballoc(0, (caddr_t)sc->rring,
sizeof(struct qe_ring) * (NTOT+2), 0);
if (i == 0)
goto fail;
sc->rringaddr = (struct qe_ring *)UBAI_ADDR(i);
sc->tringaddr = sc->rringaddr + NRCV + 1;
i = uballoc(0, (caddr_t)sc->setup_pkt,
sizeof(sc->setup_pkt), 0);
if (i == 0)
goto fail;
sc->setupaddr = UBAI_ADDR(i);
/*
* init buffers and maps
*/
if (if_ubaminit(&sc->qe_uba, ui->ui_ubanum,
sizeof (struct ether_header), (int)btoc(MAXPACKETSIZE),
sc->qe_ifr, NRCV, sc->qe_ifw, NXMT) == 0) {
fail:
printf("qe%d: can't initialize\n", unit);
sc->qe_if.if_flags &= ~IFF_UP;
return;
}
}
/*
* Init the buffer descriptors and indexes for each of the lists and
* loop them back to form a ring.
*/
for (i = 0; i < NRCV; i++) {
qeinitdesc( &sc->rring[i],
(caddr_t)UBAI_ADDR(sc->qe_ifr[i].ifrw_info), MAXPACKETSIZE);
sc->rring[i].qe_flag = sc->rring[i].qe_status1 = QE_NOTYET;
sc->rring[i].qe_valid = 1;
}
qeinitdesc(&sc->rring[i], (caddr_t)NULL, 0);
sc->rring[i].qe_addr_lo = (short)sc->rringaddr;
sc->rring[i].qe_addr_hi = (short)((int)sc->rringaddr >> 16);
sc->rring[i].qe_chain = 1;
sc->rring[i].qe_flag = sc->rring[i].qe_status1 = QE_NOTYET;
sc->rring[i].qe_valid = 1;
for( i = 0 ; i <= NXMT ; i++ )
qeinitdesc(&sc->tring[i], (caddr_t)NULL, 0);
i--;
sc->tring[i].qe_addr_lo = (short)sc->tringaddr;
sc->tring[i].qe_addr_hi = (short)((int)sc->tringaddr >> 16);
sc->tring[i].qe_chain = 1;
sc->tring[i].qe_flag = sc->tring[i].qe_status1 = QE_NOTYET;
sc->tring[i].qe_valid = 1;
sc->nxmit = sc->otindex = sc->tindex = sc->rindex = 0;
/*
* Take the interface out of reset, program the vector,
* enable interrupts, and tell the world we are up.
*/
s = splimp();
addr->qe_vector = sc->qe_intvec;
sc->addr = addr;
addr->qe_csr = QE_RCV_ENABLE | QE_INT_ENABLE | QE_XMIT_INT |
QE_RCV_INT | QE_ILOOP;
addr->qe_rcvlist_lo = (short)sc->rringaddr;
addr->qe_rcvlist_hi = (short)((int)sc->rringaddr >> 16);
ifp->if_flags |= IFF_UP | IFF_RUNNING;
sc->qe_flags |= QEF_RUNNING;
qesetup( sc );
qestart( unit );
splx( s );
}
/*
* Start output on interface.
*
*/
qestart(unit)
int unit;
{
struct uba_device *ui = qeinfo[unit];
register struct qe_softc *sc = &qe_softc[unit];
register struct qedevice *addr;
register struct qe_ring *rp;
register index;
struct mbuf *m;
int buf_addr, len, s;
s = splimp();
addr = (struct qedevice *)ui->ui_addr;
/*
* The deqna doesn't look at anything but the valid bit
* to determine if it should transmit this packet. If you have
* a ring and fill it the device will loop indefinately on the
* packet and continue to flood the net with packets until you
* break the ring. For this reason we never queue more than n-1
* packets in the transmit ring.
*
* The microcoders should have obeyed their own defination of the
* flag and status words, but instead we have to compensate.
*/
for( index = sc->tindex;
sc->tring[index].qe_valid == 0 && sc->nxmit < (NXMT-1) ;
sc->tindex = index = ++index % NXMT){
rp = &sc->tring[index];
if( sc->setupqueued ) {
buf_addr = sc->setupaddr;
len = 128;
rp->qe_setup = 1;
sc->setupqueued = 0;
} else {
IF_DEQUEUE(&sc->qe_if.if_snd, m);
if( m == 0 ){
splx(s);
return;
}
buf_addr = sc->qe_ifw[index].ifw_info;
len = if_ubaput(&sc->qe_uba, &sc->qe_ifw[index], m);
}
/*
* Does buffer end on odd byte ?
*/
if( len & 1 ) {
len++;
rp->qe_odd_end = 1;
}
if( len < MINDATA )
len = MINDATA;
rp->qe_buf_len = -(len/2);
buf_addr = UBAI_ADDR(buf_addr);
rp->qe_flag = rp->qe_status1 = QE_NOTYET;
rp->qe_addr_lo = (short)buf_addr;
rp->qe_addr_hi = (short)(buf_addr >> 16);
rp->qe_eomsg = 1;
rp->qe_flag = rp->qe_status1 = QE_NOTYET;
rp->qe_valid = 1;
sc->nxmit++;
sc->qe_if.if_timer = QETIMEOUT;
/*
* See if the xmit list is invalid.
*/
if( addr->qe_csr & QE_XL_INVALID ) {
buf_addr = (int)(sc->tringaddr+index);
addr->qe_xmtlist_lo = (short)buf_addr;
addr->qe_xmtlist_hi = (short)(buf_addr >> 16);
}
}
splx( s );
}
/*
* Ethernet interface interrupt processor
*/
qeintr(unit)
int unit;
{
register struct qe_softc *sc = &qe_softc[unit];
struct qedevice *addr = (struct qedevice *)qeinfo[unit]->ui_addr;
int buf_addr, csr;
splx(sc->ipl);
csr = addr->qe_csr;
addr->qe_csr = QE_RCV_ENABLE | QE_INT_ENABLE | QE_XMIT_INT | QE_RCV_INT | QE_ILOOP;
if( csr & QE_RCV_INT )
qerint( unit );
if( csr & QE_XMIT_INT )
qetint( unit );
if( csr & QE_NEX_MEM_INT )
panic("qe: Non existant memory interrupt");
if( addr->qe_csr & QE_RL_INVALID && sc->rring[sc->rindex].qe_status1 == QE_NOTYET ) {
buf_addr = (int)&sc->rringaddr[sc->rindex];
addr->qe_rcvlist_lo = (short)buf_addr;
addr->qe_rcvlist_hi = (short)(buf_addr >> 16);
}
}
/*
* Ethernet interface transmit interrupt.
*/
qetint(unit)
int unit;
{
register struct qe_softc *sc = &qe_softc[unit];
register struct qe_ring *rp;
register struct ifxmt *ifxp;
int status1, setupflag;
short len;
while( sc->otindex != sc->tindex && sc->tring[sc->otindex].qe_status1 != QE_NOTYET && sc->nxmit > 0 ) {
/*
* Save the status words from the descriptor so that it can
* be released.
*/
rp = &sc->tring[sc->otindex];
status1 = rp->qe_status1;
setupflag = rp->qe_setup;
len = (-rp->qe_buf_len) * 2;
if( rp->qe_odd_end )
len++;
/*
* Init the buffer descriptor
*/
bzero((caddr_t)rp, sizeof(struct qe_ring));
if( --sc->nxmit == 0 )
sc->qe_if.if_timer = 0;
if( !setupflag ) {
/*
* Do some statistics.
*/
sc->qe_if.if_opackets++;
sc->qe_if.if_collisions += ( status1 & QE_CCNT ) >> 4;
if (status1 & QE_ERROR)
sc->qe_if.if_oerrors++;
/*
* If this was a broadcast packet loop it
* back because the hardware can't hear its own
* transmits.
*/
ifxp = &sc->qe_ifw[sc->otindex];
if (bcmp((caddr_t)((struct ether_header *)ifxp->ifw_addr)->ether_dhost,
(caddr_t)etherbroadcastaddr,
sizeof(etherbroadcastaddr)) == 0)
qeread(sc, &ifxp->ifrw,
len - sizeof(struct ether_header));
if (ifxp->ifw_xtofree) {
m_freem(ifxp->ifw_xtofree);
ifxp->ifw_xtofree = 0;
}
}
sc->otindex = ++sc->otindex % NXMT;
}
qestart( unit );
}
/*
* Ethernet interface receiver interrupt.
* If can't determine length from type, then have to drop packet.
* Othewise decapsulate packet based on type and pass to type specific
* higher-level input routine.
*/
qerint(unit)
int unit;
{
register struct qe_softc *sc = &qe_softc[unit];
register struct qe_ring *rp;
int len, status1, status2;
int bufaddr;
/*
* Traverse the receive ring looking for packets to pass back.
* The search is complete when we find a descriptor not in use.
*
* As in the transmit case the deqna doesn't honor it's own protocols
* so there exists the possibility that the device can beat us around
* the ring. The proper way to guard against this is to insure that
* there is always at least one invalid descriptor. We chose instead
* to make the ring large enough to minimize the problem. With a ring
* size of 4 we haven't been able to see the problem. To be safe we
* doubled that to 8.
*
*/
for( ; sc->rring[sc->rindex].qe_status1 != QE_NOTYET ; sc->rindex = ++sc->rindex % NRCV ){
rp = &sc->rring[sc->rindex];
status1 = rp->qe_status1;
status2 = rp->qe_status2;
bzero((caddr_t)rp, sizeof(struct qe_ring));
if( (status1 & QE_MASK) == QE_MASK )
panic("qe: chained packet");
len = ((status1 & QE_RBL_HI) | (status2 & QE_RBL_LO)) + 60;
sc->qe_if.if_ipackets++;
if (status1 & QE_ERROR) {
if ((status1 & QE_RUNT) == 0)
sc->qe_if.if_ierrors++;
} else {
/*
* We don't process setup packets.
*/
if( !(status1 & QE_ESETUP) )
qeread(sc, &sc->qe_ifr[sc->rindex],
len - sizeof(struct ether_header));
}
/*
* Return the buffer to the ring
*/
bufaddr = (int)UBAI_ADDR(sc->qe_ifr[sc->rindex].ifrw_info);
rp->qe_buf_len = -((MAXPACKETSIZE)/2);
rp->qe_addr_lo = (short)bufaddr;
rp->qe_addr_hi = (short)((int)bufaddr >> 16);
rp->qe_flag = rp->qe_status1 = QE_NOTYET;
rp->qe_valid = 1;
}
}
/*
* Ethernet output routine.
* Encapsulate a packet of type family for the local net.
* Use trailer local net encapsulation if enough data in first
* packet leaves a multiple of 512 bytes of data in remainder.
*/
qeoutput(ifp, m0, dst)
struct ifnet *ifp;
struct mbuf *m0;
struct sockaddr *dst;
{
int type, s, error;
u_char edst[6];
struct in_addr idst;
register struct qe_softc *is = &qe_softc[ifp->if_unit];
register struct mbuf *m = m0;
register struct ether_header *eh;
register int off;
int usetrailers;
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) {
error = ENETDOWN;
goto bad;
}
switch (dst->sa_family) {
#ifdef INET
case AF_INET:
idst = ((struct sockaddr_in *)dst)->sin_addr;
if (!arpresolve(&is->qe_ac, m, &idst, edst, &usetrailers))
return (0); /* if not yet resolved */
off = ntohs((u_short)mtod(m, struct ip *)->ip_len) - m->m_len;
if (usetrailers && off > 0 && (off & 0x1ff) == 0 &&
m->m_off >= MMINOFF + 2 * sizeof (u_short)) {
type = ETHERTYPE_TRAIL + (off>>9);
m->m_off -= 2 * sizeof (u_short);
m->m_len += 2 * sizeof (u_short);
*mtod(m, u_short *) = htons((u_short)ETHERTYPE_IP);
*(mtod(m, u_short *) + 1) = htons((u_short)m->m_len);
goto gottrailertype;
}
type = ETHERTYPE_IP;
off = 0;
goto gottype;
#endif
#ifdef NS
case AF_NS:
type = ETHERTYPE_NS;
bcopy((caddr_t)&(((struct sockaddr_ns *)dst)->sns_addr.x_host),
(caddr_t)edst, sizeof (edst));
off = 0;
goto gottype;
#endif
case AF_UNSPEC:
eh = (struct ether_header *)dst->sa_data;
bcopy((caddr_t)eh->ether_dhost, (caddr_t)edst, sizeof (edst));
type = eh->ether_type;
goto gottype;
default:
printf("qe%d: can't handle af%d\n", ifp->if_unit,
dst->sa_family);
error = EAFNOSUPPORT;
goto bad;
}
gottrailertype:
/*
* Packet to be sent as trailer: move first packet
* (control information) to end of chain.
*/
while (m->m_next)
m = m->m_next;
m->m_next = m0;
m = m0->m_next;
m0->m_next = 0;
m0 = m;
gottype:
/*
* Add local net header. If no space in first mbuf,
* allocate another.
*/
if (m->m_off > MMAXOFF ||
MMINOFF + sizeof (struct ether_header) > m->m_off) {
m = m_get(M_DONTWAIT, MT_HEADER);
if (m == 0) {
error = ENOBUFS;
goto bad;
}
m->m_next = m0;
m->m_off = MMINOFF;
m->m_len = sizeof (struct ether_header);
} else {
m->m_off -= sizeof (struct ether_header);
m->m_len += sizeof (struct ether_header);
}
eh = mtod(m, struct ether_header *);
eh->ether_type = htons((u_short)type);
bcopy((caddr_t)edst, (caddr_t)eh->ether_dhost, sizeof (edst));
bcopy((caddr_t)is->qe_addr, (caddr_t)eh->ether_shost, sizeof (is->qe_addr));
/*
* Queue message on interface, and start output if interface
* not yet active.
*/
s = splimp();
if (IF_QFULL(&ifp->if_snd)) {
IF_DROP(&ifp->if_snd);
splx(s);
m_freem(m);
return (ENOBUFS);
}
IF_ENQUEUE(&ifp->if_snd, m);
qestart(ifp->if_unit);
splx(s);
return (0);
bad:
m_freem(m0);
return (error);
}
/*
* Process an ioctl request.
*/
qeioctl(ifp, cmd, data)
register struct ifnet *ifp;
int cmd;
caddr_t data;
{
struct qe_softc *sc = &qe_softc[ifp->if_unit];
struct ifaddr *ifa = (struct ifaddr *)data;
int s = splimp(), error = 0;
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
qeinit(ifp->if_unit);
switch(ifa->ifa_addr.sa_family) {
#ifdef INET
case AF_INET:
((struct arpcom *)ifp)->ac_ipaddr =
IA_SIN(ifa)->sin_addr;
arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
if (ns_nullhost(*ina))
ina->x_host = *(union ns_host *)(sc->qe_addr);
else
qe_setaddr(ina->x_host.c_host, ifp->if_unit);
break;
}
#endif
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
sc->qe_flags & QEF_RUNNING) {
((struct qedevice *)
(qeinfo[ifp->if_unit]->ui_addr))->qe_csr = QE_RESET;
sc->qe_flags &= ~QEF_RUNNING;
} else if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) ==
IFF_RUNNING && (sc->qe_flags & QEF_RUNNING) == 0)
qerestart(sc);
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
/*
* set ethernet address for unit
*/
qe_setaddr(physaddr, unit)
u_char *physaddr;
int unit;
{
register struct qe_softc *sc = &qe_softc[unit];
register int i;
for (i = 0; i < 6; i++)
sc->setup_pkt[i][1] = sc->qe_addr[i] = physaddr[i];
sc->qe_flags |= QEF_SETADDR;
if (sc->qe_if.if_flags & IFF_RUNNING)
qesetup(sc);
qeinit(unit);
}
/*
* Initialize a ring descriptor with mbuf allocation side effects
*/
qeinitdesc(rp, addr, len)
register struct qe_ring *rp;
caddr_t addr; /* mapped address */
int len;
{
/*
* clear the entire descriptor
*/
bzero((caddr_t)rp, sizeof(struct qe_ring));
if( len ) {
rp->qe_buf_len = -(len/2);
rp->qe_addr_lo = (short)addr;
rp->qe_addr_hi = (short)((int)addr >> 16);
}
}
/*
* Build a setup packet - the physical address will already be present
* in first column.
*/
qesetup( sc )
struct qe_softc *sc;
{
register i, j;
/*
* Copy the target address to the rest of the entries in this row.
*/
for ( j = 0; j < 6 ; j++ )
for ( i = 2 ; i < 8 ; i++ )
sc->setup_pkt[j][i] = sc->setup_pkt[j][1];
/*
* Duplicate the first half.
*/
bcopy((caddr_t)sc->setup_pkt[0], (caddr_t)sc->setup_pkt[8], 64);
/*
* Fill in the broadcast address.
*/
for ( i = 0; i < 6 ; i++ )
sc->setup_pkt[i][2] = 0xff;
sc->setupqueued++;
}
/*
* Pass a packet to the higher levels.
* We deal with the trailer protocol here.
*/
qeread(sc, ifrw, len)
register struct qe_softc *sc;
struct ifrw *ifrw;
int len;
{
struct ether_header *eh;
struct mbuf *m;
int off, resid, s;
struct ifqueue *inq;
/*
* Deal with trailer protocol: if type is INET trailer
* get true type from first 16-bit word past data.
* Remember that type was trailer by setting off.
*/
eh = (struct ether_header *)ifrw->ifrw_addr;
eh->ether_type = ntohs((u_short)eh->ether_type);
#define qedataaddr(eh, off, type) ((type)(((caddr_t)((eh)+1)+(off))))
if (eh->ether_type >= ETHERTYPE_TRAIL &&
eh->ether_type < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
off = (eh->ether_type - ETHERTYPE_TRAIL) * 512;
if (off >= ETHERMTU)
return; /* sanity */
eh->ether_type = ntohs(*qedataaddr(eh,off, u_short *));
resid = ntohs(*(qedataaddr(eh, off+2, u_short *)));
if (off + resid > len)
return; /* sanity */
len = off + resid;
} else
off = 0;
if (len == 0)
return;
/*
* Pull packet off interface. Off is nonzero if packet
* has trailing header; qeget will then force this header
* information to be at the front, but we still have to drop
* the type and length which are at the front of any trailer data.
*/
m = if_ubaget(&sc->qe_uba, ifrw, len, off, &sc->qe_if);
if (m == 0)
return;
if (off) {
struct ifnet *ifp;
ifp = *(mtod(m, struct ifnet **));
m->m_off += 2 * sizeof (u_short);
m->m_len -= 2 * sizeof (u_short);
*(mtod(m, struct ifnet **)) = ifp;
}
switch (eh->ether_type) {
#ifdef INET
case ETHERTYPE_IP:
schednetisr(NETISR_IP);
inq = &ipintrq;
break;
case ETHERTYPE_ARP:
arpinput(&sc->qe_ac, m);
return;
#endif
#ifdef NS
case ETHERTYPE_NS:
schednetisr(NETISR_NS);
inq = &nsintrq;
break;
#endif
default:
m_freem(m);
return;
}
s = splimp();
if (IF_QFULL(inq)) {
IF_DROP(inq);
m_freem(m);
} else
IF_ENQUEUE(inq, m);
splx(s);
}
/*
* Watchdog timeout routine. There is a condition in the hardware that
* causes the board to lock up under heavy load. This routine detects
* the hang up and restarts the device.
*/
qetimeout(unit)
int unit;
{
register struct qe_softc *sc;
sc = &qe_softc[unit];
log(LOG_ERR, "qe%d: transmit timeout, restarted %d\n",
unit, ++sc->qe_restarts);
qerestart(sc);
}
/*
* Restart for board lockup problem.
*/
qerestart(sc)
register struct qe_softc *sc;
{
register struct ifnet *ifp = &sc->qe_if;
register struct qedevice *addr = sc->addr;
register struct qe_ring *rp;
register i;
addr->qe_csr = QE_RESET;
qesetup( sc );
for (i = 0, rp = sc->tring; i < NXMT; rp++, i++) {
rp->qe_flag = rp->qe_status1 = QE_NOTYET;
rp->qe_valid = 0;
}
sc->nxmit = sc->otindex = sc->tindex = sc->rindex = 0;
addr->qe_csr = QE_RCV_ENABLE | QE_INT_ENABLE | QE_XMIT_INT |
QE_RCV_INT | QE_ILOOP;
addr->qe_rcvlist_lo = (short)sc->rringaddr;
addr->qe_rcvlist_hi = (short)((int)sc->rringaddr >> 16);
sc->qe_flags |= QEF_RUNNING;
qestart(ifp->if_unit);
}
#endif